WWU

Two-Scale Reduction of LOD Multiscale Models

Tim Keil, Stephan Rave

Model Reduction and Surrogate Modeling (MORE)

Berlin, September 20, 2022

living.knowledge

Outline

- 1. LOD
- 2. RBLOD

where

3. TS LOD

- LOD = Localized Orthogonal Decomposition
- RB = Reduced Basis
- TS = Two-Scale

4. TSRBLOD

Multiscale Model Problem

Parameterized diffusion equation

For a fixed parameter $\mu \in \mathcal{P}$ find u_{μ} s.t.

- $-\nabla \cdot A_{\mu} \nabla u_{\mu} = f,$ in Ω , $u_{\mu} = 0$, on $\partial \Omega$,

or in weak form

$$a_{\mu}(u_{\mu}, v) = F(v), \quad \forall v \in V$$

- Parameter space $\mathcal{P} \subset \mathbb{R}^p$, $p \in \mathbb{N}$.
- Bounded Lipschitz domain $\Omega \subset \mathbb{R}^d$.
- Homogeneous Dirichlet boundary conditions, $V := H_0^1(\Omega)$.
- ► $A_{ii} \in L^{\infty}(\Omega, \mathbb{R}^{d \times d})$ symmetric and uniformly elliptic:

$$0 < \alpha \le A_{\mu} \le \beta < \infty$$
.

► $f \in L^2(\Omega)$.

► Rapid change of $A_{\mu}(x)$, but not too high contrast $\kappa := \beta/\alpha$.

Need for Numerical Multiscale Methods

Toy example: For $\varepsilon \ll 1$, find $u_{\varepsilon} \in H_0^1((0, 1))$ s.t.

$$-\left(A\left(\frac{x}{\varepsilon}\right)u'_{\varepsilon}(x)\right)' = 1$$
$$A(y) = 1 + 0.9\sin(2\pi y).$$

Need for Numerical Multiscale Methods

Toy example: For $\varepsilon \ll 1$, find $u_{\varepsilon} \in H_0^1((0, 1))$ s.t.

$$-\left(A\left(\frac{x}{\varepsilon}\right)u'_{\varepsilon}(x)\right)' = 1$$
$$A(y) = 1 + 0.9\sin(2\pi y).$$

Toy example: For $\varepsilon \ll 1$, find $u_{\varepsilon} \in H_0^1((0, 1))$ s.t.

$$-\left(A\left(\frac{x}{\varepsilon}\right)u'_{\varepsilon}(x)\right)' = 1$$
$$A(y) = 1 + 0.9\sin(2\pi y).$$

Problem: Coarse-mesh FEM space V_H is a bad H^1 -approximation space for u_{ε}

Problem: Coarse-mesh FEM space V_H is a bad H^1 -approximation space for u_{ε}

Solution: Find *multiscale* FEM space V_H^{ms} .

Problem: Coarse-mesh FEM space V_H is a bad H^1 -approximation space for u_{ε}

Solution: Find *multiscale* FEM space V_H^{ms} .

Multiscale Orthogonal Decomposition

- ▶ Fine mesh \mathcal{T}_h and coarse mesh \mathcal{T}_H with maximal element diameter $H \gg h$, FE spaces V_h and $V_H := V_h \cap \mathcal{P}_1(\mathcal{T}_H)$.
- ▶ Quasi-interpolation operator $\mathcal{I}_{H}: V_{h} \rightarrow V_{H}$ (e.g. based on local L^{2} -projections).
- ► Fine-scale space V^{f} : = ker(\mathcal{I}_{H}) \rightsquigarrow decomposition $V_{h} = V_{H} + V^{f}$.

Multiscale Orthogonal Decomposition

- ▶ Fine mesh \mathcal{T}_h and coarse mesh \mathcal{T}_H with maximal element diameter $H \gg h$, FE spaces V_h and $V_H := V_h \cap \mathcal{P}_1(\mathcal{T}_H)$.
- ▶ Quasi-interpolation operator $\mathcal{I}_{H}: V_{h} \rightarrow V_{H}$ (e.g. based on local L^{2} -projections).
- Fine-scale space V^{f} := ker(\mathcal{I}_{H}) \rightsquigarrow decomposition $V_{h} = V_{H} + V^{f}$.

► Fine-scale correction $Q_{\mu}: V_{H} \rightarrow V^{f}$ defined by

$$a_{\mu}(\mathcal{Q}_{\mu}(\mathbf{v}_{H}), \mathbf{v}^{f}) = a_{\mu}(\mathbf{v}_{H}, \mathbf{v}^{f}), \qquad \forall \, \mathbf{v}^{f} \in \mathbf{V}^{f}.$$

► Multiscale space $V_{H,\mu}^{ms} := (I - Q_{\mu})V_{H} \rightsquigarrow a_{\mu}$ -orthogonal decomposition $V_{h} = V_{\mu}^{ms} \oplus_{a_{\mu}} V^{f}$.

Multiscale Orthogonal Decomposition

- ▶ Fine mesh \mathcal{T}_h and coarse mesh \mathcal{T}_H with maximal element diameter $H \gg h$, FE spaces V_h and $V_H := V_h \cap \mathcal{P}_1(\mathcal{T}_H)$.
- ▶ Quasi-interpolation operator $\mathcal{I}_{H}: V_{h} \rightarrow V_{H}$ (e.g. based on local L^{2} -projections).
- Fine-scale space V^{f} := ker(\mathcal{I}_{H}) \rightsquigarrow decomposition $V_{h} = V_{H} + V^{f}$.

