Adaptive Localized Reduced Basis Methods

Andreas Buhr, Martin Gander, Mario Ohlberger, <u>Stephan Rave</u>, Felix Schindler ENUMATH 2019

Egmond aan Zee, October 3, 2019

living.knowledge

Outline

- 1. Reduced Basis Methods for Elliptic Problems
- 2. Localized Reduced Basis Methods for Elliptic Problems
- 3. Localized Reduced Basis Domain Decomposition Methods for Elliptic Problems (and their convergence)

Reduced Basis Methods for Elliptic Problems

Reduced Basis Methods

Parametric linear elliptic problem (full order model)

For given parameter $\mu \in \mathcal{P}$, find $u_h(\mu) \in V_h$ s.t.

$$\begin{aligned} a(u_h(\mu), \mathbf{v}_h; \mu) &= f(\mathbf{v}_h) \qquad \forall \mathbf{v}_h \in V_h \\ y_h(\mu) &= g(u_h(\mu)) \end{aligned}$$

Reduced Basis Methods

Parametric linear elliptic problem (full order model)

For given parameter $\mu \in \mathcal{P}$, find $u_h(\mu) \in V_h$ s.t.

$$a(u_h(\boldsymbol{\mu}), \mathbf{v}_h; \boldsymbol{\mu}) = f(\mathbf{v}_h) \qquad \forall \mathbf{v}_h \in V$$
$$y_h(\boldsymbol{\mu}) = g(u_h(\boldsymbol{\mu}))$$

Parametric linear elliptic problem (reduced order model)

For given $V_N \subset V_h$, let $u_N(\mu) \in V_N$ be given by Galerkin proj. onto V_N , i.e.

$$\begin{aligned} a(u_N(\mu), v_N; \mu) &= f(v_N) & \forall v_N \in \boldsymbol{V_N} \\ y_N(\mu) &= g(u_N(\mu)) \end{aligned}$$

RB Methods – Computing V_N

Weak greedy basis generation

1: function WEAK-GREEDY(
$$\mathcal{S}_{train} \subset \mathcal{P}, \varepsilon$$
)
2: $V_N \leftarrow \{0\}$
3: while $\max_{\mu \in \mathcal{S}_{train}} \text{ERR-EST}(\text{ROM-SOLVE}(\mu), \mu) > \varepsilon$ do
4: $\mu^* \leftarrow \arg\text{-max}_{\mu \in \mathcal{S}_{train}} \text{ERR-EST}(\text{ROM-SOLVE}(\mu), \mu)$
5: $V_N \leftarrow \operatorname{span}(V_N \cup \{\text{FOM-SOLVE}(\mu^*)\})$
6: end while
7: return V_N
8: end function

Resiudal-based error estimation

$$\mathsf{Err}\mathsf{-}\mathsf{Est}(u_N(\mu),\mu) := \frac{1}{C(\mu)} \|f - a(u_N(\mu),\cdot;\mu)\|_{V'_h}$$

RB Methods – Computing V_N

Weak greedy basis generation

1: function WEAK-GREEDY(
$$\mathcal{S}_{train} \subset \mathcal{P}, \varepsilon$$
)
2: $V_{N} \leftarrow \{0\}$
3: while max _{$\mu \in \mathcal{S}_{train}$} ERR-EST(ROM-SOLVE(μ), μ) > ε do
4: $\mu^{*} \leftarrow \arg\operatorname{-max}_{\mu \in \mathcal{S}_{train}}$ ERR-EST(ROM-SOLVE(μ), μ)
5: $V_{N} \leftarrow \operatorname{span}(V_{N} \cup \{\operatorname{FOM-SOLVE}(\mu^{*})\})$
6: end while
7: return V_{N}
8: end function

Resiudal-based error estimation

$$\mathsf{Err}\mathsf{-}\mathsf{Est}(u_N(\mu),\mu) := \frac{1}{C(\mu)} \|f - a(u_N(\mu),\cdot;\mu)\|_{V'_h}$$

• Use dual weighted residual approach for improved convergence w.r.t to output $y_N(\mu)$.

