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1. Reduced Basis Methods for Elliptic Problems
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Adaptive LRB Methods

Reduced Basis Methods

Parametric linear elliptic problem (full order model)

For given parameter μ ∈ 𝒫, find uh(μ) ∈ Vh s.t.

a(uh(μ), vh;μ) = f (vh) ∀vh ∈ Vh

yh(μ) = g(uh(μ))

Parametric linear elliptic problem (reduced order model)

For given VN ⊂ Vh, let uN(μ) ∈ VN be given by Galerkin proj. onto VN, i.e.

a(uN(μ), vN;μ) = f (vN) ∀vN ∈ VN

yN(μ) = g(uN(μ))
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Adaptive LRB Methods

RB Methods – Computing VN

Weak greedy basis generation

1: functionWeak-Greedy(𝒮train ⊂ 𝒫, ε)
2: VN ← {0}
3: whilemaxμ∈𝒮train

Err-Est(ROM-Solve(μ),μ) > ε do
4: μ∗ ← arg-max

μ∈𝒮train
Err-Est(ROM-Solve(μ),μ)

5: VN ← span(VN ∪ {FOM-Solve(μ∗)})
6: end while
7: return VN
8: end function

Resiudal-based error estimation

Err-Est(uN(μ),μ): = 1

C(μ)
‖f − a(uN(μ), ⋅;μ)‖V′

h

▶ Use dual weighted residual approach for improved convergence w.r.t to output yN(μ).
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Adaptive LRB Methods

RB Methods – Online Efficiency

Parametric linear elliptic problem (reduced order model)

For given VN ⊂ Vh, let uN(μ) ∈ VN be given by Galerkin proj. onto VN, i.e.

a(uN(μ), vN;μ) = f (vN) ∀vN ∈ VN

yN(μ) = g(uN(μ))

Affine decomposition

Assume that a(⋅, ⋅;μ) can be written as

a(u, v;μ) =
Q

∑
q=1

θq(μ)aq(u, v).

Offline/Online splitting

By pre-computing

aq(φi,φj), f (φi), g(φi)

for a reduced basis φ1,… ,φN of VN, solving ROM becomes independent of dimVh.
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Adaptive LRB Methods

Example: RB Approximation of Li-Ion Battery Models

Experimental Data

Mathematical
Modeling

Multiscale
Numerics

Model
Reduction

Integration
Validation

MULTIBAT: Gain understanding of

degradation processes in

rechargeable Li-Ion Batteries

through mathematical modeling

and simulation at the pore scale.

FOM:

▶ 2.920.000 DOFs

▶ Simulation time: ≈ 15.5h

ROM:

▶ Snapshots: 3

▶ dimVN = 245

▶ Rel. err.: < 4.5 ⋅ 10−3

▶ Reduction time: ≈ 14h

▶ Simulation time: ≈ 8m

▶ Speedup: 120
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Adaptive LRB Methods

Localized Reduced Basis Methods

for Elliptic Problems
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Adaptive LRB Methods

Caveats

▶ Offline time too large in not-so-many-query

scenarios?

▶ 𝒫 too large?

▶ Only local influences of μ?

▶ Local geometry changes?
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Merge offline and online phase:

▶ Use Err-Est to detect when ROM is

inaccurate.
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Adaptive LRB Methods

Localized RB Methods for Elliptic Problems

Idea of the LRBMS: given a finely-resolved grid τh [Albrecht et al., 2012]

▶ decompose approximation space into local spaces Vh = ⊕T∈𝒯H
V T
h

▶ independent local discretizations and approximation spaces (CG or DG) associated with

subdomains T ∈ 𝒯H and global SWIPDG coupling [Ern, Stephansen, Zunino, 2009]

▶ build local reduced spaces V T
N ⊂ V T

h using local

computations only

▶ reduced broken space VN: = ⊕T∈𝒯H
V T
N

▶ larger VN, but sparse ROM system matrices

▶ expectmaxT∈τh dimV T
N < dimVN,global when influence

of μ is localized.