▶ Fine-scale correction Q_{μ} : $V_{H} \rightarrow V^{f}$ defined by

$$a_{\boldsymbol{\mu}}(\mathcal{Q}_{\boldsymbol{\mu}}(\boldsymbol{v}_{\boldsymbol{H}}),\boldsymbol{v}^{\mathrm{f}}) = a_{\boldsymbol{\mu}}(\boldsymbol{v}_{\boldsymbol{H}},\boldsymbol{v}^{\mathrm{f}}), \qquad \forall \, \boldsymbol{v}^{\mathrm{f}} \in \boldsymbol{V}^{\mathrm{f}}.$$

► Multiscale space $V_{H,\mu}^{ms} := (I - Q_{\mu})V_{H} \rightsquigarrow a_{\mu}$ -orthogonal decomposition $V_{h} = V_{\mu}^{ms} \oplus_{a_{\mu}} V^{f}$.

Problem: Computing Q_{μ} as hard as finding $u_{h,\mu}$!

Localization

- ► Truncated fine-scale space $V_{h,k,T}^{f} := \left\{ \mathbf{v} \in \mathbf{V}^{f} | \mathbf{v} |_{\Omega \setminus U_{k}(T)} = 0 \right\}.$
- ► For each $T \in \mathcal{T}_{H}$, define localized correctors $\mathcal{Q}_{k,\mu}^{T}(\mathbf{v}_{H}) \in V_{h,k,T}^{f}$

$$a_{\boldsymbol{\mu}}(\mathcal{Q}_{\boldsymbol{k},\boldsymbol{\mu}}^{\mathsf{T}}(\boldsymbol{v}_{\boldsymbol{H}}),\boldsymbol{v}^{\mathrm{f}}) = a_{\boldsymbol{\mu}}^{\mathsf{T}}(\boldsymbol{v}_{\boldsymbol{H}},\boldsymbol{v}^{\mathrm{f}}), \qquad \forall \, \boldsymbol{v}^{\mathrm{f}} \in \boldsymbol{V}_{\boldsymbol{h},\boldsymbol{k},\boldsymbol{T}}^{\mathrm{f}},$$

- ► Localized corrector operator $Q_{k,\mu} = \sum_{T \in \mathcal{T}_H} Q_{k,\mu}^T$.
- ► LOD space $V_{H,k,\mu}^{ms}$:= $(I Q_{k,\mu})V_H = \left\{ \phi_x Q_{k,\mu}(\phi_x) \, \middle| \, x \in \mathcal{N}_H \right\}$

TSRBLOD

Localization

► Truncated fine-scale space $V_{h,k,T}^{f}$: = $\{ \mathbf{v} \in V^{f} | \mathbf{v} |_{0 \setminus U_{t}(T)} = 0 \}$.

▶ For each $T \in \mathcal{T}_H$, define localized correctors $\mathcal{Q}_{k,\mu}^T(\mathbf{v}_H) \in \mathbf{V}_{h,k,T}^f$

$$a_{\boldsymbol{\mu}}(\mathcal{Q}_{\boldsymbol{k},\boldsymbol{\mu}}^{\mathsf{T}}(\boldsymbol{v}_{\boldsymbol{H}}),\boldsymbol{v}^{\mathsf{f}}) = a_{\boldsymbol{\mu}}^{\mathsf{T}}(\boldsymbol{v}_{\boldsymbol{H}},\boldsymbol{v}^{\mathsf{f}}), \qquad \forall \, \boldsymbol{v}^{\mathsf{f}} \in \boldsymbol{V}_{\boldsymbol{h},\boldsymbol{k},\boldsymbol{T}}^{\mathsf{f}},$$

► Localized corrector operator
$$Q_{k,\mu} = \sum_{T \in \mathcal{T}_H} Q_{k,\mu}^T$$
.

► LOD space $V_{H,k,u}^{\text{ms}}$:= $(I - \mathcal{Q}_{k,u})V_H = \{\phi_x - \mathcal{Q}_{k,u}(\phi_x) | x \in \mathcal{N}_H\}$

Lemma [Målqvist/Peterseim '14]

The correctors $Q_{\mu}(\phi_x)$ decay exponentially, hence,

$$\left\| \mathcal{Q}_{\boldsymbol{\mu}}(\boldsymbol{\phi}_{\boldsymbol{x}}) - \mathcal{Q}_{\boldsymbol{k},\boldsymbol{\mu}}(\boldsymbol{\phi}_{\boldsymbol{x}}) \right\| \leq C_{\mathcal{Q}} k^{d/2} \, \theta^{k} \left\| \mathcal{Q}_{\boldsymbol{\mu}}(\boldsymbol{\phi}_{\boldsymbol{x}}) \right\|,$$

where $0 < \theta < 1$ and C_0 depends on κ but not on the variations of A_{ij} .

TSRBI OD

$$\left\|\left|\mathcal{Q}_{\mu}(\boldsymbol{\phi}_{x})-\mathcal{Q}_{\boldsymbol{k},\mu}(\boldsymbol{\phi}_{x})\right|\right\| \leq C_{\mathcal{Q}}k^{d/2}\,\theta^{\boldsymbol{k}}\left\|\left|\mathcal{Q}_{\mu}\right|\right|$$

Petrov–Galerkin Formulation [Elfverson/Ginting/Henning '15]

Petrov-Galerkin LOD method

Find $u_{H,k,\mu}^{ms} \in V_{H,k,\mu}^{ms}$ such that $a_{\mu}(u_{H,k,\mu}^{ms}, v) = F(v), \quad \forall v \in V_{H}.$

Advantages of PG over Galerkin:

- No coupling between correctors.
- Reduced memory consumption.
- Still similar convergence results.