RB Methods – Online Efficiency

Parametric linear elliptic problem (reduced order model)

For given $V_N \subset V_h$, let $u_N(\mu) \in V_N$ be given by Galerkin proj. onto V_N , i.e.

$$\begin{aligned} a(u_N(\mu), v_N; \mu) &= f(v_N) \qquad \forall v_N \in V_N \\ y_N(\mu) &= g(u_N(\mu)) \end{aligned}$$

Affine decomposition

Assume that $a(\cdot, \cdot; \mu)$ can be written as

$$a(u, \mathbf{v}; \boldsymbol{\mu}) = \sum_{q=1}^{Q} \theta_q(\boldsymbol{\mu}) a_q(u, \mathbf{v}).$$

RB Methods – Online Efficiency

Parametric linear elliptic problem (reduced order model)

For given $V_N \subset V_h$, let $u_N(\mu) \in V_N$ be given by Galerkin proj. onto V_N , i.e.

$$\begin{aligned} a(u_N(\mu), v_N; \mu) &= f(v_N) \qquad \forall v_N \in V_N \\ y_N(\mu) &= g(u_N(\mu)) \end{aligned}$$

Affine decomposition

Assume that $a(\cdot, \cdot; \mu)$ can be written as

$$a(u, v; \boldsymbol{\mu}) = \sum_{q=1}^{Q} \theta_q(\boldsymbol{\mu}) a_q(u, v).$$

Offline/Online splitting

By pre-computing

 $a_q(\varphi_i, \varphi_j), f(\varphi_i), g(\varphi_i)$

for a reduced basis $\varphi_1, \ldots, \varphi_N$ of V_N , solving ROM becomes independent of dim V_h .

Example: RB Approximation of Li-Ion Battery Models

MULTIBAT: Gain understanding of degradation processes in rechargeable Li-Ion Batteries through mathematical modeling and simulation at the pore scale.

FOM:

- 2.920.000 DOFs
- Simulation time: ≈ 15.5h

ROM:

- Snapshots: 3
- dim V_N = 245
- ▶ Rel. err.: < 4.5 · 10⁻³
- Reduction time: ≈ 14h
- Simulation time: ≈ 8m
- Speedup: 120

Localized Reduced Basis Methods for Elliptic Problems

Offline time too large in not-so-many-query scenarios?

 $\triangleright \mathcal{P}$ too large?

- Offline time too large in not-so-many-query scenarios?
- $\triangleright \mathcal{P}$ too large?

Merge offline and online phase:

- Use ERR-EST to detect when ROM is inaccurate.
- Adaptively enrich V_N with FOM snapshot.

- Offline time too large in not-so-many-query scenarios?
- P too large?
- Only local influences of μ ?

- Offline time too large in not-so-many-query scenarios?
- $\triangleright \mathcal{P}$ too large?
- Only local influences of μ ?
- Local geometry changes?

- Offline time too large in not-so-many-query scenarios?
- $\triangleright \mathcal{P}$ too large?
- Only local influences of μ ?
- Local geometry changes?

Offline time too large in not-so-many-query scenarios?

MN

- $\triangleright \mathcal{P}$ too large?
- Only local influences of µ?
- Local geometry changes?

Localized RB Methods for Elliptic Problems

Idea of the **LRBMS**: given a finely-resolved grid τ_h

• decompose approximation space into *local* spaces $V_h = \bigoplus_{T \in \mathcal{T}_{\mu}} V_h^T$

[Albrecht et al., 2012]

• independent local discretizations and approximation spaces (CG or DG) associated with subdomains $T \in \mathcal{T}_H$ and global SWIPDG coupling [ERN, STEPHANSEN, ZUNINO, 2009]

Idea of the **LRBMS**: given a finely-resolved grid τ_h

• decompose approximation space into *local* spaces $V_h = \bigoplus_{T \in \mathcal{T}_H} V_h^T$

