

Hierarchical Approximate Proper Orthogonal Decomposition

Christian Himpe, Tobias Leibner and Stephan Rave

MPI Magdeburg March 13, 2018

Westfälische Wilhelms-Universität Münster

Outline

Reduced Basis Methods and POD.

► HAPOD – Hierarchical Approximate POD.

Westfälische Wilhelms-Universität Münster

Outline

Reduced Basis Methods and POD.

► HAPOD – Hierarchical Approximate POD.

Model Order Reduction with pyMOR.

Reduced Basis Methods and POD

RB for Nonlinear Evolution Equations

Full order model

For given parameter $\mu \in \mathcal{P}$, find $u_{\mu}(t) \in V_h$ s.t.

$$\partial_t u_\mu(t) + \mathcal{L}_\mu(u_\mu(t)) = 0, \quad u_\mu(0) = u_0,$$

where $\mathcal{L}_{\mu} : \mathcal{P} \times V_h \rightarrow V_h$ is a nonlinear finite volume operator.

RB for Nonlinear Evolution Equations

Full order model

For given parameter $\mu \in \mathcal{P}$, find $u_{\mu}(t) \in V_h$ s.t.

$$\partial_t u_\mu(t) + \mathcal{L}_\mu(u_\mu(t)) = 0, \quad u_\mu(0) = u_0,$$

where $\mathcal{L}_{\mu}: \mathcal{P} \times V_h \rightarrow V_h$ is a nonlinear finite volume operator.

Reduced order model

For given $V_N \subset V_h$, let $u_{\mu,N}(t) \in V_N$ be given by Galerkin proj. onto V_N , i.e.

$$\partial_t u_{\mu,N}(t) + \mathbf{P}_{\mathbf{V}_{\mathbf{N}}}(\mathcal{L}_{\mu}(u_{\mu,N}(t))) = 0, \quad u_{\mu,N}(0) = \mathbf{P}_{\mathbf{V}_{\mathbf{N}}}(u_0),$$

where P_{V_N} : $V_h \rightarrow V_N$ is orthogonal proj. onto V_N .

RB for Nonlinear Evolution Equations

Full order model

For given parameter $\mu \in \mathcal{P}$, find $u_{\mu}(t) \in V_h$ s.t.

$$\partial_t u_\mu(t) + \mathcal{L}_\mu(u_\mu(t)) = 0, \quad u_\mu(0) = u_0,$$

where $\mathcal{L}_{\mu}: \mathcal{P} \times V_h \rightarrow V_h$ is a nonlinear finite volume operator.

Reduced order model

For given $V_N \subset V_h$, let $u_{\mu,N}(t) \in V_N$ be given by Galerkin proj. onto V_N , i.e.

$$\partial_t u_{\mu,N}(t) + \operatorname{P}_{\operatorname{V}_{\operatorname{N}}}(\mathcal{L}_{\mu}(u_{\mu,N}(t))) = 0, \quad u_{\mu,N}(0) = \operatorname{P}_{\operatorname{V}_{\operatorname{N}}}(u_0),$$

where P_{V_N} : $V_h \rightarrow V_N$ is orthogonal proj. onto V_N .

▶ Still expensive to evaluate projected operator $P_{V_N} \circ \mathcal{L}_\mu : V_N \longrightarrow V_h \longrightarrow V_N$ ⇒ use hyper-reduction (e.g. empirical interpolation).

Basis Generation

Offline phase

Basis for V_N is computed from **solution snapshots** $u_{\mu_s}(t)$ of full order problem via:

- Proper Orthogonal Decomposition (POD)
- POD-Greedy (= greedy search in μ + POD in t)

Basis Generation

Offline phase

Basis for V_N is computed from **solution snapshots** $u_{\mu_s}(t)$ of full order problem via:

- Proper Orthogonal Decomposition (POD)
- POD-Greedy (= greedy search in μ + POD in t)

POD (a.k.a. PCA, Karhunen–Loève decomposition)

Given Hilbert space $V, S := \{v_1, \ldots, v_S\} \subset V$, the *k*-th POD mode of S is the *k*-th left-singular vector of the mapping

$$\Phi: \mathbb{R}^S \to V, \quad e_s \to \Phi(e_s) := v_s$$

Optimality of POD

Let V_N be the linear span of first N POD modes, then:

$$\sum_{s \in \mathcal{S}} \|s - P_{V_N}(s)\|^2 = \sum_{m=N+1}^{|\mathcal{S}|} \sigma_m^2 = \min_{\substack{X \subset V \\ \dim X < N}} \sum_{s \in \mathcal{S}} \|s - P_X(s)\|^2$$

Example: RB Approximation of Li-Ion Battery Models

MULTIBAT: Gain understanding of degradation processes in rechargeable Li-lon Batteries through mathematical modeling and simulation.