Petrov–Galerkin Formulation [Elfverson/Ginting/Henning '15]

Petrov-Galerkin LOD method

Find $u_{H,k,\mu}^{ms} \in V_{H,k,\mu}^{ms}$ such that $a_{\mu}(u_{H,k,\mu}^{ms}, \mathbf{v}) = F(\mathbf{v}),$

$$\forall \mathbf{v} \in \mathbf{V}_{\mathbf{u}}.$$

Advantages of PG over Galerkin:

- No coupling between correctors.
- Reduced memory consumption.
- Still similar convergence results.

Convergence theorem

$$\|u_{h,\mu} - u_{H,k,\mu}\|_{L^2} + \|u_{h,\mu} - u_{H,k,\mu}^{\mathsf{ms}}\|_1 \lesssim (H + \theta^k k^{d/2}) \|f\|_{L^2(\Omega)}$$

Figure: Energy error $|||u - u_{H,k,\mu}^{ms}||$ for the PG–LOD and $|||u - u_H||$ for 1d model problem from **[Peterseim'16]**.

TSRBI OD

Idea: Accelerate LOD by applying RB methodology to corrector problems

$$a(\mathcal{Q}_{\boldsymbol{k},\boldsymbol{\mu}}^{\mathsf{T}}(\boldsymbol{v}_{\boldsymbol{H}}),\boldsymbol{v}^{\mathsf{f}})=a_{\boldsymbol{\mu}}^{\mathsf{T}}(\boldsymbol{v}_{\boldsymbol{H}},\boldsymbol{v}^{\mathsf{f}}), \qquad \forall \, \boldsymbol{v}^{\mathsf{f}}\in \boldsymbol{V}_{\boldsymbol{h},\boldsymbol{k},\boldsymbol{T}}^{\mathsf{f}},$$

 $^{^1 \}rm We$ present here a slight variation of the original work.

Idea: Accelerate LOD by applying RB methodology to corrector problems

$$a(\mathcal{Q}_{\boldsymbol{k},\boldsymbol{\mu}}^{\mathsf{T}}(\boldsymbol{v}_{\boldsymbol{H}}),\boldsymbol{v}^{\mathrm{f}}) = a_{\boldsymbol{\mu}}^{\mathsf{T}}(\boldsymbol{v}_{\boldsymbol{H}},\boldsymbol{v}^{\mathrm{f}}), \qquad \forall \, \boldsymbol{v}^{\mathrm{f}} \in \boldsymbol{V}_{\boldsymbol{h},\boldsymbol{k},\boldsymbol{T}}^{\mathrm{f}},$$

The approximate LOD coarse-scale system matrix \mathbb{K}^{rb}_{μ} can then be pre-assembled as

$$\left(\mathbb{K}_{\mu}^{rb}\right)_{ji} = a_{\mu}(\boldsymbol{\varphi}_{i} - \mathcal{Q}_{k,\mu}^{T,rb}(\boldsymbol{\varphi}_{i}), \boldsymbol{\varphi}_{j}) = a_{\mu}(\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{j}) - \sum_{T} \underbrace{a_{\mu}}_{\sum_{q=1}^{Q} \theta_{q}(\mu)a^{q}} \underbrace{\left(\underbrace{\mathcal{Q}_{k,\mu}^{T,rb}(\boldsymbol{\varphi}_{i})}_{\sum_{q=1}^{N} c_{q}} \psi_{i}^{b} \in \mathcal{V}_{k,T}^{t,b}}_{k,\mu}\right)$$
(*)

TSRBLOD

¹We present here a slight variation of the original work.

Idea: Accelerate LOD by applying RB methodology to corrector problems

$$a(\mathcal{Q}_{\boldsymbol{k},\boldsymbol{\mu}}^{\mathsf{T}}(\boldsymbol{v}_{\boldsymbol{H}}),\boldsymbol{v}^{\mathrm{f}}) = a_{\boldsymbol{\mu}}^{\mathsf{T}}(\boldsymbol{v}_{\boldsymbol{H}},\boldsymbol{v}^{\mathrm{f}}), \qquad \forall \, \boldsymbol{v}^{\mathrm{f}} \in \boldsymbol{V}_{\boldsymbol{h},\boldsymbol{k},\boldsymbol{T}}^{\mathrm{f}},$$

The approximate LOD coarse-scale system matrix \mathbb{K}^{rb}_{μ} can then be pre-assembled as

$$\left(\mathbb{K}_{\mu}^{rb}\right)_{ji} = a_{\mu}(\boldsymbol{\varphi}_{i} - \mathcal{Q}_{k,\mu}^{T,rb}(\boldsymbol{\varphi}_{i}), \boldsymbol{\varphi}_{j}) = a_{\mu}(\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{j}) - \sum_{T} \underbrace{a_{\mu}}_{\sum_{q=1}^{Q} \widehat{\theta}_{q}(\mu)a^{q}} \underbrace{\mathcal{Q}_{k,\mu}^{T,rb}(\boldsymbol{\varphi}_{i})}_{\sum_{m=1}^{N} \widehat{\sigma}_{n}\psi_{h}^{T} \in V_{k,T}^{t,b}} (\star)$$

Benefit: \mathbb{K}_{μ}^{rb} can be assembled independently of dim V_h !

¹We present here a slight variation of the original work.