- [Albrecht et al., 2012]
- independent local discretizations and approximation spaces (CG or DG) associated with subdomains $T \in \mathcal{T}_H$ and global SWIPDG coupling [ERN, STEPHANSEN, ZUNINO, 2009]
- build local reduced spaces $V_N^T \subset V_h^T$ using local computations only
- reduced *broken* space $V_N := \bigoplus_{T \in \mathcal{T}_H} V_N^T$

Localized RB Methods for Elliptic Problems

Idea of the **LRBMS**: given a finely-resolved grid τ_h

- decompose approximation space into *local* spaces $V_h = \bigoplus_{T \in \mathcal{T}_u} V_h^T$
- independent local discretizations and approximation spaces (CG or DG) associated with subdomains $T \in \mathcal{T}_{H}$ and global SWIPDG coupling [ERN, STEPHANSEN, ZUNINO, 2009]
- build local reduced spaces $V_N^T \subset V_h^T$ using local computations only
- > reduced broken space $V_N := \bigoplus_{T \in T_n} V_N^T$
- larger V_N , but sparse ROM system matrices
- expect max_{$T \in \tau_h$} dim V_N^T < dim $V_{N,alobal}$ when influence of *u* is localized.

Training algorithm (adapted from [BUHR, ENGWER, OHLBERGER, R, 2017])

Offline phase

Training algorithm (adapted from [BUHR, ENGWER, OHLBERGER, R, 2017])

Offline phase

for all $\overline{T \in \mathcal{T}_H}$

- For every $\mu \in S_{train} \subset \mathcal{P}$:
 - Solve training problem

$$(\varphi_{h,0}(\mu), v_h; \mu) = f(v_h) \qquad \text{in } T$$

4

$$p_{h,0}(\mu) = 0$$
 on ∂l

Offline phase

- For every $\mu \in S_{train} \subset \mathcal{P}$:
 - Solve training problem

$$i(\varphi_{h,0}(\mu), v_h; \mu) = f(v_h) \qquad \text{in } T$$

$$h_{0}(\mu) = 0$$
 on $\partial \overline{h}$

• For 1 < k < K , solve training problems on oversampling subdomain $T^{\delta} \supset T$:

$$a(\varphi_{h,k}(\mu), v_h; \mu) = 0$$
 in T^d

$$\varphi_{h,k}(\mu) = g_k$$
 on ∂T^d

for K random Dirichlet data functions g_k on ∂T^{δ} .

(1)

for all $T \in \mathcal{T}_H$

Offline phase

- For every $\mu \in S_{train} \subset \mathcal{P}$: • Solve training problem
 - Solve training problem

$$a(\varphi_{h,0}(\mu), v_h; \mu) = f(v_h) \qquad \text{in } T$$

$$n_{n,0}(\mu) = 0$$
 on ∂T

• For 1 < k < K, solve training problems on oversampling subdomain $T^{\delta} \supset T$:

$$a(\varphi_{h,k}(\mu), v_h; \mu) = 0$$
 in T^{δ}

$$\varphi_{h,k}(\mu) = g_k$$
 on ∂T^{δ}

for K random Dirichlet data functions g_k on ∂T^{δ} .

φ

Initialize local RB space on T as

 $V_{N}^{T} := \operatorname{span} \bigcup_{\mu \in \mathcal{S}_{train}} \left\{ \varphi_{h,0}(\mu), \varphi_{h,1}(\mu) \right|_{T}, \dots, \left. \varphi_{h,K}(\mu) \right|_{T} \right\}.$

for all $T \in \mathcal{T}_H$

Offline phase

For every $\mu \in S_{train} \subset \mathcal{P}$: • Solve training problem

$$a(\varphi_{h,0}(\mu), v_h; \mu) = f(v_h)$$
 in

$$\varphi_{h,0}(\mu) = 0$$
 on ∂T

• For 1 < k < K, solve training problems on oversampling subdomain $T^{\delta} \supset T$:

$$a(\varphi_{h,k}(\mu), v_h; \mu) = 0$$
 in T^{δ}

$$\varphi_{h,k}(\mu) = g_k$$
 on ∂T^{δ}

for K random Dirichlet data functions g_k on ∂T^{δ} .