V T 0

h
V T 1

h

V T 2

hV T 3

h

V T 4

h
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Adaptive LRB Methods

Training algorithm (adapted from [Buhr, Engwer, Ohlberger, R, 2017])

Offline phase for all T ∈ 𝒯H

▶ For every μ ∈ 𝒮train ⊂ 𝒫:

∘ Solve training problem

a(φh,0(μ), vh;μ) = f (vh) in T

φh,0(μ) = 0 on ∂T

∘ For 1 ≤ k ≤ K, solve training problems on oversampling subdomain
Tδ ⊃ T :

a(φh,k(μ), vh;μ) = 0 in Tδ

φh,k(μ) = gk on ∂Tδ

for K random Dirichlet data functions gk on ∂T
δ.

▶ Initialize local RB space on T as

V T
N : = span ⋃

μ∈𝒮train

{φh,0(μ), φh,1(μ)∣
T
,… , φh,K (μ)∣

T
}.

▶ Use greedy algorithm for large 𝒮train.

▶ Boundary training ≅ truncated randomized SVD of transfer operator [Buhr, Smetana, 2018].
▶ Optimal approximation space for unknown boundary data on oversampling boundary.
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Adaptive LRB Methods

Adaptive Enrichment of VN

Online phase for some μ ∈ 𝒫
▶ compute reduced solution uN(μ)
▶ Compute Err-Est(uN(μ),μ)
▶ if Err-Est(uN(μ),μ) > Δ, start intermediate local enrichment phase:

∘ compute local error indicators

∘ mark subdomains for enrichment: 𝒳 = mark(𝒯H)

∘ solve corrector problem on oversampling subdomain Tδ ⊃ T for all
T ∈ 𝒳:

a(φh(μ), vh;μ) = f (vh) in Tδ

φh(μ) = uN(μ) on ∂Tδ

∘ extend local reduced basis for all T ∈ 𝒳:

VT
N : = spanV

T
N ∪ { φh(μ)|

T
}

∘ update reduced quantities

∘ compute updated uN(μ) and Err-Est(uN(μ),μ)
▶ iterate until Err-Est(uN(μ),μ) ≤ Δ, return uN(μ)
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Adaptive LRB Methods

Localization of the Error

Let Vh = W1 +… +WK be an additional space decomposition (not necessarily direct sum).

‖|uh(μ) − uN(μ)‖|μ = ‖|f − a(uN(μ), ⋅;μ)‖|V′
h
,μ

= sup
vh∈Vh

ℛN(vh;μ)
‖|vh‖|μ

= sup
vh∈Vh

inf
vk∈Wk

v1+…+vK=vh

K

∑
k=1

ℛN(vk;μ)
‖|vh‖|μ

≤ sup
vh∈Vh

inf
vk∈Wk

v1+…+vK=vh

K

∑
k=1

‖|ℛN(⋅;μ)‖|W−1
k
,μ ⋅ ‖|vk‖|μ

‖|vh‖|μ

≤ (
K

∑
k=1

‖|ℛN(⋅;μ)‖|2
W−1

k
,μ

)
1/2

⋅ sup
vh∈Vh

inf
vk∈Wk

v1+…+vK=vh

(∑K

k=1
‖|vk‖|μ2)

1/2

‖|vh‖|μ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
cpu,μ
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= sup
vh∈Vh

ℛN(vh;μ)
‖|vh‖|μ

= sup
vh∈Vh

inf
vk∈Wk

v1+…+vK=vh

K

∑
k=1

ℛN(vk;μ)
‖|vh‖|μ

≤ sup
vh∈Vh

inf
vk∈Wk

v1+…+vK=vh

K

∑
k=1

‖|ℛN(⋅;μ)‖|W−1
k
,μ ⋅ ‖|vk‖|μ

‖|vh‖|μ

≤ (
K

∑
k=1
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W−1

k
,μ

)
1/2

⋅ sup
vh∈Vh

inf
vk∈Wk

v1+…+vK=vh

(∑K
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‖|vk‖|μ2)
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Localization of the Error

Theorem [Buhr, Engwer, Ohlberger, R, 2017]

Err-Est(uN(μ),μ): = cpu,VN,μ ⋅(
K

∑
k=1

‖|ℛN(⋅;μ)‖|2
W−1

k
,μ

)
1/2

is a locally efficient upper bound for the model reduction error.