Idea: Accelerate LOD by applying RB methodology to corrector problems

$$a(\mathcal{Q}_{\boldsymbol{k},\boldsymbol{\mu}}^{\mathsf{T}}(\boldsymbol{v}_{\boldsymbol{H}}),\boldsymbol{v}^{\mathsf{f}}) = a_{\boldsymbol{\mu}}^{\mathsf{T}}(\boldsymbol{v}_{\boldsymbol{H}},\boldsymbol{v}^{\mathsf{f}}), \qquad \forall \, \boldsymbol{v}^{\mathsf{f}} \in \boldsymbol{V}_{\boldsymbol{h},\boldsymbol{k},\boldsymbol{T}}^{\mathsf{f}},$$

The approximate LOD coarse-scale system matrix \mathbb{K}^{rb}_{μ} can then be pre-assembled as

$$\left(\mathbb{K}_{\mu}^{rb}\right)_{ji} = a_{\mu}(\boldsymbol{\varphi}_{i} - \mathcal{Q}_{k,\mu}^{T,rb}(\boldsymbol{\varphi}_{i}), \boldsymbol{\varphi}_{j}) = a_{\mu}(\boldsymbol{\varphi}_{i}, \boldsymbol{\varphi}_{j}) - \sum_{T} \underbrace{a_{\mu}}_{\sum_{q=1}^{Q} \theta_{q}(\mu)a^{q}} \underbrace{\mathcal{Q}_{k,\mu}^{T,rb}(\boldsymbol{\varphi}_{i})}_{\sum_{q=1}^{N} \phi_{q}^{T,rb}(\boldsymbol{\varphi}_{i})}, \boldsymbol{\varphi}_{j}\right) \tag{*}$$

Benefit: \mathbb{K}_{u}^{rb} can be assembled independently of dim V_{h} !

Shortcomings:

- Size of \mathbb{K}_{μ}^{rb} still depends on dim V_{H} , which might be large.
- Rigorous a posteriori error control for RBLOD solution?
- Apply RB to coarse-scale problem? (*) leads to large dim V_H-dependent affine decomposition!

¹We present here a slight variation of the original work.

Two-Scale Formulation of the LOD in homogenization: [Allaire, 92], for HMM: [Ohlberger, 05]

Two-scale space

$$\begin{split} \mathfrak{V} &:= \boldsymbol{V}_{H} \oplus \boldsymbol{V}_{h,k,T_{1}}^{\mathsf{f}} \oplus \cdots \oplus \boldsymbol{V}_{h,k,T_{|\mathcal{T}_{H}|}}^{\mathsf{f}} \\ \|\|\boldsymbol{u}\|\|_{1}^{2} &:= \|\boldsymbol{u}_{H}\|_{1}^{2} + \sum_{T \in \mathcal{T}_{H}} \left\|\boldsymbol{u}_{T}^{\mathsf{f}}\right\|_{1}^{2} \end{split}$$

Two-Scale Formulation of the LOD in homogenization: [Allaire, 92], for HMM: [Ohlberger, 05]

Two-scale space

$$\mathfrak{V}:=\boldsymbol{V}_{H} \oplus \boldsymbol{V}_{h,k,T_{1}}^{\mathsf{f}} \oplus \cdots \oplus \boldsymbol{V}_{h,k,T_{|\mathcal{T}_{H}|}}^{\mathsf{f}}$$
$$\|\|\boldsymbol{u}\|\|_{1}^{2}:=\|\boldsymbol{u}_{H}\|_{1}^{2} + \sum_{\boldsymbol{T}\in\mathcal{T}_{H}} \|\boldsymbol{u}_{T}^{\mathsf{f}}\|_{1}^{2}$$

Two-scale bilinear form

$$\mathfrak{B}_{\mu}(\mathfrak{u},\mathfrak{v}):=a_{\mu}(u_{H}-\sum_{T\in\mathcal{T}_{H}}u_{T}^{\mathsf{f}},v_{H})+\rho^{1/2}\sum_{T\in\mathcal{T}_{H}}a_{\mu}(u_{T}^{\mathsf{f}},v_{T}^{\mathsf{f}})-a_{\mu}^{T}(u_{H},v_{T}^{\mathsf{f}}),$$

Two-Scale Formulation of the LOD in homogenization: [Allaire, 92], for HMM: [Ohlberger, 05]

Two-scale space

$$\begin{split} \mathfrak{V} &:= \boldsymbol{V}_{H} \oplus \boldsymbol{V}_{h,k,T_{1}}^{\mathsf{f}} \oplus \cdots \oplus \boldsymbol{V}_{h,k,T_{|\mathcal{T}_{H}|}}^{\mathsf{f}} \\ \|\|\boldsymbol{u}\|\|_{1}^{2} &:= \|\boldsymbol{u}_{H}\|_{1}^{2} + \sum_{\boldsymbol{T} \in \mathcal{T}_{H}} \|\boldsymbol{u}_{T}^{\mathsf{f}}\|_{1}^{2} \end{split}$$

Two-scale bilinear form

$$\mathfrak{B}_{\mu}(\mathfrak{u},\mathfrak{v}) := a_{\mu}(\boldsymbol{u}_{H} - \sum_{T \in \mathcal{T}_{H}} \boldsymbol{u}_{T}^{\mathsf{f}}, \boldsymbol{v}_{H}) + \rho^{1/2} \sum_{T \in \mathcal{T}_{H}} a_{\mu}(\boldsymbol{u}_{T}^{\mathsf{f}}, \boldsymbol{v}_{T}^{\mathsf{f}}) - a_{\mu}^{T}(\boldsymbol{u}_{H}, \boldsymbol{v}_{T}^{\mathsf{f}}),$$

