Model Order Reduction of Large-Scale Systems

Linus Balicki, Andreas Buhr, René Fritze, Martin Gander, Petar Mlinaric, Tim Keil, Mario Ohlberger, Stephan Rave, Felix Schindler

IANS Seminar

Stuttgart, June 23, 2021

living.knowledge

Outline

- 1. Introduction to Reduced Basis Methods
- 2. HAPOD Hierarchical Approximate POD
- 3. Localized Reduced Basis Additive Schwarz Methods
- 4. Two-Scale Reduced Basis Localized Orthogonal Decomposition
- 5. Model Order Reduction with pyMOR

Not featured:

 Model order reduction of problems with moving shocks/boundaries via nonlinear approximation.

Introduction to Reduced Basis Methods

Stephan Rave (stephan.rave@wwu.de)

Reduced Basis Methods for Elliptic Problems

Parametric linear elliptic problem (full order model)

For given parameter $\mu \in \mathcal{P}$, find $u_h(\mu) \in V_h$ s.t.

 $\begin{aligned} a(u_h(\mu), v_h; \mu) &= f(v_h) \qquad \forall v_h \in V_h \\ y_h(\mu) &= g(u_h(\mu)) \end{aligned}$

Reduced Basis Methods for Elliptic Problems

Parametric linear elliptic problem (full order model)

For given parameter $\mu \in \mathcal{P}$, find $u_h(\mu) \in V_h$ s.t.

$$\begin{aligned} a(u_h(\boldsymbol{\mu}), \mathbf{v}_h; \boldsymbol{\mu}) &= f(\mathbf{v}_h) \qquad \forall \mathbf{v}_h \in V_h \\ y_h(\boldsymbol{\mu}) &= g(u_h(\boldsymbol{\mu})) \end{aligned}$$

Parametric linear elliptic problem (reduced order model)

For given $V_N \subset V_h$, let $u_N(\mu) \in V_N$ be given by Galerkin proj. onto V_N , i.e.

$$\begin{aligned} a(u_N(\mu), v_N; \mu) &= f(v_N) \qquad \forall v_N \in V_N \\ y_N(\mu) &= g(u_N(\mu)) \end{aligned}$$

RB Methods – Computing V_N

Weak greedy basis generation

Err-Est

Use residual-based error estimate w.r.t. FOM (finite dimensional \sim can compute dual norms).

RB Methods – Computing V_N

Weak greedy basis generation

Err-Est

Use residual-based error estimate w.r.t. FOM (finite dimensional ightarrow can compute dual norms).

• Use dual weighted residual approach for improved convergence w.r.t to output $y_N(\mu)$.

RB Methods – Online Efficiency

Parametric linear elliptic problem (reduced order model)

For given $V_N \subset V_h$, let $u_N(\mu) \in V_N$ be given by Galerkin proj. onto V_N , i.e.

 $\begin{aligned} a(u_N(\mu), v_N; \mu) &= f(v_N) \qquad \forall v_N \in V_N \\ y_N(\mu) &= g(u_N(\mu)) \end{aligned}$

Affine decomposition

Assume that a_{μ} can be written as

$$a(u, v; \boldsymbol{\mu}) = \sum_{q=1}^{Q} \theta_q(\boldsymbol{\mu}) a_q(u, v).$$

RB Methods – Online Efficiency

Parametric linear elliptic problem (reduced order model)

For given $V_N \subset V_h$, let $u_N(\mu) \in V_N$ be given by Galerkin proj. onto V_N , i.e.

 $\begin{aligned} a(u_N(\mu), v_N; \mu) &= f(v_N) \qquad \forall v_N \in V_N \\ y_N(\mu) &= g(u_N(\mu)) \end{aligned}$

Affine decomposition

Assume that a_{μ} can be written as

$$a(u, v; \boldsymbol{\mu}) = \sum_{q=1}^{Q} \theta_q(\boldsymbol{\mu}) a_q(u, v).$$

Offline/Online splitting

By pre-computing

 $a_q(\varphi_i,\varphi_j),\,f(\varphi_i),\,g(\varphi_i)$

for a reduced basis $\varphi_1, \ldots, \varphi_N$ of V_N , solving ROM becomes independent of dim V_h .

Example: RB Approximation of Li-Ion Battery Models

MULTIBAT: Gain understanding of degradation processes in rechargeable Li-Ion Batteries through mathematical modeling and simulation at the pore scale.