- Focus: Li-Plating.
- Li-plating initiated at interface between active particles and electrolyte.
- Need microscale models which resolve active particle geometry.
- Very large nonlinear discrete models.

7

Example: Numerical Results

Full order model:

- 2.920.000 DOFs
- ► Simulation time: ≈ 13h

Model order reduction:

- Snapshots: 3
- Reduction time: \approx 9h

Reduced order model:

- ▶ dim *V_N* = 145
- ▶ *M* = 1484
- ▶ Rel. err.: < 1.5 · 10⁻³
- Simulation time: \approx 5m
- Speedup: 154

HAPOD – Hierarchical Approximate POD

Are your tall and skinny matrices not so skinny anymore?

POD of large snapshot sets:

- large computational effort
- hard to parallelize
- ▶ data > RAM ⇒ disaster

Are your tall and skinny matrices not so skinny anymore?

POD of large snapshot sets:

- large computational effort
- hard to parallelize
- ▶ data > RAM ⇒ disaster

Solution: PODs of PODs!

Disclaimer

You might have done this before.

Disclaimer

You might have done this before.

 Others have done it before – often well-hidden in a paper on entirely different topic. We are aware of: [Qu, Ostrouchov, Samatova, Geist, 2002], [Paul-Dubois-Taine, Amsallem, 2015], [Brands, Mergheim, Steinmann, 2016], [Iwen, Ong, 2017].

Disclaimer

- You might have done this before.
- Others have done it before often well-hidden in a paper on entirely different topic. We are aware of:

[Qu, Ostrouchov, Samatova, Geist, 2002], [Paul-Dubois-Taine, Amsallem, 2015], [Brands, Mergheim, Steinmann, 2016], [Iwen, Ong, 2017].

Our contributions:

- 1. Formalization for arbitrary trees of worker nodes.
- 2. Extensive theoretical error and performance analysis.
- 3. A recipe for selecting local truncation thresholds.
- 4. Extensive numerical experiments for different application scenarios.
- Can be trivially extended to low-rank approximation of snapshot matrix by keeping track of right-singular vectors.

HAPOD – Hierarchical Approximate POD

- Input: Assign snapshot vectors to leaf nodes β_i as input.
- At each node α:
 - **1.** Perform POD of input vectors with given local ℓ^2 -error tolerance $\varepsilon(\alpha)$.
 - 2. Scale POD modes by singular values.
 - 3. Send scaled modes to parent node as input.
- Output: POD modes at root node ρ.

HAPOD – Special Cases

Distributed HAPOD

 Distributed, communication avoiding POD computation.

Incremental HAPOD

 On-the-fly compression of large trajectories.

HAPOD – Some Notation

Trees	
$\mathcal{T}_{ ho \mathcal{T}}$	the tree root node
$\mathcal{L}_{\mathcal{T}}^{\mathcal{P}_{\mathcal{T}}}(\alpha)$ $\mathcal{L}_{\mathcal{T}}$ $\mathcal{L}_{\mathcal{T}}$	nodes of \mathcal{T} below or equal node α leafs of \mathcal{T} depth of \mathcal{T}

HA	APO	D

8
$D:\mathcal{S} ightarrow \mathcal{L}_{\mathcal{T}}$
$\varepsilon(\alpha)$
$ HAPOD[\mathcal{S},\mathcal{T},D,\varepsilon](\alpha) $
$ POD(\mathcal{S},\varepsilon) $
P_{α}
$\widetilde{\mathcal{S}}_{lpha}$

snapshot set snapshot to leaf assignment error tolerance at α number of HAPOD modes at α number of POD modes for error tolerance ε orth. proj. onto HAPOD modes at α snapshots at leafs below α

Theorem (Error bound¹)

$$\sum_{s\in\widetilde{\mathcal{S}}_{\alpha}}\|s-P_{\alpha}(s)\|^{2}\leq \sum_{\gamma\in\mathcal{N}_{\mathcal{T}}(\alpha)}\varepsilon(\gamma)^{2}.$$

¹For special cases in appendix of [Paul-Dubois-Taine, Amsallem, 2015].