Proposition

The two-scale solution $\mathfrak{u}_{\mu} \in \mathfrak{V}$ of

$$\mathfrak{B}_{\mu}(\mathfrak{u}_{\mu},\mathfrak{v})=F(\mathbf{V}_{H})\qquad\forall\mathfrak{v}\in\mathcal{V}.$$

is uniquely determined and given by $\mathfrak{u}_{\mu} = \left[u_{H,k,\mu}, \mathcal{Q}_{k,\mu}^{T_1}(u_{H,k,\mu}), \dots, \mathcal{Q}_{k,\mu}^{T_{|\mathcal{T}_H|}}(u_{H,k,\mu}) \right].$

Two-Scale Stability Estimate

Proposition

Let $\rho := C_{\text{ovl}} \cdot \kappa$, then \mathfrak{B}_{μ} is $\|\| \cdot \||_{a,\mu} \cdot \|| \cdot \||_1$ -continuous and inf-sup stable with the following bounds on the respective constants:

$$\sup_{0\neq u\in\mathfrak{V}}\sup_{0\neq v\in\mathfrak{V}}\frac{\mathfrak{B}_{\mu}(\mathfrak{u},\mathfrak{v})}{\|\|\mathfrak{u}\|_{a,\mu}\cdot\|\|\mathfrak{v}\|\|_{1}}\leq\beta^{1/2}\quad\text{and}\quad\inf_{0\neq u\in\mathfrak{V}}\sup_{0\neq v\in\mathfrak{V}}\frac{\mathfrak{B}_{\mu}(\mathfrak{u},\mathfrak{v})}{\|\|\mathfrak{u}\|\|_{a,\mu}\cdot\|\|\mathfrak{v}\|\|_{1}}\geq\gamma_{k}/\sqrt{5}.$$

where γ_k is the PG–LOD inf-sup constant and

$$\|\|\mathbf{u}\|\|_{a,\mu}^2 := \|\boldsymbol{u}_{\boldsymbol{H}} - \sum_{T \in \mathcal{T}_{\boldsymbol{H}}} \boldsymbol{u}_T^{\boldsymbol{f}}\|_{a,\mu}^2 + \rho \sum_{T \in \mathcal{T}_{\boldsymbol{H}}} \|\mathcal{Q}_{\boldsymbol{k},\mu}^{\boldsymbol{T}}(\boldsymbol{u}_{\boldsymbol{H}}) - \boldsymbol{u}_T^{\boldsymbol{f}}\|_{a,\mu}^2$$

Two-Scale Stability Estimate

Proposition

Let $\rho := C_{ovl} \cdot \kappa$, then \mathfrak{B}_{μ} is $\||\cdot||_{a,\mu} \cdot \||\cdot||_1$ -continuous and inf-sup stable with the following bounds on the respective constants:

$$\sup_{0\neq u\in\mathfrak{V}}\sup_{0\neq v\in\mathfrak{V}}\frac{\mathfrak{B}_{\mu}(\mathfrak{u},\mathfrak{v})}{\|\|\mathfrak{u}\|\|_{a,\mu}\cdot\|\|\mathfrak{v}\|\|_{1}}\leq\beta^{1/2}\quad\text{and}\quad\inf_{0\neq u\in\mathfrak{V}}\sup_{0\neq v\in\mathfrak{V}}\frac{\mathfrak{B}_{\mu}(\mathfrak{u},\mathfrak{v})}{\|\|\mathfrak{u}\|\|_{a,\mu}\cdot\|\|\mathfrak{v}\|\|_{1}}\geq\gamma_{k}/\sqrt{5}.$$

where γ_k is the PG–LOD inf-sup constant and

$$\|\mathbf{u}\|_{a,\mu}^2 := \|\boldsymbol{u}_{\boldsymbol{H}} - \sum_{T \in \mathcal{T}_{\boldsymbol{H}}} \boldsymbol{u}_T^{\boldsymbol{f}}\|_{a,\mu}^2 + \rho \sum_{T \in \mathcal{T}_{\boldsymbol{H}}} \|\mathcal{Q}_{\boldsymbol{k},\mu}^{\boldsymbol{T}}(\boldsymbol{u}_{\boldsymbol{H}}) - \boldsymbol{u}_T^{\boldsymbol{f}}\|_{a,\mu}^2$$

Error Bound

$$\|\|\mathfrak{u}_{\mu}-\mathfrak{u}\|\|_{a,\mu} \leq \sqrt{5}\gamma_k^{-1}\sup_{\mathfrak{v}\in\mathfrak{V}}\frac{\widetilde{\mathfrak{V}}(\mathfrak{v})-\mathfrak{B}_{\mu}(\mathfrak{u},\mathfrak{v})}{\|\|\mathfrak{v}\|\|_1} \leq \sqrt{5}\underbrace{\gamma_k^{-1}\beta^{1/2}}_{\sim\kappa^{1/2}}\|\|\mathfrak{u}_{\mu}-\mathfrak{u}\|\|_{a,\mu}.$$