FOM:

- 2.920.000 DOFs
- Simulation time: ≈ 15.5h

ROM:

- Snapshots: 3
- ▶ dim V_N = 245
- ▶ Rel. err.: < 4.5 · 10⁻³
- ▶ Reduction time: ≈ 14h
- ► Simulation time: ≈ 8m
- Speedup: 120

HAPOD – Hierarchical Approximate POD

Stephan Rave (stephan.rave@wwu.de)

Computing V_N with POD

Offline phase

Basis for V_N is computed from **solution snapshots** $u_{\mu_e}(t)$ of full order problem via:

- Proper Orthogonal Decomposition (POD)
- ▶ POD-Greedy (= greedy search in μ + POD in *t*)

Computing V_N with POD

Offline phase

Basis for V_N is computed from **solution snapshots** $u_{\mu_s}(t)$ of full order problem via:

- Proper Orthogonal Decomposition (POD)
- ▶ POD-Greedy (= greedy search in μ + POD in t)

POD (a.k.a. PCA, Karhunen–Loève decomposition)

Given Hilbert space V, S: = { v_1 , ..., v_S } $\subset V$, the k-th POD mode of S is the k-th left-singular vector of the mapping

$$\Phi: \mathbb{R}^{S} \to V$$
, $e_{s} \to \Phi(e_{s}):= v_{s}$

Optimality of POD

Let V_N be the linear span of first N POD modes, then:

$$\sum_{s \in \mathcal{S}} \|s - P_{V_N}(s)\|^2 = \sum_{m=N+1}^{|\mathcal{S}|} \sigma_m^2 = \min_{\substack{X \subset V \\ \dim X \le N}} \sum_{s \in \mathcal{S}} \|s - P_X(s)\|^2$$

Stephan Rave (stephan.rave@wwu.de)

Are your tall and skinny matrices not so skinny anymore?

POD of large snapshot sets:

- large computational effort
- parallelization?
- ▶ data > RAM ⇒ disaster

Are your tall and skinny matrices not so skinny anymore?

POD of large snapshot sets:

- large computational effort
- parallelization?
- ▶ data > RAM ⇒ disaster

Solution: PODs of PODs!

Disclaimer

> You might have done this before.

Disclaimer

- > You might have done this before.
- Others have done it before often well-hidden in a paper on entirely different topic. We are aware of:
 [Qu, Ostrouchov, Samatova, Geist, 2002], [Paul-Dubois-Taine, Amsallem, 2015], [Brands, Mergheim, Steinmann, 2016], [lwen, Ong, 2017].

Disclaimer

- > You might have done this before.
- Others have done it before often well-hidden in a paper on entirely different topic. We are aware of:
 [Qu, Ostrouchov, Samatova, Geist, 2002], [Paul-Dubois-Taine, Amsallem, 2015], [Brands, Mergheim, Steinmann, 2016], [lwen, Ong, 2017].
- Our contributions:
 - 1. Formalization for arbitrary trees of worker nodes.
 - 2. Extensive theoretical error and performance analysis.
 - 3. A recipe for selecting local truncation thresholds.
 - 4. Extensive numerical experiments for different application scenarios.
- Can be trivially extended to low-rank approximation of snapshot matrix by keeping track of right-singular vectors.

HAPOD – Hierarchical Approximate POD

- lnput: Assign snapshot vectors to leaf nodes β_i as input.
- At each node α:
 - **1.** Perform POD of input vectors with given local ℓ^2 -error tolerance $\varepsilon(\alpha)$.
 - 2. Scale POD modes by singular values.
 - 3. Send scaled modes to parent node as input.
- Output: POD modes at root node ρ.

HAPOD – Special Cases

Distributed HAPOD

 Distributed, communication avoiding POD computation.

Incremental HAPOD

 On-the-fly compression of large trajectories.