Given shape regular 𝒯H, the constant cpu,VN,μ is independent of h and H: = minT∈𝒯H
diam T .

▶ Proof uses local Poincaré inequality ⟹ cpu,VN,μ depends on contrast.

▶ To estimate ‖|ℛN(⋅;μ)‖|W−1
k
,μ use, e.g.,

‖|ℛN(⋅;μ)‖|W−1
k
,μ ≤ 1/C(μ)‖ℛN(⋅;μ)‖W−1

k

with appropriate ‖ ⋅ ‖.
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LRBMS with online enrichment: Example SPE10 [Ohlberger, Schinder, 2015]
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μ-dep. channel source and sinks
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LRBMS with online enrichment: Example SPE10 [Ohlberger, Schinder, 2015]

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

100
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dimQN(𝒯H)

η
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μ
,μ
,μ̂

)

μ0 = 0.43708…
μ1 = 0.95564…
μ2 = 0.75879…
μ3 = 0.63879…
μ4 = 0.24041…
μ5 = 0.24039…
μ6 = 0.15227…
μ7 = 0.87955…
μ8 = 0.64100…
μ9 = 0.73726…

Convergence history of LRBMS with initially empty VN
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LRBMS initialized with 2 solution snapshots

Distribution of local basis size after online enrichment.
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Some Related Approaches

▶ Reduced basis element Method

[Maday, Ronquist, 2002]

▶ Generalized multiscale finite element method

[Efendiev, Galvis, Hou, 2013]

▶ Port-reduced static condensation Reduced basis element Method

[Eftang, Patera, 2013]

▶ Reduced basis hybrid Method

[Iapichino, Quarteroni, Rozza, Volkwein, 2014]

▶ ArbiLoMod, a Simulation Technique Designed for Arbitrary Local Modifications

[Buhr, Engwer, Ohlberger, R, 2017]
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Localized Reduced Basis Domain

Decomposition Methods for Elliptic Problems
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Questions

▶ How fast does enrichment converge?

▶ How to balance the effort for training and enrichment?

▶ Which training method to choose?
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Connections with Domain Decomposition Methods

▶ Local enrichment function φh(μ)|
T

a(φh(μ), vh;μ) = f (vh) in T δ

φh(μ) = uN(μ) on ∂T δ

corresponds to subdomain solution in Restricted Additive Schwarz (RAS) method.

▶ In particular (for minimal overlap):

enrichment + Galerkin projection onto VN

≅
adaptive [Spillane, 2016] RAS multi-preconditioned CG [Bridson, Greif, 2006]

▶ Moreover:

offline training of VN

≅
construction of multiscale coarse space

e.g. DtN [Nataf et al., 2011], GenEO [Spillane et al., 2014], SHEM [Gander, Loneland, Rahman, 2015]
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A Localized RB Additive Schwarz Method

1. Choose overlapping DD T ∈ 𝒯H and define local FEM spaces V T
h ⊂ Vh as usual.

2. Use RB methods to construct coarse space V0N for which abstract Schwarz framework

guarantees robustness of AS+CG iterations for every μ.

3. Build local RB spaces V T
N from AS+CG solutions.

4. Use localized estimator to only enrich VN when needed:

Err-Est(uN(μ),μ): = cpu,VN,μ ⋅( ∑
T∈𝒯H

‖|ℛN(⋅;μ)‖|2
(V T

h
)−1,μ

)
1/2

5. Use local error indicators to only compute AS corrections in T ∈ 𝒯H with high residual.

Note: cpu,VN,μ is the stability constant of the space decomposition appearing in the abstract
Schwarz framework. A good coarse space will yield an efficient error bound and convergence of
enrichment in a fixed number of iterations.
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Thank you for your attention!
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