Two-Scale Stability Estimate

Proposition

Let $\rho := C_{ovl} \cdot \kappa$, then \mathfrak{B}_{μ} is $\||\cdot||_{a,\mu} \cdot \||\cdot||_1$ -continuous and inf-sup stable with the following bounds on the respective constants:

$$\sup_{0\neq u\in\mathfrak{V}}\sup_{0\neq v\in\mathfrak{V}}\frac{\mathfrak{B}_{\mu}(\mathfrak{u},\mathfrak{v})}{\|\|\mathfrak{u}\|\|_{a,\mu}\cdot\|\|\mathfrak{v}\|\|_{1}}\leq\beta^{1/2}\quad\text{and}\quad\inf_{0\neq u\in\mathfrak{V}}\sup_{0\neq v\in\mathfrak{V}}\frac{\mathfrak{B}_{\mu}(\mathfrak{u},\mathfrak{v})}{\|\|\mathfrak{u}\|\|_{a,\mu}\cdot\|\|\mathfrak{v}\|\|_{1}}\geq\gamma_{k}/\sqrt{5}.$$

where γ_k is the PG–LOD inf-sup constant and

$$\|\mathbf{u}\|_{a,\mu}^2 := \|\boldsymbol{u}_{\boldsymbol{H}} - \sum_{T \in \mathcal{T}_{\boldsymbol{H}}} \boldsymbol{u}_T^{\boldsymbol{f}}\|_{a,\mu}^2 + \rho \sum_{T \in \mathcal{T}_{\boldsymbol{H}}} \|\mathcal{Q}_{\boldsymbol{k},\mu}^{\boldsymbol{T}}(\boldsymbol{u}_{\boldsymbol{H}}) - \boldsymbol{u}_T^{\boldsymbol{f}}\|_{a,\mu}^2$$

Error Bound

$$\begin{split} \Big\{ \|\boldsymbol{u}_{\boldsymbol{H},\boldsymbol{k},\boldsymbol{\mu}} - \boldsymbol{u}_{\boldsymbol{H}}\|_{1}^{2} + \rho \sum_{T \in \mathcal{T}_{\boldsymbol{H}}} \|\boldsymbol{\mathcal{Q}}_{\boldsymbol{k},\boldsymbol{\mu}}^{T}(\boldsymbol{u}_{\boldsymbol{H}}) - \boldsymbol{u}_{\boldsymbol{T}}^{\mathsf{f}}\|_{1}^{2} \Big\}^{1/2} \leq \sqrt{5} C_{\mathcal{I}_{\boldsymbol{H}}} \alpha^{-1/2} \gamma_{\boldsymbol{k}}^{-1} \sup_{\boldsymbol{\upsilon} \in \mathfrak{V}} \frac{\mathfrak{F}(\boldsymbol{\upsilon}) - \mathfrak{B}_{\boldsymbol{\mu}}(\boldsymbol{u},\boldsymbol{\upsilon})}{\|\|\boldsymbol{\upsilon}\|\|_{1}} \\ \leq \sqrt{15} C_{\mathcal{I}_{\boldsymbol{H}}} (C_{\mathsf{ovl}} + 1)^{1/2} \underbrace{\kappa^{1/2} \gamma_{\boldsymbol{k}}^{-1} \beta^{1/2}}_{\sim \kappa} \Big\{ \|\boldsymbol{u}_{\boldsymbol{H},\boldsymbol{k},\boldsymbol{\mu}} - \boldsymbol{u}_{\boldsymbol{H}}\|_{1}^{2} + \rho \sum_{T \in \mathcal{T}_{\boldsymbol{H}}} \|\boldsymbol{\mathcal{Q}}_{\boldsymbol{k},\boldsymbol{\mu}}^{T}(\boldsymbol{u}_{\boldsymbol{H}}) - \boldsymbol{u}_{\boldsymbol{T}}^{\mathsf{f}}\|_{1}^{2} \Big\}^{1/2}. \end{split}$$

Stephan Rave (stephan.rave@wwu.de)

Two-Scale Reduced Basis Approach

Idea: Accelerate LOD by applying RB methodology to two-scale problem

 $\mathfrak{B}_{\mu}\left(\mathfrak{u}_{\mu},\mathfrak{v}\right)=F(v_{H})\qquad\forall\mathfrak{v}\in\mathcal{V}.$

Since we only have inf-sup stability of \mathfrak{B}_{μ} , use as ROM:

$$\mathfrak{u}_{\mu}^{rb} := \operatorname*{arg\,min}_{\mathfrak{u}\in\mathfrak{V}^{rb}} \sup_{\mathfrak{v}\in\mathfrak{V}} \frac{\mathfrak{F}(\mathfrak{v}) - \mathfrak{B}_{\mu}(\mathfrak{u},\mathfrak{v})}{\|\|\mathfrak{v}\|\|_{1}}.$$

Two-Scale Reduced Basis Approach

Idea: Accelerate LOD by applying RB methodology to two-scale problem

 $\mathfrak{B}_{\mu}(\mathfrak{u}_{\mu},\mathfrak{v})=F(v_{H})\qquad\forall\mathfrak{v}\in\mathcal{V}.$

Since we only have inf-sup stability of \mathfrak{B}_{μ} , use as ROM:

$$\mathfrak{u}_{\mu}^{rb} := \operatorname*{arg\,min}_{\mathfrak{u}\in\mathfrak{V}^{rb}} \sup_{\mathfrak{v}\in\mathfrak{V}} \frac{\mathfrak{F}(\mathfrak{v}) - \mathfrak{B}_{\mu}(\mathfrak{u},\mathfrak{v})}{\|\|\mathfrak{v}\|\|_{1}}.$$

Benefits:

- ROM independent from dim V_h and dim V_H .
- \mathfrak{B}_{μ} has same affine decomposition as a_{μ} .
- Rigorous a posteriori error bounds.

