

Nonlinear Model Order Reduction for Problems with Moving Discontinuities

Christoph Lehrenfeld, Mario Ohlberger, Stephan Rave

CASA Colloquium

Eindhoven January 17, 2018

Outline

 Reduced Basis Methods for Nonlinear Evolution Equations: Trouble with Advection Dominated Problems.

The FrozenRB scheme.
 (Joint work with Mario Ohlberger.)

 Nonlinear MOR via Lagrangian Formulation. (Joint work in progress with Christoph Lehrenfeld.)

Reduced Basis Methods

Parametric Model Order Reduction

Consider time-dependent parametric problems

 $\Phi: \mathcal{P} \to L^{\infty}([0, T]; V_h), \qquad s: L^{\infty}([0, T]; V_h) \to \mathbb{R}^{S}$

where

- $\mathcal{P} \subset \mathbb{R}^P$ parameter domain.
- V_h "truth" solution state space, dim $V_h \gg 0$.
- Φ maps parameters to solutions (*hard* to compute).
- s maps state vectors to quantities of interest.

Objective

Compute

$$s \circ \Phi : \mathbb{R}^P \to L^{\infty}([0, T]; V_h) \to \mathbb{R}^S$$

for many $\mu \in \mathcal{P}$ or quickly for unknown single $\mu \in \mathcal{P}$.

Reduced Basis Methods: Three Basic Ideas

Objective

Compute

$$s\circ\Phi:\mathbb{R}^P\to L^\infty([0,T];V_h)\to\mathbb{R}^S$$

When Φ , *s* sufficiently smooth, quickly computable low-dimensional approximation of *s* $\circ \Phi$ should exist.

- Idea 1: State space projection:
 - ▶ Define approximation $\Phi_N : \mathcal{P} \to L^{\infty}([0, T]; V_N), N := \dim V_N \ll \dim V_h$, via Galerkin projection.
 - Approximate $s \circ \Phi \approx s \circ \Phi_N$.
- Idea 2: Construct V_N from PODs of solution snapshots $\Phi(\mu_1), \ldots, \Phi(\mu_k)$.
- ▶ Idea 3: Select μ_1, \ldots, μ_k iteratively via greedy search over \mathcal{P} using quickly computable surrogate $\eta(\Phi_N(\mu), \mu) \ge ||\Phi(\mu) \Phi_N(\mu)||$ (POD-GREEDY).

RB for Nonlinear Evolution Equations

Full order problem

Find $\Phi(\mu) := u_{\mu} \in L^{\infty}([0, T]; V_h)$ such that

$$\partial_t u_\mu(t) + \mathcal{L}_\mu(u_\mu(t)) = 0, \quad u_\mu(0) = u_0,$$

where $\mathcal{L}_{\mu}: \mathcal{P} \times V_h \rightarrow V_h$ is a parametric (nonlinear) Finite Volume operator.

Reduced order problem

For given $V_N \subset V_h$, find $\Phi_N(\mu) := u_{\mu,N} \in L^{\infty}([0, T]; V_N)$ such that

$$\partial_t u_{\mu,N}(t) + P_{V_N}(\mathcal{L}_{\mu}(u_{\mu,N}(t))) = 0, \quad u_{\mu,N}(0) = P_{V_N}(u_0)$$

where P_{V_N} : $V_h \rightarrow V_N$ is orthogonal proj. onto V_N .

Empirical Operator Interpolation (a.k.a. DEIM, EIM)

Problem: Still expensive to evaluate

 $P_{V_N} \circ \mathcal{L}_{\mu} : V_N \longrightarrow V_h \longrightarrow V_N.$

Solution:

Use locality of finite volume operators:

to evaluate *M* DOFs of $\mathcal{L}_{\mu}(u)$ we need $M' \leq C \cdot M$ DOFs of *u*.