HAPOD – Some Notation

Trees	
$\mathcal{T} ho_{\mathcal{T}}$	the tree root node
$\mathcal{N}_{\mathcal{T}}(\alpha) \ \mathcal{L}_{\mathcal{T}} \ \mathcal{L}_{\mathcal{T}}$	nodes of ${\mathcal T}$ below or equal node α leafs of ${\mathcal T}$ depth of ${\mathcal T}$

HAPOD

S	snapshot set
$D: S \to \mathcal{L}_T$	snapshot to leaf assignment
$\varepsilon(\alpha)$	error tolerance at α
$ HAPOD[\mathcal{S}, \mathcal{T}, D, \varepsilon](\alpha) $	number of HAPOD modes at $lpha$
$ POD(\mathcal{S}, \varepsilon) $	number of POD modes for error tolerance
P _α	orth. proj. onto HAPOD modes at $lpha$
Ŝα	snapshots at leafs below $lpha$

Theorem (Error bound¹)

$$\sum_{s\in\widetilde{\mathcal{S}}_{\alpha}}\|s-P_{\alpha}(s)\|^{2}\leq \sum_{\gamma\in\mathcal{N}_{\mathcal{T}}(\alpha)}\varepsilon(\gamma)^{2}.$$

¹For special cases in appendix of [Paul-Dubois-Taine, Amsallem, 2015].

Theorem (Error bound¹)

$$\sum_{s\in\widetilde{\mathcal{S}}_{\alpha}}\|s-P_{\alpha}(s)\|^{2}\leq \sum_{\gamma\in\mathcal{N}_{\mathcal{T}}(\alpha)}\varepsilon(\gamma)^{2}.$$

Theorem (Mode bound)

$$\mathsf{HAPOD}[\mathcal{S}, \mathcal{T}, D, \varepsilon](\alpha) \Big| \leq \Big| \mathsf{POD}\Big(\tilde{\mathcal{S}}_{\alpha}, \varepsilon(\alpha) \Big) \Big|.$$

¹For special cases in appendix of [Paul-Dubois-Taine, Amsallem, 2015].

Theorem (Error bound¹)

$$\sum_{s\in \widetilde{\mathcal{S}}_{\alpha}} \|s-P_{\alpha}(s)\|^2 \leq \sum_{\gamma\in \mathcal{N}_{\mathcal{T}}(\alpha)} \varepsilon(\gamma)^2.$$

Theorem (Mode bound)

$$|\mathsf{HAPOD}[\mathcal{S}, \mathcal{T}, D, \varepsilon](\alpha)| \leq |\mathsf{POD}(\tilde{\mathcal{S}}_{\alpha}, \varepsilon(\alpha))|.$$

But how to choose ε in practice?

- Prescribe error tolerance ε^* for final HAPOD modes.
- ▶ Balance quality of HAPOD space (number of additional modes) and computational efficiency ($\omega \in [0, 1]$).
- ▶ Number of input snapshots should be irrelevant for error measure (might be even unknown a priori). Hence, control ℓ^2 -mean error $\frac{1}{|s|} \sum_{s \in S} ||s P_{\rho_T}(s)||^2$.

¹For special cases in appendix of [Paul-Dubois-Taine, Amsallem, 2015].

Theorem (ℓ^2 -mean error and mode bounds)

Choose local POD error tolerances $\varepsilon(\alpha)$ *for* ℓ^2 *-approximation error as:*

$$\varepsilon(\rho_{\mathcal{T}}) := \sqrt{|S|} \cdot \boldsymbol{\omega} \cdot \boldsymbol{\varepsilon}^*, \qquad \varepsilon(\alpha) := \sqrt{\tilde{\mathcal{S}}_{\alpha}} \cdot (L_{\mathcal{T}} - 1)^{-1/2} \cdot \sqrt{1 - \boldsymbol{\omega}^2} \cdot \boldsymbol{\varepsilon}^*.$$

Then:

$$\frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} \|s - P_{\rho_{\mathcal{T}}}(s)\|^2 \leq \boldsymbol{\varepsilon}^{*2} \quad and \quad |\operatorname{HAPOD}[\mathcal{S}, \mathcal{T}, D, \boldsymbol{\varepsilon}]| \leq |\overline{\operatorname{POD}}(\mathcal{S}, \boldsymbol{\omega} \cdot \boldsymbol{\varepsilon}^*)|,$$

where $\overline{\text{POD}}(\mathcal{S}, \varepsilon)$:= $\text{POD}(\mathcal{S}, |\mathcal{S}| \cdot \varepsilon)$.

