

Nonlinear Model Order Reduction with pyMOR

living.knowledge WWU Münster

Stephan Rave

SIAM CSE Atlanta February 27, 2017

Westfälische Wilhelms-Universität Münster

Nonlinear Model Order Reduction with pyMOR 2

Outline

- Reduced Basis Methods and Empirical Interpolation.
- Model Order Reduction with pyMOR.
- Empirical Interpolation with pyMOR.

pyMOR main developers

Rene Milk

Petar Mlinarić

Stephan Rave

Felix Schindler

Reduced Basis Methods and Empirical Interpolation

RB for Nonlinear Evolution Equations

Full order problem

For given parameter $\mu \in \mathcal{P}$, find $u_{\mu}(t) \in V_h$ s.t.

 $\partial_t u_\mu(t) + \mathcal{L}_\mu(u_\mu(t)) = 0, \quad u_\mu(0) = u_0,$

where $\mathcal{L}_{\mu}: \mathcal{P} \times V_h \rightarrow V_h$ is a nonlinear finite volume operator.

Reduced order problem

For given $V_N \subset V_h$, let $u_{\mu,N}(t) \in V_N$ be given by Galerkin proj. onto V_N , i.e.

$$\partial_t u_{\mu,N}(t) + \mathbf{P}_N(\mathcal{L}_\mu(u_{\mu,N}(t))) = 0, \quad u_{\mu,N}(0) = \mathbf{P}_N(u_0),$$

where P_N : $V_h \rightarrow V_N$ is orthogonal proj. onto V_N .

RB for Nonlinear Evolution Equations

Full order problem

For given parameter $\mu \in \mathcal{P}$, find $u_{\mu}(t) \in V_h$ s.t.

 $\partial_t u_\mu(t) + \mathcal{L}_\mu(u_\mu(t)) = 0, \quad u_\mu(0) = u_0,$

where $\mathcal{L}_{\mu}: \mathcal{P} \times V_h \rightarrow V_h$ is a nonlinear finite volume operator.

Reduced order problem

For given $V_N \subset V_h$, let $u_{\mu,N}(t) \in V_N$ be given by Galerkin proj. onto V_N , i.e.

$$\partial_t u_{\mu,N}(t) + \mathbf{P}_N(\mathcal{L}_\mu(u_{\mu,N}(t))) = 0, \quad u_{\mu,N}(0) = \mathbf{P}_N(u_0),$$

where $P_N : V_h \rightarrow V_N$ is orthogonal proj. onto V_N .

Problem: Still expensive to evaluate

$$P_N \circ \mathcal{L}_\mu : V_N \longrightarrow V_h \longrightarrow V_N.$$

Empirical Interpolation

El – abstract version

Let normed Space *V*, functionals $\Psi \subseteq V^*$ and training set $\mathcal{M} \subset V$ be given. Construct via EI-GREEDY algorithm:

- 1. Interpolation basis $b_1, \ldots b_M \in \operatorname{span} \mathcal{M}$,
- **2.** Interpolation functionals $\psi_1, \ldots, \psi_M \in \Psi$.

The empirical interpolant $\mathcal{I}_{M}(v)$ of an arbitrary $v \in V$ is then determined by

 $\mathcal{I}_M(v) \in \operatorname{span}\{b_1, \dots, b_M\}$ and $\psi_m(\mathcal{I}_M(v)) = \psi_m(v)$ $1 \le m \le M$.

El Cheat Sheet						
	V	Ψ	online			
function El	function space	point evaluations	evaluation at 'magic points'			
operator El	range of (discrete) operator	DOFs	local evaluation at selected DOFs			
matrix DEIM	matrices of given shape	matrix entries	assembly of selected entries			

Hyper-Reduction with Empirical Operator Interpolation (a.k.a. DEIM)

Reduced order problem (with EI)

Find $u_{\mu,N} \in V_N$ s.t.