Theorem (Error bound¹)

$$\sum_{egin{smallmatrix} ec{\mathcal{S}}_lpha} \|m{s} - m{\mathcal{P}}_lpha(m{s})\|^2 \leq \sum_{egin{smallmatrix} ec{\gamma} \in \mathcal{N}_{\mathcal{T}}(lpha) } arepsilon (\gamma)^2. \end{cases}$$

Theorem (Mode bound)

$$\left|\mathsf{HAPOD}[\mathcal{S},\mathcal{T},D,\varepsilon](\alpha)\right| \leq \left|\mathsf{POD}\left(\widetilde{\mathcal{S}}_{\alpha},\varepsilon(\alpha)\right)\right|$$

¹For special cases in appendix of [Paul-Dubois-Taine, Amsallem, 2015].

Theorem (Error bound¹)

$$\sum_{egin{smallmatrix} ec{s} \in \widetilde{\mathcal{S}}_lpha} \| oldsymbol{s} - oldsymbol{\mathcal{P}}_lpha(oldsymbol{s}) \|^2 \leq \sum_{egin{smallmatrix} ec{\gamma} \in \mathcal{N}_\mathcal{T}(lpha)} arepsilon(\gamma)^2. \end{cases}$$

Theorem (Mode bound)

$$\left|\mathsf{HAPOD}[\mathcal{S},\mathcal{T},D,\varepsilon](\alpha)\right| \leq \left|\mathsf{POD}\left(\widetilde{\mathcal{S}}_{\alpha},\varepsilon(\alpha)\right)\right|.$$

But how to choose ε in practice?

- Prescribe error tolerance ε^* for final HAPOD modes.
- ▶ Balance quality of HAPOD space (number of additional modes) and computational efficiency ($\omega \in [0, 1]$).
- Number of input snapshots should be irrelevant for error measure (might be even unknown a priori). Hence, control ℓ^2 -mean error $\frac{1}{|S|} \sum_{s \in S} ||s P_{\rho_T}(s)||^2$.

¹For special cases in appendix of [Paul-Dubois-Taine, Amsallem, 2015].

Theorem (ℓ^2 -mean error and mode bounds)

Choose local POD error tolerances $\varepsilon(\alpha)$ *for* ℓ^2 *-approximation error as:*

$$arepsilon(
ho_{\mathcal{T}}):=\sqrt{|S|}\cdot\omega\cdotarepsilon^*,\qquad arepsilon(lpha):=\sqrt{\widetilde{\mathcal{S}}_lpha}\cdot(L_{\mathcal{T}}-1)^{-1/2}\cdot\sqrt{1-\omega^2}\cdotarepsilon^*.$$

Then:

$$\frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} \|s - P_{\rho_{\mathcal{T}}}(s)\|^2 \le \varepsilon^{*2} \quad and \quad |\operatorname{HAPOD}[\mathcal{S}, \mathcal{T}, D, \varepsilon]| \le |\overline{\operatorname{POD}}(\mathcal{S}, \omega \cdot \varepsilon^*)|,$$

where $\overline{\text{POD}}(S, \varepsilon) := \text{POD}(S, |S| \cdot \varepsilon)$.

Moreover:

$$egin{aligned} |\mathsf{HAPOD}[\mathcal{S},\mathcal{T},D,arepsilon](lpha)| &\leq |\overline{\mathsf{POD}}(\widetilde{\mathcal{S}}_{lpha},(L_{\mathcal{T}}-1)^{-1/2}\cdot\sqrt{1-\omega^2}\cdotm{\epsilon}^*)| \ &\leq \min_{N\in\mathbb{N}}(d_N(\mathcal{S})\leq (L_{\mathcal{T}}-1)^{-1/2}\cdot\sqrt{1-\omega^2}\cdotm{\epsilon}^*). \end{aligned}$$

L Westfälische Wilhelms-Universität Münster

Incremental HAPOD Example

Compress state trajectory of forced inviscid Burgers equation:

$$\begin{aligned} \partial_t z(x,t) + z(x,t) \cdot \partial_x z(x,t) &= u(t) \exp(-\frac{1}{20}(x-\frac{1}{2})^2), \quad (x,t) \in (0,1) \times (0,1), \\ z(x,0) &= 0, \qquad \qquad x \in [0,1], \\ z(0,t) &= 0, \qquad \qquad t \in [0,1], \end{aligned}$$

where $u(t) \in [0, 1/5]$ iid. for 0.1% random timesteps, otherwise 0.