Moreover:

$$|\operatorname{\mathsf{HAPOD}}[\mathcal{S},\mathcal{T},D,\boldsymbol{\varepsilon}](\alpha)| \leq |\overline{\operatorname{\mathsf{POD}}}(\widetilde{\mathcal{S}}_{\alpha},(L_{\mathcal{T}}-1)^{-1/2}\cdot\sqrt{1-\boldsymbol{\omega}^2}\cdot\boldsymbol{\varepsilon}^*)$$

Incremental HAPOD Example

Compress state trajectory of forced inviscid Burgers equation:

$$\begin{split} \partial_t z(x,t) + z(x,t) &\cdot \partial_x z(x,t) = u(t) \exp(-\frac{1}{20}(x-\frac{1}{2})^2), & (x,t) \in (0,1) \times (0,1), \\ z(x,0) &= 0, & x \in [0,1], \\ z(0,t) &= 0, & t \in [0,1], \end{split}$$

where $u(t) \in [0, 1/5]$ iid. for 0.1% random timesteps, otherwise 0.

- Upwind finite difference scheme on uniform mesh with N = 500 nodes.
- ▶ 10⁴ explicit Euler steps.
- ▶ 100 sub-PODs, $\omega = 0.75$.
- All computations on Raspberry Pi 1B single board computer (512MB RAM).

Incremental HAPOD Example

Distributed HAPOD Example

Distributed computation and POD of empirical cross Gramian:

$$\widehat{W}_{X,ij} := \sum_{m=1}^{M} \int_{0}^{\infty} \langle x_{i}^{m}(t), y_{m}^{j}(t) \rangle \, \mathrm{d}t \in \mathbb{R}^{N \times N}$$

Synthetic' benchmark model² from MORWiki with parameter $\theta = \frac{1}{10}$.

• Partition \widehat{W}_X into 100 slices of size 10.000 × 100.

²See: http://modelreduction.org/index.php/Synthetic_parametric_model

HAPOD – HPC Example

Neutron transport equation

$$\partial_t \psi(t, \mathbf{x}, \mathbf{v}) + \mathbf{v} \cdot \nabla_{\mathbf{x}} \psi(t, \mathbf{x}, \mathbf{v}) + \sigma_t(\mathbf{x}) \psi(t, \mathbf{x}, \mathbf{v}) = \frac{1}{|V|} \sigma_s(\mathbf{x}) \int_V \psi(t, \mathbf{x}, \mathbf{w}) \, \mathrm{d}\mathbf{w} + Q(\mathbf{x})$$

- Moment closure/FV approximation.
- Varying absorbtion and scattering coefficients.
- Distributed snapshot and HAPOD computation on PALMA cluster (125 cores).

HAPOD – HPC Example

ρ α₁ α₂

- HAPOD on compute node *n*. Time steps are split into s slices. Each processor core computes one slice at a time, performs POD and sends resulting modes to main MPI rank on the node.
- Incremental HAPOD is performed on MPI rank 0 with modes collected on each node.

HAPOD – HPC Example

▶ ≈ 39.000 · k^3 doubles of snapshot data (≈ 2.5 terabyte for k = 200).

Localized Reduced Basis Additive Schwarz Methods

- Offline time too large in not-so-many-query scenarios?
- \triangleright \mathcal{P} too large?

- Offline time too large in not-so-many-query scenarios?
- $\triangleright \mathcal{P}$ too large?
- ▶ Only local influence of µ?

- Offline time too large in not-so-many-query scenarios?
- \blacktriangleright *P* too large?
- ▶ Only local influence of µ?
- Local geometry changes?

- Offline time too large in not-so-many-query scenarios?
- $\triangleright \mathcal{P}$ too large?
- ▶ Only local influence of µ?
- Local geometry changes?

RB Method – Caveats

- Offline time too large in not-so-many-query scenarios?
- \blacktriangleright *P* too large?
- ▶ Only local influence of µ?
- Local geometry changes?