Two-Scale Reduced Basis Approach

Idea: Accelerate LOD by applying RB methodology to two-scale problem

 $\mathfrak{B}_{\mu}(\mathfrak{u}_{\mu},\mathfrak{v})=F(v_{H})\qquad\forall\mathfrak{v}\in\mathcal{V}.$

Since we only have inf-sup stability of \mathfrak{B}_{μ} , use as ROM:

$$\mathfrak{u}_{\mu}^{rb} := \operatorname*{arg\,min}_{\mathfrak{u}\in\mathfrak{V}^{rb}} \sup_{\mathfrak{v}\in\mathfrak{V}} \frac{\mathfrak{F}(\mathfrak{v}) - \mathfrak{B}_{\mu}(\mathfrak{u},\mathfrak{v})}{\|\|\mathfrak{v}\|\|_{1}}.$$

Benefits:

- ROM independent from dim V_h and dim V_H .
- ▶ \mathfrak{B}_{μ} has same affine decomposition as a_{μ} .
- Rigorous a posteriori error bounds.

Snapshots: LOD solutions with correctors.

Caveat: Need to solve fine-scale corrector problems in each greedy iteration.

Two-Stage Two-Scale Reduced Basis Approach

FOM:	
$(cT_{1}) \rightarrow f_{2} \rightarrow f_{2} \rightarrow f_{3} \rightarrow f_{4}$	
$a_{\mu}(\mathcal{Q}_{k,\mu}^{\prime}(\mathbf{V}_{H}),\mathbf{v}_{T}^{\prime})=a_{\mu}^{\prime}(\mathbf{V}_{H},\mathbf{v}_{T}^{\prime}),\qquad\forall\mathbf{v}_{T}\in\mathbf{V}_{h,k,T}^{\prime}.$	
ROM: $a_{\mu}(\mathcal{Q}_{k,\mu}^{T,rb}(\mathbf{v}_{H}),\mathbf{v}_{T}^{f}) = a_{\mu}^{T}(\mathbf{v}_{H},\mathbf{v}_{T}^{f}), \qquad \forall \mathbf{v}_{T}^{f} \in \mathbf{V}_{k,T}^{f,rb}.$	
Outputs: $a_1(O^{T,tb}(\mathbf{y}_1), \mathbf{\varphi}_1) = a_1^T(\mathbf{\varphi}_1, O^{T,tb}(\mathbf{y}_2))$	
Error bound:	
$-T(x, y, f) = -(O_{x}^{T} f) (x, y, f)$	
$\ \mathcal{Q}_{k,\mu}^{T}(\mathbf{v}_{H}) - \mathcal{Q}_{k,\mu}^{T,rb}(\mathbf{v}_{H})\ _{a,\mu} \leq \alpha^{-1/2} \sup_{\mathbf{v}_{T}^{t} \in \mathbf{v}_{h,k,\tau}^{t}} \frac{a_{\mu}^{\iota}(\mathbf{v}_{H}, \mathbf{v}_{T}^{\iota}) - a_{\mu}(\mathcal{Q}_{k,\mu}^{\iota,\tau}(\mathbf{v}_{H}), \mathbf{v}_{T}^{\iota})}{\ \mathbf{v}_{T}^{t}\ _{1}}.$	

Basis generation: weak greedy algorithm w. error tolerance ε_1

Two-Stage Two-Scale Reduced Basis Approach

Stage 2

FOM:

$$\mathfrak{B}_{\mu}(\mathfrak{u}_{\mu},\mathfrak{v})=F(\mathbf{V}_{H})\qquad\forall\mathfrak{v}\in\mathcal{V}.$$

ROM:

$$\mathfrak{u}_{\boldsymbol{\mu}}^{rb} \colon = \mathop{\arg\min}_{\mathfrak{u}\in\mathfrak{V}^{rb}} \sup_{\mathfrak{v}\in\mathfrak{V}} \frac{\mathfrak{F}(\mathfrak{v})-\mathfrak{B}_{\boldsymbol{\mu}}(\mathfrak{u},\mathfrak{v})}{\|\|\mathfrak{v}\|\|_{1}}.$$

Error bound:

$$\left\{ \|\boldsymbol{u}_{\boldsymbol{H},\boldsymbol{k},\boldsymbol{\mu}} - \boldsymbol{u}_{\boldsymbol{H}}\|_{1}^{2} + \rho \sum_{T \in \mathcal{T}_{\boldsymbol{H}}} \|\boldsymbol{\mathcal{Q}}_{\boldsymbol{k},\boldsymbol{\mu}}^{T}(\boldsymbol{u}_{\boldsymbol{H}}) - \boldsymbol{u}_{T}^{\mathsf{f}}\|_{1}^{2} \right\}^{1/2} \leq \sqrt{5} C_{\mathcal{I}_{\boldsymbol{H}}} \alpha^{-1/2} \gamma_{\boldsymbol{k}}^{-1} \sup_{\boldsymbol{v} \in \mathfrak{V}} \frac{\mathfrak{F}(\boldsymbol{v}) - \mathfrak{B}_{\boldsymbol{\mu}}(\boldsymbol{u},\boldsymbol{v})}{\|\|\boldsymbol{v}\|\|_{1}}$$

Basis generation: 'weak' greedy algorithm w. error tolerance ε_2

Snapshots:

$$\mathbb{K}_{\mu}^{\prime b} \cdot \underline{u}_{H,k,\mu^*} = \mathbb{F}$$
$$\mathfrak{u}_{\mu^*} := [u_{H,k,\mu^*}, \mathcal{Q}_{k,\mu^*}^{T_1,rb}(u_{H,k,\mu^*}), \dots, \mathcal{Q}_{k,\mu^*}^{T,rb}(u_{H,k,\mu^*})]$$