- Upwind finite difference scheme on uniform mesh with N = 500 nodes.
- ▶ 10⁴ explicit Euler steps.
- 100 sub-PODs, ω = 0.75.
- All computations on Raspberry Pi 1B single board computer (512MB RAM).

Incremental HAPOD Example

Distributed HAPOD Example

Distributed computation and POD of empirical cross Gramian:

$$\widehat{W}_{X,ij} := \sum_{m=1}^{M} \int_{0}^{\infty} \langle x_{i}^{m}(t), y_{m}^{j}(t) \rangle \, \mathrm{d}t \in \mathbb{R}^{N \times N}$$

• 'Synthetic' benchmark model² from MORWiki with parameter $\theta = \frac{1}{10}$.

• Partition \widehat{W}_X into 100 slices of size 10.000 \times 100.

²See: http://modelreduction.org/index.php/Synthetic_parametric_model

HAPOD – HPC Example

2D neutron transport equation:

- Moment closure/FV approximation.
- Varying absorbtion and scattering coefficients.
- Distributed snapshot and HAPOD computation on PALMA cluster (125 cores).

HAPOD – HPC Example

- HAPOD on compute node *n*. Time steps are split into s slices. Each processor core computes one slice at a time, performs POD and sends resulting modes to main MPI rank on the node.
- ρ α₁ α₂
- Incremental HAPOD is performed on MPI rank o with modes collected on each node.

HAPOD – HPC Example

▶ \approx 39.000 · k^3 doubles of snapshot data (\approx 2.5 terabyte for k = 200).

Model Order Reduction with pyMOR

pyMOR main developers

Rene Milk

Petar Mlinarić

Stephan Rave

Felix Schindler

Classic RB Software Designs

Design 1: write data needed for reduction to disk (e.g. rbMIT)

Handle reduction and reduced solving by dedicated MOR code. Read all needed data from disk after run of PDE solver in special MOR output mode.

Design 2: add MOR mode to PDE solver (e.g. libMesh)

Add all MOR code needed directly to the PDE solver. Optionally, implement specialized MOR version of solver to run on small devices.

Design 3: communicate only reduced data (e.g. RBmatlab + dune-rb)

Write MOR code which communicates with running PDE solver. MOR code can, e.g., instruct solver to enrich basis with snapshot for certain μ and to compute data for reduced model.

RB Software Design Comparison

- large (e.g. matrix-free) problems empirical interpolation
- reusability w. new solver library
 - reusability w. new MOR alg.
 - MOR alg. easy to implement
 - easy to use w. new FOM
 - easy to maintain
- MOR and solver dev. decoupled

pyMOR – Model Order Reduction with Python

Goal

One tool for algorithm development and large-scale applications.

- Started late 2012, 20k lines of Python code, 3.7k single commits.
- BSD-licensed, fork us on Github!
- Quick prototyping with Python 3.
- Comes with small NumPy/SciPy-based discretization toolkit for getting started quickly.
- Seamless integration with high-performance PDE solvers.

Generic Algorithms and Interfaces for MOR

- VectorArray, Operator, Discretization classes represent objects in solver's memory.
- No communication of high-dimensional data.
- Tight, low-level integration with external solver.
- No MOR-specific code in solver.

Implemented Algorithms

- Gram-Schmidt, POD, HAPOD (in hapod branch).
- Adaptive greedy basis generation with different extension algorithms.
- Automatic (Petrov-)Galerkin projection of arbitrarily nested affine combinations of operators.
- ► Interpolation of arbitrary (nonlinear) operators, EI-Greedy, DEIM.
- A posteriori error estimation.
- Iterative linear solvers, Newton algorithm, time-stepping algorithms.
- System theory Methods: balanced truncation, IRKA, ... (in sys-mor branch)

RB Software Design Comparison

	via disk	in solver	low-dim	pyMOR
5	9	(()	
ı	9	(20)	2	
y	(20)	9	<u></u>	
	(20)	•	<u>_</u>	
t	(20)	(2)	(9)	
٨	()	8	(9)	
1	(19)	8	9	
b	(((

- large (e.g. matrix-free) problems empirical interpolation
- reusability w. new solver library
 - reusability w. new MOR alg
 - MOR alg. easy to implement
 - easy to use w. new FOM
 - easy to maintain
- MOR and solver dev. decoupled