Localized RB Methods for Elliptic Problems

Idea of the **LRBMS**: given a finely-resolved grid τ_h

- decompose approximation space into *local* spaces $V_h = \bigoplus_{T \in \mathcal{T}_H} V_h^T$
- ▶ associated with subdomains $T \in \mathcal{T}_H$

independent local discretizations and approximation spaces (CG or DG)

and global SWIPDG coupling [ERN, STEPHANSEN, ZUNINO, 2009]

[Albrecht et al., 2012]

Localized RB Methods for Elliptic Problems

Idea of the **LRBMS**: given a finely-resolved grid τ_h

- ▶ decompose approximation space into *local* spaces $V_h = \bigoplus_{T \in \mathcal{T}_\mu} V_h^T$
- ► associated with subdomains T ∈ T_H independent local discretizations and approximation spaces (CG or DG) and global SWIPDG coupling [ERN, STEPHANSEN, ZUNINO, 2009]
- ▶ build local reduced spaces $V_N^T \subset V_h^T$
- reduced *broken* space $V_N = \bigoplus_{T \in \mathcal{T}_H} V_N^T$

[ALBRECHT ET AL., 2012]

Localized RB Methods for Elliptic Problems

Idea of the **LRBMS**: given a finely-resolved grid τ_h

- decompose approximation space into *local* spaces $V_h = \bigoplus_{T \in \mathcal{T}_H} V_h^T$
- ► associated with subdomains T ∈ T_H independent local discretizations and approximation spaces (CG or DG) and global SWIPDG coupling [ERN, STEPHANSEN, ZUNINO, 2009]
- ▶ build local reduced spaces $V_N^T \subset V_h^T$
- ▶ reduced *broken* space $V_N = \bigoplus_{T \in \mathcal{T}_H} V_N^T$
- larger V_N , but sparse ROM system matrices
- initialization of V_N^T:
 - empty
 - global solution snapshots
 - local training

[ALBRECHT ET AL., 2012]

Offline Initialization of V_N

Training algorithm (adapted from [BUHR, ENGWER, OHLBERGER, R, 2017])

Training algorithm (adapted from [BUHR, ENGWER, OHLBERGER, R, 2017])

for all $T \in \mathcal{T}_H$

- ▶ For every $\mu \in S_{train} \subset \mathcal{P}$:
 - Solve training problem on oversampling subdomain $T^{\delta} \supset T$:

$$a(\varphi_{h,0}(\mu), v_h; \mu) = f(v_h)$$
 in T^{δ}

$$\varphi_{h,0}(\mu) = 0$$
 on ∂T^{0}

Training algorithm (adapted from [BUHR, ENGWER, OHLBERGER, R, 2017])

for all $\overline{T \in \mathcal{T}_H}$

- ▶ For every $\mu \in S_{train} \subset \mathcal{P}$:
 - Solve training problem on oversampling subdomain $T^{\delta} \supset T$:

$$a(\varphi_{h,0}(\mu),v_h;\mu)=f(v_h) \qquad \text{ in } T^\delta$$

$$p_{h,0}(\mu) = 0$$
 on $\partial T^{\dot{c}}$

• For 1 ≤ *k* ≤ *K*, solve training problem:

$$a(\varphi_{h,k}(\boldsymbol{\mu}), \boldsymbol{v}_h; \boldsymbol{\mu}) = 0 \qquad \text{in } T^{\delta}$$

 $\varphi_{h,k}(\mu) = g_k$ on ∂T^{δ}

for K random Dirichlet data functions g_k on ∂T^{δ} .

q

Training algorithm (adapted from [BUHR, ENGWER, OHLBERGER, R, 2017])

for all $T \in \mathcal{T}_H$

- For every $\mu \in S_{train} \subset \mathcal{P}$:
 - Solve training problem on oversampling subdomain $T^{\delta} \supset T$:

$$a(\varphi_{h,0}(\mu),v_h;\mu)=f(v_h) \qquad \text{ in } T^\delta$$

$$p_{h,0}(\mu) = 0$$
 on $\partial T^{\dot{c}}$

• For 1 ≤ k ≤ K, solve training problem:

$$a(\varphi_{h,k}(\mu), v_h; \mu) = 0 \qquad \text{in } T^{\delta}$$

$$\varphi_{h,k}(\mu) = g_k$$
 on $\partial \Gamma^0$

for K random Dirichlet data functions g_k on ∂T^{δ} .

q

Initialize local RB space on T as

$$\boldsymbol{V}_{\boldsymbol{N}}^{T} := \operatorname{span} \bigcup_{\boldsymbol{\mu} \in \mathcal{S}_{train}} \left\{ \left. \boldsymbol{\varphi}_{h,0}(\boldsymbol{\mu}) \right|_{T}, \dots, \left. \boldsymbol{\varphi}_{h,K}(\boldsymbol{\mu}) \right|_{T} \right\}.$$