Numerical Experiment 1

[Abdulle/Henning'15]

- ▶ \mathcal{P} :=[0,5]
- $A_{\mu} = \sum_{q=1}^{Q} \theta_q(\mu) A_q$ with Q = 4
- ▶ $|\mathcal{T}_h| = 65,536$
- ε₁ = ε₂ = 0.001
- ▶ two samples of A_{μ} :

$ \mathcal{T}_H $	23 :	< 2 ³	$2^{4} \times 2^{4}$		2 ⁵ × 2 ⁵	
method	RBLOD	TSRBLOD	RBLOD	TSRBLOD	RBLOD	TSRBLOD
$t_{1,av}^{offline}(T)$	41	61	39	61	33	55
toffline	71	106	67	102	63	98
toffline	-	8	-	56	-	472
t ^{offline}	71	114	67	158	63	570
cum. size St.1	2346	1670	8718	6134	31810	22189
av. size St.1	9.16	26.09	8.51	23.96	7.77	21.67
size St.2	-	8	-	9		9
tLOD	0.69		0.49		0.90	
t ^{online}	0.0610	0.0003	0.2272	0.0003	1.0462	0.0003
speed-up LOD	11	2506	2	1536	1	2714
e ^{H1} ,rel LOD	1.97e-5	7.30e-4	5.08e-5	2.94e-4	1.11e-4	4.21e-4
e ^{L2} ,rel LOD	4.89e-6	2.71e-4	6.77e-6	1.03e-4	7.70e-6	1.32e-4
e ^{L²,rel} FEM	2.46e-2	2.46e-2	9.05e-3	9.05e-3	3.98e-3	3.98e-3
e ^{L2} ,rel LOD-FEM	2.46e-2		9.05e-3		3.98e-3	

TSRBLOD

Numerical Experiment 1: Stage 1 error in Stage 2 training

- **left plot**: $\eta_{a,u}$ detects dominant Stage 1 error and aborts enrichtment.
- right plot: Ignoring Stage 1 error contributions leads to overfitted ROMs without further error decay.

Numerical Experiment 2

- $\blacktriangleright A_{\mu} = \sum_{q=1}^{3} \mu_q A_q$
- \mathcal{P} := [1, 5]³
- ▶ $|\mathcal{T}_h| = 67, 108, 864$
- ▶ $|\mathcal{T}_{H}| = 4,096$
- κ ≈ 16
- 1,024 processes
- $\varepsilon_1 = 0.01$ and $\varepsilon_2 = 0.02$.

Figure: Coefficient A_{μ} on **4 coarse elements** for $\mu = (1, 2, 3)^T$ (top center) and A_q for all q = 1, ..., 3 (bottom).

Numerical Experiment 2

- $\blacktriangleright A_{\mu} = \sum_{q=1}^{3} \mu_q A_q$
- ▶ \mathcal{P} := [1, 5]³
- ▶ $|\mathcal{T}_h| = 67, 108, 864$
- ▶ $|\mathcal{T}_{H}| = 4,096$
- κ ≈ 16
- 1,024 processes
- $\varepsilon_1 = 0.01$ and $\varepsilon_2 = 0.02$.

method	RBLOD	TSRBLOD	
$t_1^{\text{offline}}(T)$	10278	11289	
t ₁ ^{offline}	49436	54837	
t ₂ ^{offline}	-	9206	
t ^{offline}	49436	64043	
cum. size St.1	278528	193289	
av. size St.1	17.00	47.19	
size St.2	-	16	
storage	409MB	28KB	
t ^{LOD} (parallel)	515		
t ^{online} (sequential)	4.39	0.0005	
speed-up w.r.t LOD	117	9.57e5	
$e_{\text{LOD}}^{H^1,\text{rel}}$	1.95e-5	4.43e-4	
e ^{L²,rel}	2.36e-5	4.49e-4	

Some Remarks

- \mathfrak{B}_{μ} has a sparse block structure and never needs to be assembled.
- Stage 1 can be performed in parallel without communication.
- ▶ Stage 2 completely dim V_h independent.

Block structure of \mathfrak{B}_{μ} w.r.t. Stage 2 full-order space.

Some Remarks

- \mathfrak{B}_{μ} has a sparse block structure and never needs to be assembled.
- Stage 1 can be performed in parallel without communication.
- Stage 2 completely dim V_h independent.
- ε₁ can be chosen small to ensure stage 2 greedy succeeds (only offline time affected).
- Adaptive strategies for locally decreasing ε₁ easily possible.

Block structure of \mathfrak{B}_{μ} w.r.t. Stage 2 full-order space.

- \mathfrak{B}_{μ} has a sparse block structure and never needs to be assembled.
- Stage 1 can be performed in parallel without communication.
- Stage 2 completely dim V_h independent.
- ε₁ can be chosen small to ensure stage 2 greedy succeeds (only offline time affected).
- Adaptive strategies for locally decreasing ε₁ easily possible.
- ▶ Error analysis also applies in the RBLOD case.
- Can be extended to other problem classes.

Block structure of \mathfrak{B}_{μ} w.r.t. Stage 2 full-order space.

Thank you for your attention!

Keil, Rave, An Online Efficient Two-Scale Reduced Basis Approach for the Localized Orthogonal Decomposition, arXiv:2111.08643, 2021.