$$\partial_t u_{\mu,N}(t) + \left\{ (\boldsymbol{P_N} \circ \boldsymbol{I_M}) \circ \mathcal{L}_{\boldsymbol{M},\mu} \circ \boldsymbol{R_{M'}} \right\} (u_{\mu,N}(t)) = 0, \quad u_{\mu,N}(0) = \boldsymbol{P_N}(u_0).$$

where

 $\begin{array}{c} R_{M'} \colon V_h \to \mathbb{R}^{M'} \\ \mathcal{L}_{M,\mu} \colon \mathbb{R}^{M'} \to \mathbb{R}^{M} \\ I_M \colon \mathbb{R}^M \to V_h \end{array}$

restriction to M' DOFs needed for local evaluation local evaluation of \mathcal{L}_{μ} at M interpolation DOFs linear interpolation operator

Offline-Online decomposition

- Precompute the linear operators $P_N \circ I_M$ and $R_{M'}$ w.r.t. basis of V_N .
- Effort to evaluate $(P_N \circ I_M) \circ \mathcal{L}_{M,\mu} \circ R_{M'}$ w.r.t. this basis:

 $\mathcal{O}(MN) + \mathcal{O}(M) + \mathcal{O}(MN).$

Reduced Basis Approximation of Battery Models

MULTIBAT: Gain understanding of degradation processes in rechargeable Li-Ion Batteries through mathematical modeling and simulation.

- Focus: Li-Plating.
- Li-plating initiated at interface between active particles and electrolyte.
- Need microscale models which resolve active particle geometry.
- Huge nonlinear discrete models.

Basic Microscale Model

Variables:

 $c: \operatorname{Li}^+$ concentration $\phi:$ electrical potential

Electrolyte:

$$\frac{\partial c}{\partial t} - \nabla \cdot (D_e \nabla c) = 0$$
$$-\nabla \cdot (\kappa \frac{1 - t_+}{F} RT \frac{1}{c} \nabla c - \kappa \nabla \phi) = 0$$

$$rac{\partial c}{\partial t} -
abla \cdot (D_s
abla c) = 0 \ -
abla \cdot (\sigma
abla \phi) = 0$$

Coupling: Normal fluxes at interfaces given by Butler-Volmer kinetics

$$j_{se} = 2k\sqrt{c_e c_s (c_{max} - c_s)} \sinh\left(\frac{\eta}{2RT} \cdot F\right) \qquad \eta = \phi_s - \phi_e - U_0(\frac{c_s}{c_{max}})$$
$$N_{se} = \frac{1}{F} \cdot j_{se}$$

- Finite volume discretization implemented by Fraunhofer ITWM in OGOBEST.
- Numerical fluxes on interfaces := Butler-Volmer fluxes.
- Newton + algebraic multigrid solver.

Westfälische Wilhelms-Universität Münster

Experiments

- 2.920.000 DOFs.
- Snapshots: 3
- dim $V_N = 98 + 47$
- M = 710 + 774
- ▶ Rel. err.: < 1.5 · 10⁻³
- Full model: ≈ 13h
- ▶ Reduction: ≈ 9h
- ▶ Red. model: ≈ 5m
- Speedup: 154

Nonlinear Model Order Reduction with pyMOR 10

Model Order Reduction with pyMOR

Classic RB Software Designs

Design 1: write data needed for reduction to disk (e.g. rbMIT)

Handle reduction and reduced solving by dedicated MOR code. Read all needed data from disk after run of PDE solver in special MOR output mode.

Design 2: add MOR mode to PDE solver (e.g. libMesh)

Add all MOR code needed directly to the PDE solver. Optionally, implement specialized MOR version of solver to run on small devices.

Design 3: communicate only reduced data (e.g. RBmatlab + dune-rb)

Write MOR code which communicates with running PDE solver. MOR code can, e.g., instruct solver to enrich basis with snapshot for certain μ and to compute data for reduced model.

RB Software Design Comparison

via disk	in solver	low-dim
9	(19)	(19)
(9)	(9)	8
<u>@</u>	9	۲
()	1	۲
(2)	(2)	9
(2)	(2)	()
(2)	(2)	9
(2)	9	9

large (e.g. matrix-free) problems empirical interpolation reusability w. new solver reusability w. new MOR alg. MOR alg. easy to implement easy to use w. new solver easy to maintain MOR and solver dev. decoupled

pyMOR – Model Order Reduction with Python

Goal

One tool for algorithm development and large-scale applications.