Approximate

$$\mathcal{L}_{\mu} \approx \mathcal{I}_{M}[\mathcal{L}_{\mu}] := I_{M} \circ \mathcal{L}_{M,\mu} \circ R_{M'},$$

where

 $\begin{array}{ll} R_{M'} \colon V_h \to \mathbb{R}^{M'} & \text{restriction to } M' \text{ DOFs needed for evaluation} \\ \mathcal{L}_{M,\mu} \colon \mathbb{R}^{M'} \to \mathbb{R}^{M} & \mathcal{L}_{\mu} \text{ restricted to } M \text{ interpolation DOFs} \\ I_M \colon \mathbb{R}^M \to V_h & \text{linear combination with interpolation basis} \end{array}$

 Use greedy algorithm to determine DOFs and interpolation basis from operator evaluations on appropriate solution trajectories. Westfälische WilhElms-Universität Münster

Full Reduction

Reduced order problem (with EI)

Find $\Phi_N(\mu) := u_{\mu,N} \in L^{\infty}([0, T]; V_N)$ such that

 $\partial_t u_{\mu,N}(t) + \left\{ (\boldsymbol{P}_{\boldsymbol{V}_{\boldsymbol{N}}} \circ \boldsymbol{I}_{\boldsymbol{M}}) \circ \mathcal{L}_{\boldsymbol{M},\mu} \circ \boldsymbol{R}_{\boldsymbol{M}'} \right\} (u_{\mu,N}(t)) = 0, \quad u_{\mu,N}(0) = \boldsymbol{P}_{\boldsymbol{V}_{\boldsymbol{N}}}(u_0).$

Offline/Online decomposition

- Precompute the linear operators $P_{V_N} \circ I_M$ and $R_{M'}$ w.r.t. basis of V_N .
- Effort to evaluate $(P_{V_N} \circ I_M) \circ \mathcal{L}_{M,\mu} \circ R_{M'}$ w.r.t. this basis:

 $\mathcal{O}(MN) + \mathcal{O}(M) + \mathcal{O}(MN).$

Trouble with Advection Dominated Problems

Typically slow decay of Kolmogorov N-widths d_N of the solution manifold, but RB will only work well for rapid decay!

$$d_{N} := \inf_{\substack{V_{N} \subseteq V_{h} \\ \dim V_{N} \leq N}} \sup_{\substack{u \in \Phi(\mathcal{P}) \\ t \in [0, T]}} \|u(t) - P_{V_{N}}(u(t))\|.$$

The FrozenRB scheme

Trouble with Advection Dominated Problems

Typically slow decay of Kolmogorov N-widths d_N of the solution manifold, but RB will only work well for rapid decay!

$$d_{N} := \inf_{\substack{V_{N} \subseteq V_{h} \\ \dim V_{N} \leq N}} \sup_{\substack{u \in \Phi(\mathcal{P}) \\ t \in [0, T]}} \|u(t) - P_{V_{N}}(u(t))\|.$$

Westfälische Wilhelms-Universität Münster

Nonlinear MOR 11

Trouble with Advection Dominated Problems

Typically slow decay of Kolmogorov N-widths d_N of the solution manifold, but RB will only work well for rapid decay!

$$d_{N} := \inf_{\substack{V_{N} \subseteq V_{h} \\ \dim V_{N} \leq N}} \sup_{\substack{u \in \Phi(\mathcal{P}) \\ t \in [0, T]}} \|u(t) - P_{V_{N}}(u(t))\|.$$

However: We can describe solution easily as

$$u_{\mu}(t,x) = u_0(x - \mu \cdot t \mod 1).$$

Nonlinear Approximation

• Write $u_{\mu}(t, x)$ as

 $u_{\mu}(t,x) = u_0(x - \mu \cdot t \mod 1) =: ((\mu \cdot t) \cdot u_0)(x)$

Nonlinear Approximation

► Write u_µ(t, x) as

 $u_{\mu}(t,x) = u_0(x - \mu \cdot t \mod 1) =: ((\mu \cdot t) \cdot u_0)(x)$

• **General idea:** Write
$$u_{\mu}(t, x)$$
 as

where \mathcal{V} function space, $v_{\mu}(t) \in \mathcal{V}$ and $g_{\mu}(t)$ is element of Lie group G acting on \mathcal{V} .

• $v_{\mu}(t, x)$ should be easier to approximate than $u_{\mu}(t, x)$!