Training algorithm (adapted from [BUHR, ENGWER, OHLBERGER, R, 2017])

for all $\overline{T \in \mathcal{T}_H}$

- For every $\mu \in S_{train} \subset \mathcal{P}$:
 - Solve training problem on oversampling subdomain $T^{\delta} \supset T$:

$$a(\varphi_{h,0}(\mu),v_h;\mu)=f(v_h) \qquad \text{ in } T^\delta$$

$$\rho_{h,0}(\mu) = 0$$
 on ∂T^{d}

• For 1 ≤ k ≤ K, solve training problem:

$$a(\varphi_{h,k}(\boldsymbol{\mu}), \boldsymbol{v}_h; \boldsymbol{\mu}) = 0 \qquad \text{in } T^{\delta}$$

$$\varphi_{h,k}(\mu) = g_k$$
 on $\partial \Gamma^0$

for K random Dirichlet data functions g_k on ∂T^{δ} .

Initialize local RB space on T as

$$\boldsymbol{V}_{\boldsymbol{N}}^{T} := \operatorname{span} \bigcup_{\boldsymbol{\mu} \in \mathcal{S}_{train}} \left\{ \left. \boldsymbol{\varphi}_{h,0}(\boldsymbol{\mu}) \right|_{T}, \dots, \left. \boldsymbol{\varphi}_{h,K}(\boldsymbol{\mu}) \right|_{T} \right\}.$$

▶ Use greedy algorithm for large *S*_{train}.

Online-Adaptive Enrichment of V_N

Enrichment algorithm

for some $\mu \in \mathcal{P}$

- compute reduced solution $u_N(\mu)$
- estimate error $\eta_{h,N}(\mu)$
- if $\eta_{h,N}(\mu) > \Delta$, start intermediate local enrichment phase:
 - compute local error indicators

Online-Adaptive Enrichment of V_N

Enrichment algorithm

for some $\mu \in \mathcal{P}$

- compute reduced solution $u_N(\mu)$
- estimate error $\eta_{h,N}(\mu)$
- if $\eta_{h,N}(\mu) > \Delta$, start intermediate local enrichment phase:
 - compute local error indicators
 - mark subdomains for enrichment: $\mathcal{X} = \operatorname{mark}(\mathcal{T}_H)$

Online-Adaptive Enrichment of V_N

Enrichment algorithm

for some $\mu \in \mathcal{P}$

- compute reduced solution $u_N(\mu)$
- estimate error $\eta_{h,N}(\mu)$
- if $\eta_{h,N}(\mu) > \Delta$, start intermediate local enrichment phase:
 - · compute local error indicators
 - mark subdomains for enrichment: X = mark(T_H)

φ

• solve corrector problem on oversampling subdomain $T^{\delta} \supset T$ for all $T \in \mathcal{X}$:

$$a(\varphi_h(\mu), v_h; \mu) = f(v_h)$$
 in T^{δ}

$$u_h(\mu) = u_N(\mu)$$
 on ∂T^d

Online-Adaptive Enrichment of V_N

Enrichment algorithm

for some $\mu \in \mathcal{P}$

- compute reduced solution $u_N(\mu)$
- estimate error $\eta_{h,N}(\mu)$
- if $\eta_{h,N}(\mu) > \Delta$, start intermediate local enrichment phase:
 - · compute local error indicators
 - mark subdomains for enrichment: X = mark(T_H)
 - solve corrector problem on oversampling subdomain $T^{\delta} \supset T$ for all $T \in \mathcal{X}$:

 $\varphi_h(\mu) = u_N(\mu)$

$$a(\varphi_h(\mu), v_h; \mu) = f(v_h)$$
 in T^{δ}

on ∂7^δ

• extend local reduced basis for all $T \in \mathcal{X}$:

$$V_N^T := \operatorname{span} V_N^T \cup \{ \varphi_h(\mu) |_T \}$$

Online-Adaptive Enrichment of V_N

Enrichment algorithm

for some $\mu \in \mathcal{P}$

• estimate error $\eta_{h,N}(\mu)$

- compute local error indicators
- mark subdomains for enrichment: X = mark(T_H)
- solve corrector problem on oversampling subdomain $T^{\delta} \supset T$ for all $T \in \mathcal{X}$:

 $\varphi_h(\mu) = u_N(\mu)$

$$a(\varphi_h(\mu), v_h; \mu) = f(v_h)$$
 in T^{δ}

on ∂T^δ

• extend local reduced basis for all $T \in \mathcal{X}$:

$$V_N^T := \operatorname{span} V_N^T \cup \{ \varphi_h(\mu) |_T \}$$

- · update reduced quantities
- compute updated reduced solution $u_N(\mu)$ and $\eta_{h,N}(\mu)$

Online-Adaptive Enrichment of V_N

Enrichment algorithm

for some $\mu \in \mathcal{P}$

on ∂T^{δ}

- compute reduced solution $u_N(\mu)$
- estimate error $\eta_{h,N}(\mu)$
- ▶ if $\eta_{h,N}(\mu)$ > Δ , start intermediate local enrichment phase:
 - compute local error indicators
 - mark subdomains for enrichment: X = mark(T_H)
 - solve corrector problem on oversampling subdomain $T^{\delta} \supset T$ for all $T \in \mathcal{X}$:

$$a(\varphi_h(\mu), v_h; \mu) = f(v_h)$$
 in T^{δ}

 $\varphi_h(\mu) = u_N(\mu)$

• extend local reduced basis for all $T \in \mathcal{X}$:

$$V_N^T := \operatorname{span} V_N^T \cup \{ \varphi_h(\mu) |_T \}$$

- update reduced quantities
- compute updated reduced solution $u_N(\mu)$ and $\eta_{h,N}(\mu)$
- ▶ iterate until $\eta_{h,N}(u_{\mu,N}) \leq \Delta$, return $u_N(\mu)$

dim
$$V_h(T^{\delta})$$

LRBMS with online enrichment: Example SPE10

LRBMS with online enrichment: Example SPE10

Convergence history of LRBMS with initially empty V_N

Distribution of local basis size after online enrichment.

LRBMS initialized with 2 solution snapshots

Related Approaches (incomplete)

- Reduced Basis Element Method [MADAY, RONQUIST, 2002]
- Port-Reduced Static Condensation Reduced Basis Element Method [EFTANG, PATERA, 2013]
- Generalized Multiscale Finite Element Methods [EFENDIEV, GALVIS, HOU 2013]
- Reduced Basis Hybrid Method [IAPICHINO, QUARTERONI, ROZZA, VOLKWEIN, 2014]
- ArbiLoMod, a Simulation Technique Designed for Arbitrary Local Modifications [BUHR, ENGWER, OHLBERGER, R, 2017]

Questions

- Where should be enriched?
- How fast will enrichment converge?
- ▶ Which training method to combine with enrichment?
- ▶ How to balance training and enrichment?

Goal: Minimize total number of local V_h-dependent computations/communication events.

Connections with Domain Decomposition Methods

• Local enrichment function $\varphi_h(\mu)|_{\tau}$

$$\begin{split} a(\varphi_h(\mu), v_h; \mu) &= f(v_h) & \text{ in } T^{\delta} \\ \varphi_h(\mu) &= u_N(\mu) & \text{ on } \partial T^{\delta} \end{split}$$

corresponds to subdomain solution in Restricted Additive Schwarz (RAS) method.

Connections with Domain Decomposition Methods

• Local enrichment function $\varphi_h(\mu)|_{\tau}$

$a(\varphi_h(\mu), v_h; \mu) = f(v_h)$	in Τ ^δ
$\varphi_h(\mu) = u_N(\mu)$	on ∂T^{δ}

corresponds to subdomain solution in Restricted Additive Schwarz (RAS) method.

In particular (for minimal overlap):

enrichment + Galerkin projection onto V_N

≚

locally(!) adaptive [SPILLANE, 2016] RAS multi-preconditioned CG [BRIDSON, GREIF, 2006]

Connections with Domain Decomposition Methods

▶ Local enrichment function $\varphi_h(\mu)|_{\tau}$

$a(\varphi_h(\boldsymbol{\mu}), \boldsymbol{v}_h; \boldsymbol{\mu}) = f(\boldsymbol{v}_h)$	in T ^o
$\varphi_h(\boldsymbol{\mu}) = u_N(\boldsymbol{\mu})$	on ∂T^{δ}

corresponds to subdomain solution in Restricted Additive Schwarz (RAS) method.