RB Software Design Comparison

via disk	in solver	low-dim	pyMOR
9	(19)	()	()
9	(2)	2	(
6	9	(2)	6
60	1	<u></u>	60
(2)	(2)	•	9
6	<u></u>	9	۳
(2)	(2)	•	(19)
6	9	(19)	(

- large (e.g. matrix-free) problems empirical interpolation
- reusability w. new solver library
 - reusability w. new MOR alg.
 - MOR alg. easy to implement
 - easy to use w. new FOM
 - easy to maintain
- MOR and solver dev. decoupled

FEniCS Support Included

- Directly interfaces FEniCS LA backend, no copies needed.
- Use same MOR code with both backends!
- Thermal block demo: 30 LOC FEniCS + 15 LOC wrapping for pyMOR.
- Easily increase FEM order, etc.

Figure: 3x3 thermal block problem top: red. solution, bottom: red. error left: pyMOR solver, right: FEniCS solver

Empirical Operator Interpolation with FEniCS

Two approaches for local operator evaluation:

- 1. Use dolfin.assemble_local (210 ms)
- 2. Use dolfin.SubMesh (35 ms)
- See fenics_nonlinear branch.

Nonlinear Poisson problem from FEniCS docs (for $\mu = 1$)

$-\nabla \cdot \left\{ (1 + \mu u^2(x, y)) \cdot \nabla u(x, y) \right\} = x \cdot \sin(y)$	for $x, y \in (0, 1)$
u(x,y) = 1	for $x = 1$
$ abla u(x,y) \cdot n = 0$	otherwise

- mesh = UnitSquareMesh(100, 100); V = FunctionSpace(mesh, "CG", 2)
- Time for solution: 3.4 s
- $\mu \in [1, 1000]$, RB size: 3, El DOFs: 5, rel. error $< 10^{-6}$

Empirical Operator Interpolation with FEniCS

Determine mesh elements to visit to compute DOFs of interest

Local evaluation with assemble_local

```
source_vec[source_dofs] = u
for cell, dof_map in zip(cells, dof_maps):
local_evaluations = assemble_local(form, cell)
f[dof_map] += local_evaluations
```


deal.II Support

- pymor-deall.II support module https://github.com/pymor/pymor-deal.II
- Python bindings for
 - dealii::Vector,
 - dealii::SparseMatrix.
- pyMOR wrapper classes.
- MOR demo for linear elasticity example from tutorial.

Figure: top: Solutions for $(\mu, \lambda) = (1, 1)$ and $(\mu, \lambda) = (1, 10)$, bottom: red. errs. and max./min. estimator effectivities vs. dim V_N .

NGSolve Support

- Based on NGSolve Python.
- pyMOR wrappers for vector and matrix classes.
- 3d thermal block demo: 40 LOC NGSolve
 + 11 LOC wrapping for pyMOR.
- Joint work with Christoph Lehrenfeld.

Figure: 3d thermal block problem top: full/red. sol., bottom: err. for worst approx. μ and max. red. error vs. dim V_N .

Tools for interfacing MPI parallel solvers

- Automatically make sequential bindings MPI aware.
- Reduce HPC-Cluster models without thinking about MPI at all.
- Interactively debug MPI parallel solvers.

Figure: FV solution of 3D Burgers-type equation $(27.6 \cdot 10^6 \text{ DOFs}, 600 \text{ time steps})$ using **Durgers**.

Table: Time (s) needed for solution using DUNE / DUNE with pyMOR timestepping.

MPI ranks	1	2	3	6	12	24	48	96	192
DUNE pyMOR	17076 17742	8519 8904	5727 6014	2969 3139	1525 1606	775 816	395 418	202 213	107 120
overhead	3.9%	4.5%	5.0%	5.7%	5.3%	5.3%	6.0%	5.4%	11.8%

Thank you for your attention!

C. Himpe, T. Leibner, S. Rave, Hierarchical Approximate Proper Orthogonal Decomposition arXiv:1607.05210

pyMOR - Generic Algorithms and Interfaces for Model Order Reduction SIAM J. Sci. Comput., 38(5), pp. S194-S216 pip install git+https://github.com/pymor/pymor@hapod

Matlab HAPOD implementation: git clone https://github.com/gramian/hapod

My homepage: https://stephanrave.de/