Method of Freezing [Beyn, Thümmler, 2004], [Rowley et. al., 2000, 2003]

► Consider Lie group *G* acting on *V* and evolution equation of the form:

$$\partial_t u_\mu(t) + \mathcal{L}_\mu(u_\mu(t)) = 0, \quad u_\mu(0) = u_0, \quad u_\mu(t) \in \mathcal{V}$$

Substituting the ansatz $u_{\mu}(t) = g_{\mu}(t) \cdot v_{\mu}(t)$ leads to:

$$\begin{split} \partial_t v_\mu(t) + g_\mu(t)^{-1} \mathcal{L}_\mu(g_\mu(t) \cdot v_\mu(t)) + \mathfrak{g}_\mu(t) \cdot v_\mu(t) &= 0\\ \\ \mathfrak{g}_\mu(t) = g_\mu(t)^{-1} \partial_t g_\mu(t). \end{split}$$

Method of Freezing [Beyn, Thümmler, 2004], [Rowley et. al., 2000, 2003]

► Consider Lie group *G* acting on *V* and evolution equation of the form:

$$\partial_t u_\mu(t) + \mathcal{L}_\mu(u_\mu(t)) = 0, \quad u_\mu(0) = u_0, \quad u_\mu(t) \in \mathcal{V}$$

Substituting the ansatz $u_{\mu}(t) = g_{\mu}(t) \cdot v_{\mu}(t)$ leads to:

$$\partial_t v_\mu(t) + g_\mu(t)^{-1} \mathcal{L}_\mu(g_\mu(t).v_\mu(t)) + \mathfrak{g}_\mu(t).v_\mu(t) = 0$$

 $\mathfrak{g}_\mu(t) = g_\mu(t)^{-1} \partial_t g_\mu(t).$

Have dim(G) additional degrees of freedom.
 → Add additional algebraic constraint (phase condition):

$$\Phi(v_{\mu}(t),\mathfrak{g}_{\mu}(t))=0.$$

Further assume invariance of \mathcal{L}_{μ} under action of *G*:

$$h^{-1}$$
. $\mathcal{L}_{\mu}(h.w) = \mathcal{L}_{\mu}(w) \quad \forall h \in G, w \in \mathcal{V}.$

Method of Freezing [Beyn, Thümmler, 2004], [Rowley et. al., 2000, 2003]

Definition (Method of Freezing)

With initial conditions $v_{\mu}(0) = u(0), g_{\mu}(0) = e$, solve:

$$egin{aligned} &\partial_t v_\mu(t) + \mathcal{L}_\mu(v_\mu(t)) + \mathfrak{g}_\mu(t).v_\mu(t) = 0 \ & \Phi(v_\mu(t),\mathfrak{g}_\mu(t)) = 0 \end{aligned}$$

$$\mathfrak{g}_{\mu}(t)=g(t)_{\mu}^{-1}\partial_{t}g_{\mu}(t)$$

frozen PDAE

reconstruction equation

Orthogonality phase condition

$$\Phi(v, \mathfrak{g}) = 0 \iff \partial_t v(t) \perp \mathsf{L}G.v(t)$$
$$\iff (\mathcal{L}(v) + \mathfrak{g}.v, \mathfrak{h}.v) = 0 \quad \forall \mathfrak{h} \in \mathsf{L}G$$

$$v(t_0)$$
 $- LG.v(t_0)$

Example: 2D-Shifts

Consider $G = \mathbb{R}^2$, $LG = \mathbb{R}^2$ acting via

$$g.u(x) := u(x - g), \quad x \in \mathbb{R}^2$$

 $g.u = -g \cdot \nabla u$

The Method of Freezing for 2D-shifts

Solve

$$\partial_t v_{\mu}(t) + \mathcal{L}_{\mu}(v_{\mu}(t)) - \mathfrak{g}_{\mu}(t) \cdot \nabla v_{\mu}(t) = 0$$
$$\left[\left(\partial_{x_i} v_{\mu}, \partial_{x_j} v_{\mu} \right) \right]_{i,j} \cdot \left[\mathfrak{g}_{\mu} \right]_j = \left[\left(\mathcal{L}_{\mu}(v_{\mu}), \partial_{x_i} v_{\mu} \right) \right]_i$$

and

$$\partial_t g_\mu(t) = \mathfrak{g}_\mu(t)$$

with initial conditions $v_{\mu}(0) = u(0), g_{\mu}(0) = (0, 0)^{T}$.