Initialize local RB space on T as

 $V_{N}^{T} := \operatorname{span} \bigcup_{\mu \in \mathcal{S}_{train}} \left\{ \varphi_{h,0}(\mu), \varphi_{h,1}(\mu) \right|_{T}, \dots, \left. \varphi_{h,K}(\mu) \right|_{T} \right\}.$

Use greedy algorithm for large S_{train} .

for all
$$T \in \mathcal{T}_H$$

Т

Offline phase

For every µ ∈ S_{train} ⊂ P:

 Solve training problem
 a(φ_{h,0}(µ), v_h; µ) = f(v_h) in T
 φ_{h,0}(µ) = 0 on ∂T
 For 1 ≤ k ≤ K, solve training problems on oversampling subdomain T^δ ⊃ T:
 a(φ_{h,k}(µ), v_h; µ) = 0 in T^δ
 φ_{h,k}(µ) = g_k on ∂T^δ.

 Initialize local RB space on T as

$$\boldsymbol{V}_{\boldsymbol{N}}^{T} := \operatorname{span} \bigcup_{\boldsymbol{\mu} \in \mathcal{S}_{train}} \left\{ \varphi_{h,0}(\boldsymbol{\mu}), \varphi_{h,1}(\boldsymbol{\mu}) \right|_{T}, \dots, \left. \varphi_{h,K}(\boldsymbol{\mu}) \right|_{T} \right\}.$$

• Use greedy algorithm for large S_{train} .

11

Online phase

for some $\mu \in \mathcal{P}$

- compute reduced solution $u_N(\mu)$
- Compute Err-Est $(u_N(\mu), \mu)$
- Figure if Err-Est($u_N(\mu), \mu$) > Δ, start intermediate local enrichment phase:
 - compute local error indicators

Online phase

for some $\mu \in \mathcal{P}$

- compute reduced solution $u_N(\mu)$
- Compute Err-Est $(u_N(\mu), \mu)$
- **i** f ERR-EST $(u_N(\mu), \mu) > \Delta$, start intermediate local enrichment phase:
 - compute local error indicators
 - mark subdomains for enrichment: X = mark(T_H)

Online phase

for some $\mu \in \mathcal{P}$

- compute reduced solution $u_N(\mu)$
- Compute Err-Est $(u_N(\mu), \mu)$
- Figure if Err-Est($u_N(\mu), \mu$) > Δ, start intermediate local enrichment phase:
 - · compute local error indicators
 - mark subdomains for enrichment: $\mathcal{X} = mark(\mathcal{T}_H)$
 - solve corrector problem on oversampling subdomain $T^{\delta} \supset T$ for all $T \in \mathcal{X}$:

$$a(\varphi_h(\mu), v_h; \mu) = f(v_h) \qquad \text{in } T^{\delta}$$

$$\varphi_h(\mu) = u_N(\mu)$$
 on ∂T

Online phase

for some $\mu \in \mathcal{P}$

- compute reduced solution $u_N(\mu)$ Compute ERR-EST $(u_N(\mu), \mu)$
- if ERR-EST $(u_N(\mu), \mu) > \Delta$, start intermediate local enrichment phase:
 - · compute local error indicators
 - mark subdomains for enrichment: $\mathcal{X} = mark(\mathcal{T}_H)$
 - solve corrector problem on oversampling subdomain $T^{\delta} \supset T$ for all $T \in \mathcal{X}$:

 $\varphi_h(\mu) = u_N(\mu)$

$$\pi(\varphi_h(\mu), v_h; \mu) = f(v_h)$$
 in T^{δ}

on
$$\partial T^{0}$$

• extend local reduced basis for all $T \in \mathcal{X}$:

$$V_N^T := \operatorname{span} V_N^T \cup \{ \varphi_h(\mu) |_T \}$$

Online phase

for some $\mu \in \mathcal{P}$

if ERR-EST $(u_N(\mu), \mu) > \Delta$, start intermediate local enrichment phase:

- · compute local error indicators
- mark subdomains for enrichment: X = mark(T_H)
- solve corrector problem on oversampling subdomain $T^{\delta} \supset T$ for all $T \in \mathcal{X}$:

 $\varphi_h(\mu) = u_N(\mu)$

$$a(\varphi_h(\mu), v_h; \mu) = f(v_h)$$
 in T^{δ}

on ∂7δ

• extend local reduced basis for all $T \in \mathcal{X}$:

$$V_N^T := \operatorname{span} V_N^T \cup \{ \varphi_h(\mu) |_T \}$$

- · update reduced quantities
- compute updated $u_N(\mu)$ and ERR-EST $(u_N(\mu), \mu)$

Online phase	for some $\mu\in \mathcal{P}$
	compute reduced solution $u_N(\mu)$ Compute ERR-EST $(u_N(\mu), \mu)$
	 if ERR-EST(u_N(μ), μ) > Δ, start intermediate local enrichment phase: compute local error indicators
	• mark subdomains for enrichment: $\mathcal{X} = \max(\mathcal{T}_H)$
	• solve corrector problem on oversampling subdomain $T^{\delta} \supset T$ for all $T \in \mathcal{X}$:
$\dim V_h(T^\delta)$	$a(\varphi_h(\boldsymbol{\mu}), \boldsymbol{v}_h; \boldsymbol{\mu}) = f(\boldsymbol{v}_h) \qquad \text{ in } T^{\delta}$
	$\varphi_{\hbar}(\mu) = u_{N}(\mu)$ on ∂T^{δ}
	• extend local reduced basis for all $\mathcal{T} \in \mathcal{X}$:
	V_{N}^{T} := span $V_{N}^{T} \cup \{ \varphi_{h}(\mu) _{T} \}$
	 update reduced quantities
	• compute updated $u_N(\mu)$ and Err-Est $(u_N(\mu), \mu)$
	▶ iterate until ERR-EST $(u_N(\mu), \mu) \le \Delta$, return $u_N(\mu)$

Let $V_h = W_1 + ... + W_k$ be an additional space decomposition (not necessarily direct sum).

Let $V_h = W_1 + ... + W_K$ be an additional space decomposition (not necessarily direct sum).

$$\|\|u_{h}(\mu) - u_{N}(\mu)\|\|_{\mu} = \|\|f - a(u_{N}(\mu), \cdot; \mu)\|\|_{V'_{h}, \mu}$$
$$= \sup_{v_{h} \in V_{h}} \frac{\mathcal{R}_{N}(v_{h}; \mu)}{\|\|v_{h}\|\|_{\mu}}$$

Let $V_h = W_1 + ... + W_K$ be an additional space decomposition (not necessarily direct sum).

$$\begin{split} \|\|u_{h}(\mu) - u_{N}(\mu)\|\|_{\mu} &= \|\|f - a(u_{N}(\mu), \cdot; \mu)\|\|_{V_{h}^{\prime}, \mu} \\ &= \sup_{v_{h} \in V_{h}} \frac{\mathcal{R}_{N}(v_{h}; \mu)}{\|\|v_{h}\|\|_{\mu}} \\ &= \sup_{v_{h} \in V_{h}} \inf_{v_{h}^{\prime} \in W_{k} \atop v_{1} + \dots + v_{k} = v_{h}} \sum_{k=1}^{K} \frac{\mathcal{R}_{N}(v_{k}; \mu)}{\|\|v_{h}\|\|_{\mu}} \\ &\leq \sup_{v_{h} \in V_{h}} \inf_{v_{h}^{\prime} \in W_{k} \atop v_{1} + \dots + v_{k} = v_{h}} \sum_{k=1}^{K} \frac{\|\mathcal{R}_{N}(\cdot; \mu)\|\|_{W_{h}^{-1}, \mu} \cdot \|\|v_{k}\|\|_{\mu}}{\|v_{h}\|\|_{\mu}} \\ &\leq \left(\sum_{k=1}^{K} \||\mathcal{R}_{N}(\cdot; \mu)\|\|_{W_{h}^{-1}, \mu}^{2}\right)^{1/2} \cdot \underbrace{\sup_{v_{h} \in V_{h}} \inf_{v_{h} \in W_{k} \atop v_{1} + \dots + v_{k} = v_{h}} \frac{\left(\sum_{k=1}^{K} \||v_{k}\|\|_{\mu}^{2}\right)^{1/2}}{\|v_{h}\|_{\mu}}}_{c_{pu,\mu}} \end{split}$$