- Started late 2012, 20k lines of Python code, 3k single commits.
- BSD-licensed, fork us on Github!
- Quick prototyping with Python 2/3.
- Comes with small NumPy/SciPy-based discretization toolkit for getting started quickly.
- Seamless integration with high-performance PDE solvers.

Generic Algorithms and Interfaces for MOR

- VectorArray, Operator, Discretization classes represent objects in solver's memory.
- No communication of high-dimensional data.
- Tight, low-level integration with external solver.
- No MOR-specific code in solver.

Implemented Algorithms

- Gram-Schmidt, POD.
- Greedy basis generation with different extension algorithms.
- Automatic (Petrov-)Galerkin projection of arbitrarily nested affine combinations of operators.
- Interpolation of arbitrary (nonlinear) operators, EI-Greedy, DEIM.
- A posteriori error estimation.
- Iterative linear solvers, Newton algorithm, time-stepping algorithms.
- New! System theory Methods: balanced truncation, IRKA, ... (sys-mor branch)

RB Software Design Comparison

Münster

	via disk	in solver	low-dim	pyMOR
oroblems	9	(19)	()	
polation	(2)	(19)	8	
w solver	<u></u>	9	2	
MOR alg.	()	(2)	(2)	
plement	()	۲	9	
w solver	(2)	(2)	9	
maintain	(2)	<u></u>	9	
coupled	()	9	•	

large (e.g. matrix-free) p empirical inter reusability w. ne reusability w. new A MOR alg. easy to im easy to use w. ne easy to MOR and solver dev. de

RB Software Design Comparison

via disk	in solver	low-dim	pyMOR
9	(19)	()	(20)
9	(9)	(29)	9
6	9	9	(
(20)	(19)	(2)	(20)
(20)	(2)	•	9
(20)	(2)	(9)	9
(2)	(2)	e	(20)
(19)	9	9	(19)

large (e.g. matrix-free) problems empirical interpolation reusability w. new solver reusability w. new MOR alg. MOR alg. easy to implement easy to use w. new solver easy to maintain MOR and solver dev. decoupled

Nonlinear Model Order Reduction with pyMOR | 17

FEniCS Support Included

- Directly interfaces FEniCS LA backend, no copies needed.
- Use same MOR code with both backends!
- Only 150 SLOC for bindings.
- Thermal block demo: 30 SLOC FEniCS + 15 SLOC wrapping for pyMOR.
- Easily increase FEM order, etc.

Figure: 3x3 thermal block problem top: red. solution, bottom: red. error left: pyMOR solver, right: FEniCS solver

deal.II Support

- pymor-deall.II support module https://github.com/pymor/pymor-deal.II
- Python bindings for
 - dealii::Vector,
 - dealii::SparseMatrix.
- pyMOR wrapper classes.
- MOR demo for linear elasticity example from tutorial.

Figure: top: Solutions for $(\mu, \lambda) = (1, 1)$ and $(\mu, \lambda) = (1, 10)$, bottom: red. errs. and max./min. estimator effectivities vs. dim V_N .

NGSolve Support

- Based on NGS-Py Python bindings for NGSolve.
- See ngsolve branch of pyMOR repo.
- pyMOR wrappers for vector and matrix classes.
- > 3d thermal block demo included.
- Joint work with Christoph Lehrenfeld.

Figure: 3d thermal block problem top: full/red. sol., bottom: err. for worst approx. μ and max. red. error vs. dim V_N .

Tools for interfacing MPI parallel solvers

- Automatically make sequential bindings MPI aware.
- Reduce HPC-Cluster models without thinking about MPI at all.
- Interactively debug MPI parallel solvers.

Figure: FV solution of 3D Burgers-type equation $(27.6 \cdot 10^6 \text{ DOFs}, 600 \text{ time steps})$ using **Pures**.

Table: Time (s) needed for solution using DUNE / DUNE with pyMOR timestepping.