Test Problem

2D Burgers-type problem

Solve on $\Omega = [0,2] \times [0,1]$:

$$\partial_t u + \nabla \cdot (\vec{v} \cdot u^{\mu}) = 0$$

$$u(0, x_1, x_2) = 1/2(1 + \sin(2\pi x_1)\sin(2\pi x_2))$$

for $t \in [0, 0.3]$, $\vec{v} \in \mathbb{R}$ with periodic boundary conditions and $\mu \in \mathcal{P} = [1, 2]$.

- Finite volume (Lax-Friedrichs) space discretization on 240 x 120 grid.
- Explicit Euler time-stepping (200 time steps).
- Same problem as in [Drohmann, Haasdonk, Ohlberger, 2012].
- (The following videos are actually computed on a 120 x 60 grid.)

Frozen vs. Non-frozen Solution $(\mu = 1, \vec{v} = (0.75, 1)^T)$

Frozen Solution for p = 1.00

Reconstruted Solution for p = 1.00

Frozen vs. Non-frozen Solution $(\mu = 1.5, \vec{v} = (0.75, 1)^T)$

Frozen vs. Non-frozen Solution $(\mu = 2, \vec{v} = (0.75, 1)^T)$

Frozen Solution for p = 2.00

Frozen vs. Non-frozen Solution $(\mu = 3, \vec{v} = (0.75, 1)^T)$

Combining RB with the Method of Freezing

Combining RB with the Method of Freezing

FrozenRB-Scheme for 2D-shifts [Ohlberger, R, 2013]

Solve

$$\partial_t v_{\mu(t),N} + \frac{P_{V_N} \circ \mathcal{I}_M[\mathcal{L}_\mu](v_{\mu,N}(t)) - \mathfrak{g}_{\mu(t),N} \cdot (\frac{P_{V_N} \circ \nabla)(v_{\mu,N}(t))}{\left[\left(\partial_{x_i} v_{\mu,N}, \, \partial_{x_j} v_{\mu,N} \right) \right]_{i,j} \cdot \left[\mathfrak{g}_{\mu,N} \right]_j} = \left[\left(\mathcal{I}_M[\mathcal{L}_\mu](v_\mu), \, \partial_{x_i} v_{\mu,N} \right) \right]_i$$

and

$$\partial_t g_\mu(t) = \mathfrak{g}_\mu(t)$$

with initial conditions $v_{\mu}(0) = u(0), g_{\mu}(0) = (0, 0)^{T}$.

- ► EI-GREEDY, POD-GREEDY algorithms for basis generation.
- ► Full offline/online decomposition.
- No additional evaluations of nonlinearity (small overhead).

Results for the Burgers Problem $(\vec{v} = (1, 1)^T)$

Nonlinear MOR 22

Advertisement Break

pyMOR - Model Reduction with Python

- Quick prototyping with Python.
- Seamless integration with high-performance PDE solvers.
- Out of box MPI support for reduction algs. and PDE solvers.
- BSD-licensed, fork us on Github!

pyMOR - Model Reduction with Python

- Quick prototyping with Python.
- Seamless integration with high-performance PDE solvers.
- Out of box MPI support for reduction algs. and PDE solvers.
- BSD-licensed, fork us on Github!

pyMOR - RB Approximation of Li-Ion Battery Models

WESTFÄLISCHE WILHELMS-UNIVERSITÄT

MÜNSTER

MULTIBAT: Gain understanding of degradation processes in rechargeable Li-Ion Batteries through mathematical modeling and simulation.

- Focus: Li-Plating.
- Li-plating initiated at interface between active particles and electrolyte.
- Need large microscale models which resolve active particle geometry.

pyMOR – RB Approximation of Li-Ion Battery Models

WESTFÄLISCHE WILHELMS-UNIVERSITÄT

MÜNSTER

MULTIBAT: Gain understanding of degradation processes in rechargeable Li-Ion Batteries through mathematical modeling and simulation.

- Focus: Li-Plating.
- Li-plating initiated at interface between active particles and electrolyte.
- Need large microscale models which resolve active particle geometry.
- New project coming!