Let $V_h = W_1 + ... + W_K$ be an additional space decomposition (not necessarily direct sum).

$$\begin{split} \|u_{h}(\mu) - u_{N}(\mu)\|_{\mu} &= \|\|f - a(u_{N}(\mu), \cdot; \mu)\|\|_{V'_{h}, \mu} \\ &= \sup_{v_{h} \in V_{h}} \frac{\mathcal{R}_{N}(v_{h}; \mu)}{\|v_{h}\|_{\mu}} \\ &= \sup_{v_{h} \in V_{h}} \inf_{\substack{v_{0} \in V_{h}, v_{k} \in W_{k} \\ v_{0} + v_{1} + \dots + v_{k} = v_{h}}} \sum_{k=1}^{K} \frac{\mathcal{R}_{N}(v_{k}; \mu)}{\|v_{h}\|_{\mu}} \\ &\leq \sup_{v_{h} \in V_{h}} \inf_{\substack{v_{0} \in V_{h}, v_{k} \in W_{k} \\ v_{0} + v_{1} + \dots + v_{k} = v_{h}}} \sum_{k=1}^{K} \frac{\|\mathcal{R}_{N}(\cdot; \mu)\|_{W^{-1}_{k}, \mu} \cdot \|v_{k}\|_{\mu}}{\|v_{h}\|_{\mu}} \\ &\leq \left(\sum_{k=1}^{K} \|\mathcal{R}_{N}(\cdot; \mu)\|_{W^{-1}_{k}, \mu}^{2}\right)^{1/2} \cdot \underbrace{\sup_{v_{h} \in V_{h}} \inf_{v_{0} \in V_{h}, v_{k} \in W_{h}}}_{c_{pu}, v_{\mu}, \nu} \frac{\left(\sum_{k=1}^{K} \|v_{k}\|_{\mu}^{2}\right)^{1/2}}{\|v_{h}\|_{\mu}} \end{split}$$

Theorem [Buhr, Engwer, Ohlberger, R, 2017]

$$\mathsf{Err}\mathsf{-}\mathsf{Est}(u_N(\mu),\mu):=c_{pu,V_N,\mu}\cdot \left(\sum_{k=1}^K \||\mathcal{R}_N(\cdot;\mu)||_{W_k^{-1},\mu}^2\right)^{1/2}$$

is a locally efficient upper bound for the model reduction error. Given shape regular \mathcal{T}_H , the constant $c_{pu,V_{y,\mu}}$ is independent of h and H: = min_{$T \in \mathcal{T}_H$} diam T.

Theorem [Buhr, Engwer, Ohlberger, R, 2017]

$$\mathsf{Err-Est}(u_N(\mu),\mu) := c_{pu,V_N,\mu} \cdot \left(\sum_{k=1}^K \| \mathcal{R}_N(\cdot;\mu) \|_{W_k^{-1},\mu}^2 \right)^{1/2}$$

is a locally efficient upper bound for the model reduction error. Given shape regular \mathcal{T}_H , the constant $c_{pu,V_{y,\mu}}$ is independent of h and H: = min_{$T \in \mathcal{T}_H$} diam T.