MPI ranks	1	2	3	6	12	24	48	96	192
DUNE pyMOR	17076 17742	8519 8904	5727 6014	2969 3139	1525 1606	775 816	395 418	202 213	107 120
overhead	3.9%	4.5%	5.0%	5.7%	5.3%	5.3%	6.0%	5.4%	11.8%

Nonlinear Model Order Reduction with pyMOR 21

Empirical Interpolation with pyMOR

Empirical Operator Interpolation with FEniCS

Two approaches for local operator evaluation:

- 1. Use dolfin.assemble_local (210 ms)
- 2. Use dolfin.SubMesh (35 ms)

See fenics_nonlinear branch.

fenics

Nonlinear Poisson problem from FEniCS docs (for $\mu = 1$)

$-\nabla \cdot \left\{ (1 + \mu u^2(x, y)) \cdot \nabla u(x, y) \right\} = x \cdot \sin(y)$	for $x, y \in (0, 1)$
u(x,y) = 1	for $x = 1$
$ abla u(x,y) \cdot n = 0$	otherwise

- mesh = UnitSquareMesh(100, 100); V = FunctionSpace(mesh, "CG", 2)
- Time for solution: 3.4 s
- $\mu \in [1, 1000]$, RB size: 3, El DOFs: 5, rel. error $< 10^{-6}$

Empirical Operator Interpolation with FEniCS

Determine mesh elements to visit to compute DOFs of interest

Local evaluation with assemble_local

```
source_vec[source_dofs] = u
for cell, dof_map in zip(cells, dof_maps):
local_evaluations = assemble_local(form, cell)
f[dof_map] += local_evaluations
```


Matrix DEIM with NGSolve

Osmotic cell swelling problem

$\partial_t u - \alpha \Delta u = 0$	in $\Omega(t)$
$\mathcal{V}_n u + \alpha \partial_n u = 0$	on $\partial \Omega(t)$
$-\beta\kappa + \gamma(u-u_0) = \mathcal{V}_n$	on $\partial \Omega(t)$

osmosis

Transformed concentration equation on reference domain

$$\begin{split} \int_{\hat{\Omega}} J^{n+1} \hat{u}^{n+1} \hat{v} \, dx + \Delta t \int_{\hat{\Omega}} J^{n+1} V \cdot (F^{n+1-T} \cdot \nabla_{\hat{x}} \hat{v}) \hat{u}^{n+1} dx \\ + \Delta t \int_{\hat{\Omega}} \alpha J^{n+1} (F^{n+1-T} \nabla_{\hat{x}} u) \cdot (F^{n+1-T} \nabla_{\hat{x}} \hat{v}) \, dx = \int_{\hat{\Omega}} J^n \hat{u}^n \hat{v} \, dx \end{split}$$

- ▶ Nonlinear in transformation Ψ , $F := \partial_x \Psi$, $J := |\det(F)|$, $V := \partial_t \Psi$.
- Use Matrix-DEIM w.r.t. Ψ.

Matrix DEIM with NGSolve

Determine mesh elements to visit to compute desired matrix entries

```
elements to visit = []
1
   for el in self.range.V.Elements():
2
       local global map = []
3
       for i. (row, col) in enumerate(matrix entries):
4
           try: local_global_map.append((i, (el.dofs.index(row), el.dofs.index(col))))
5
           except ValueError: pass
6
       if local_global_map:
7
           elements_to_visit.append((el.nr, local_global_map))
8
```

Local matrix assembly

```
1 for el_nr, local_global_map in elements_to_visit
2 el_id = ElementId(VOL, el_nr)
3 el = fespace.GetFE(el_id)
4 trafo = mesh.GetTrafo(el_id)
5 el_mat = sum(i.CalcElementMatrix(el, trafo).NumPy()
6 for i in bilinear_form.integrators)
7 for global_dof, row_col in local_global_map:
8 v[global_dof] += el_mat[row_col]
```


Thank you for your attention!

```
My homepage
http://stephanrave.de/
```

pyMOR – Generic Algorithms and Interfaces for Model Order Reduction SIAM J. Sci. Comput., 38(5), pp. S194–S216 http://www.pymor.org/

MULTIBAT: Unified Workflow for fast electrochemical 3D simulations of lithium-ion cells combining virtual stochastic microstructures, electrochemical degradation models and model order reduction (submitted) http://j.mp/multibat