Nonlinear MOR via Lagrangian Formulation

A Free Boundary Problem

Osmotic cell swelling model

$\partial_t u - \alpha \Delta u = 0$	in $\Omega(t)$
$\mathcal{V}_n u + \alpha \partial_n u = 0$	on $\partial \Omega(t)$
$-\beta\kappa + \gamma(u - u_0) = \mathcal{V}_n$	on $\partial\Omega(t)$

- u: concentration field
- u₀: concentration in outside
- \mathcal{V}_n : normal velocity of $\partial \Omega(t)$
- κ : curvature of $\partial \Omega(t)$

Eulerian Approximation in $L^2(\mathbb{R}^2)$

Could consider u(t) ∈ L²(Ω(t)) → L²(ℝ²) to define joint approximation space.

Westfälische Wilhelms-Universität Münster

Eulerian Approximation in $L^2(\mathbb{R}^2)$

- Could consider u(t) ∈ L²(Ω(t)) → L²(ℝ²) to define joint approximation space.
- However, moving domain boundary leads to slow singular value decay of solution trajectory:

Lagrangian Formulation

- Fix reference domain $\widehat{\Omega}$ and introduce deformation field $\Psi(t)$ s.t. $\Psi(t)(\widehat{\Omega}) = \Omega(t)$.
- Time-discrete concentration equation on $\widehat{\Omega}$,

$$\begin{aligned} \int_{\widehat{\Omega}} J_{n+1} \hat{u}_{n+1} \hat{v} \, dx + \Delta t \int_{\widehat{\Omega}} J_{n+1} \partial_t \Psi_{n+1} \cdot (\partial_x \Psi_{n+1}^{-T} \cdot \nabla_{\hat{x}} \hat{v}) \hat{u}_{n+1} dx \\ &+ \Delta t \int_{\widehat{\Omega}} \alpha J_{n+1} (\partial_x \Psi_{n+1}^{-T} \nabla_{\hat{x}} u) \cdot (\partial_x \Psi_{n+1}^{-T} \nabla_{\hat{x}} \hat{v}) \, dx = \int_{\widehat{\Omega}} J_n \hat{u}_n \hat{v} \, dx, \end{aligned}$$

where $J_n := |\det(\partial_x \Psi_n)|$.

- Compute updated Ψ_{n+1} on $\partial \widehat{\Omega}$, and extend to $\widehat{\Omega}$ via harmonic extension.
- After space discretization this corresponds to moving-mesh approach (\rightarrow ALE), where $\Psi(t)(v)$ is the trajectory of the vertex v.

Nonlinear MOR via Lagrangian Formulation

Lagrangian ROM construction:

- Both trajectories û(t), Ψ(t) are smooth and exhibit fast singular value decay.
- Compute low-rank approximation spaces
 V_û, V_Ψ via POD.
- Note: V_{Ψ} acts nonlinearly on $V_{\hat{u}}$.
- Use EIM to approximate nonlinearities in coefficient functions.

Nonlinear MOR via Lagrangian Formulation

Lagrangian ROM construction:

- Both trajectories û(t), Ψ(t) are smooth and exhibit fast singular value decay.
- Compute low-rank approximation spaces $V_{\hat{u}}$, V_{Ψ} via POD.
- Note: V_{Ψ} acts nonlinearly on $V_{\hat{u}}$.
- Use EIM to approximate nonlinearities in coefficient functions.

Preliminary MOR results:

- $\mu \in \mathbb{R}^3$ (2D initial conditions + diffusivity)
- ▶ FOM: 3988 / 5592 DOFs
- ROM: 38 / 24 DOFs
- 40 / 42 / 21 / 20 / 2 / 33 El points
- max rel. space-time error: 3 · 10⁻³
- Speedup: 64

Thank you for your attention!

Ohlberger, R, *Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing*, C. R. Math. Acad. Sci. Paris, 351 (2013).

Ohlberger, R, *Reduced Basis Methods: Success, Limitations and Future Challenges*, Proceedings of ALGORITMY 2016.

pyMOR – Generic Algorithms and Interfaces for Model Order Reduction SIAM J. Sci. Comput., 38(5), 2016. http://www.pymor.org/

My homepage (with FrozenRB code) http://stephanrave.de/