Proof uses local Poincaré inequality $\implies c_{pu,V_{N},\mu}$ depends on contrast.

Theorem [Buhr, Engwer, Ohlberger, R, 2017]

$$\mathsf{Err-Est}(u_N(\mu),\mu) := c_{pu,V_N,\mu} \cdot \left(\sum_{k=1}^K \| \mathcal{R}_N(\cdot;\mu) \|_{W_k^{-1},\mu}^2 \right)^{1/2}$$

is a locally efficient upper bound for the model reduction error. Given shape regular \mathcal{T}_{H} , the constant $c_{pu,V_{u,u}}$ is independent of h and H: = min_{$T \in \mathcal{T}_{u}$} diam T.

Proof uses local Poincaré inequality $\implies c_{pu,V_M,\mu}$ depends on contrast.

To estimate $|||\mathcal{R}_N(\cdot; \mu)|||_{W^{-1}_{\nu}, \mu}$ use, e.g.,

$$\left\|\left|\mathcal{R}_{N}(\,\cdot\,;\boldsymbol{\mu})\right|\right\|_{W_{k}^{-1},\boldsymbol{\mu}} \leq 1/C(\boldsymbol{\mu})\left\|\mathcal{R}_{N}(\,\cdot\,;\boldsymbol{\mu})\right\|_{W_{k}^{-1}}$$

with appropriate $\|\cdot\|$.

LRBMS with online enrichment: Example SPE10 [OHLBERGER, SCHINDER, 2015]

LRBMS with online enrichment: Example SPE10 [OHLBERGER, SCHINDER, 2015]

LRBMS initialized with 2 solution snapshots

Some Related Approaches

- Reduced basis element Method [MADAY, RONQUIST, 2002]
- Generalized multiscale finite element method [EFENDIEV, GALVIS, HOU, 2013]
- Port-reduced static condensation Reduced basis element Method [EFTANG, PATERA, 2013]
- Reduced basis hybrid Method
 [IAPICHINO, QUARTERONI, ROZZA, VOLKWEIN, 2014]
- ArbiLoMod, a Simulation Technique Designed for Arbitrary Local Modifications [BUHR, ENGWER, OHLBERGER, R, 2017]

Localized Reduced Basis Domain Decomposition Methods for Elliptic Problems

Questions

How fast does enrichment converge?

How to balance the effort for training and enrichment?

Which training method to choose?

Connections with Domain Decomposition Methods

Local enrichment function $\varphi_h(\mu)|_{\tau}$

$$\begin{split} a(\varphi_h(\mu), v_h; \mu) &= f(v_h) & \text{ in } T^{\delta} \\ \phi_h(\mu) &= u_N(\mu) & \text{ on } \partial T^{\delta} \end{split}$$

corresponds to subdomain solution in Restricted Additive Schwarz (RAS) method.

Connections with Domain Decomposition Methods

Local enrichment function $\varphi_h(\mu)|_T$

$$\begin{split} u(\varphi_h(\mu), v_h; \mu) &= f(v_h) & \text{ in } T^{\delta} \\ \varphi_h(\mu) &= u_N(\mu) & \text{ on } \partial T^{\delta} \end{split}$$

corresponds to subdomain solution in Restricted Additive Schwarz (RAS) method.

In particular (for minimal overlap):

enrichment + Galerkin projection onto V_N

adaptive [Spillane, 2016] RAS multi-preconditioned CG [Bridson, Greif, 2006]

Connections with Domain Decomposition Methods

Local enrichment function $\varphi_h(\mu)|_{\tau}$

$$\begin{split} a(\varphi_h(\mu), \mathbf{v}_h; \mu) &= f(\mathbf{v}_h) & \text{ in } T^{\delta} \\ \varphi_h(\mu) &= u_N(\mu) & \text{ on } \partial T^{\delta} \end{split}$$

corresponds to subdomain solution in Restricted Additive Schwarz (RAS) method.

In particular (for minimal overlap):

enrichment + Galerkin projection onto V_N

adaptive [Spillane, 2016] RAS multi-preconditioned CG [Bridson, Greif, 2006]

Moreover:

offline training of V_N

construction of multiscale coarse space

e.g. DtN [Nataf et al., 2011], GenEO [Spillane et al., 2014], SHEM [Gander, Loneland, Rahman, 2015]

A Localized RB Additive Schwarz Method

1. Choose overlapping DD $T \in \mathcal{T}_H$ and define local FEM spaces $V_h^T \subset V_h$ as usual.

- **1.** Choose overlapping DD $T \in \mathcal{T}_H$ and define local FEM spaces $V_h^T \subset V_h$ as usual.
- 2. Use RB methods to construct coarse space V_N^0 for which abstract Schwarz framework guarantees robustness of AS+CG iterations for every μ .

- **1.** Choose overlapping DD $T \in \mathcal{T}_H$ and define local FEM spaces $V_h^T \subset V_h$ as usual.
- 2. Use RB methods to construct coarse space V_N^0 for which abstract Schwarz framework guarantees robustness of AS+CG iterations for every μ .
- 3. Build local RB spaces V_N^T from AS+CG solutions.

- **1.** Choose overlapping DD $T \in \mathcal{T}_H$ and define local FEM spaces $V_h^T \subset V_h$ as usual.
- 2. Use RB methods to construct coarse space V_N^0 for which abstract Schwarz framework guarantees robustness of AS+CG iterations for every μ .
- 3. Build local RB spaces V_N^T from AS+CG solutions.
- 4. Use localized estimator to only enrich V_N when needed:

$$\mathsf{Err-Est}(u_{N}(\mu),\mu) := c_{\rho u, \mathbf{V}_{N}, \mu} \cdot \left(\sum_{T \in \mathcal{T}_{H}} \| \mathcal{R}_{N}(\cdot;\mu) \|_{(V_{h}^{T})^{-1}, \mu}^{2} \right)^{1/2}$$

5. Use local error indicators to only compute AS corrections in $T \in \mathcal{T}_H$ with high residual.

- **1.** Choose overlapping DD $T \in \mathcal{T}_H$ and define local FEM spaces $V_h^T \subset V_h$ as usual.
- 2. Use RB methods to construct coarse space V_N^0 for which abstract Schwarz framework guarantees robustness of AS+CG iterations for every μ .
- 3. Build local RB spaces V_N^T from AS+CG solutions.
- 4. Use localized estimator to only enrich V_N when needed:

$$\mathsf{Err}\mathsf{-}\mathsf{Est}(u_N(\mu),\mu):=c_{\rho u,\mathbf{V}_N,\mu}\cdot \left(\sum_{T\in\mathcal{T}_H}\||\mathcal{R}_N(\cdot;\mu)\||_{(V_h^T)^{-1},\mu}^2\right)^{1/2}$$

5. Use local error indicators to only compute AS corrections in $T \in \mathcal{T}_H$ with high residual.

Note: $c_{pu,V_{N,\mu}}$ is the stability constant of the space decomposition appearing in the abstract Schwarz framework. A good coarse space will yield an efficient error bound *and* convergence of enrichment in a fixed number of iterations.

Thank you for your attention!

Ohlberger, Schindler, *Error Control for the Localized Reduced Basis Multiscale Method with Adaptive On-Line Enrichment*, SISC, 37(6) (2015).

Ohlberger, R, Schindler, *True Error Control for the Localized Reduced Basis Method for Parabolic Problems*, Model Reduction of Parametrized Systems, Springer (2017).

Buhr, Engwer, Ohlberger, R, *ArbiLoMod, a Simulation Technique Designed for Arbitrary Local Modifications*, SISC, 39(4) (2017).

Buhr, Iapichino, Ohlberger, R, Schindler, Smetana, *Localized model reduction for parameterized problems*, arXiv:1902.08300 (2019).

My homepage http://stephanrave.de/