In particular (for minimal overlap):

enrichment + Galerkin projection onto V_N

≚

locally(!) adaptive [SPILLANE, 2016] RAS multi-preconditioned CG [BRIDSON, GREIF, 2006]

Moreover:

offline training of V_N

\cong construction of coarse space

e.g. DtN [NATAF ET AL., 2011], GenEO [Spillane et al., 2014], SHEM [GANDER, LONELAND, RAHMAN, 2015]

A Localized RB Additive Schwarz Method

1. Choose overlapping DD $T \in \mathcal{T}_H$ and define local FEM spaces $V_h^T \subset V_h$ as usual.

- **1.** Choose overlapping DD $T \in \mathcal{T}_H$ and define local FEM spaces $V_h^T \subset V_h$ as usual.
- 2. Use RB methods to construct coarse space V_N^0 for which abstract Schwarz framework guarantees robustness of AS+CG iterations for every μ .

- **1.** Choose overlapping DD $T \in \mathcal{T}_H$ and define local FEM spaces $V_h^T \subset V_h$ as usual.
- 2. Use RB methods to construct coarse space V_N^0 for which abstract Schwarz framework guarantees robustness of AS+CG iterations for every μ .
- 3. In each iteration compute solution $u_N(\mu)$ via Galerkin projection onto $V_N^0 \oplus V_N^T$.

- **1.** Choose overlapping DD $T \in \mathcal{T}_H$ and define local FEM spaces $V_h^T \subset V_h$ as usual.
- 2. Use RB methods to construct coarse space V_N^0 for which abstract Schwarz framework guarantees robustness of AS+CG iterations for every μ .
- 3. In each iteration compute solution $u_N(\mu)$ via Galerkin projection onto $V_N^0 \oplus V_N^T$.
- 4. Use RB estimator $\eta_{h,N}(u_N(\mu);\mu)$ to locally enrich V_N^T whith AS corrections where needed:

$$\eta_{h,N}(u_N(\boldsymbol{\mu});\boldsymbol{\mu})^2 := C(\boldsymbol{\mu})^2 \sum_{T \in \mathcal{T}_H} \left(\sup_{v_h \in V_h^T} \frac{f(v_h) - a(u_N(\boldsymbol{\mu}), v_h; \boldsymbol{\mu})}{\|v_h\|} \right)^2$$

where, with C_{stab} the stability constant of decomposition $V_h = V_N^0 + \sum_{T \in \mathcal{T}_{\mu}} V_h^T$:

$$C(\mu) \leq C_{inf-sup}(\mu) \cdot C_{stab}$$

Simple Experiment (without μ , local non-parametric changes)

Solution (contrast: 10⁵)

- 10 × 10 subdomains
- 4 elements overlap
- 6 GenEO basis functions per domain

Number of local solutions (max=11)

- enrich where $||\mathcal{R}|_{\tau}|| \ge 0.5/|\mathcal{T}_{H}| \cdot ||\mathcal{R}||$
- update V_N^0 , keep localized soution in V_N^T for next problem

Simple Experiment (without µ, local non-parametric changes)

Solution (contrast: 10⁵)

- 10 × 10 subdomains
- 4 elements overlap
- 6 GenEO basis functions per domain

- enrich where $||\mathcal{R}|_{T}|| \ge 0.5/|\mathcal{T}_{H}| \cdot ||\mathcal{R}||$
- update V_N^0 , keep localized soution in V_N^T for next problem

Simple Experiment (without μ , local non-parametric changes)

Solution (contrast: 10⁵)

- 10 × 10 subdomains
- 4 elements overlap
- 6 GenEO basis functions per domain

- enrich where $||\mathcal{R}|_{T}|| \ge 0.5/|\mathcal{T}_{H}| \cdot ||\mathcal{R}||$
- update V_N^0 , keep localized soution in V_N^T for next problem

Simple Experiment (without μ , local non-parametric changes)

Solution (contrast: 10⁵)

- 10 × 10 subdomains
- 4 elements overlap
- 6 GenEO basis functions per domain

- enrich where $||\mathcal{R}|_{\tau}|| \ge 0.5/|\mathcal{T}_{H}| \cdot ||\mathcal{R}||$
- update V_N^0 , keep localized soution in V_N^T for next problem

Simple Experiment (without μ , local non-parametric changes)

Solution (contrast: 10⁵)

- 10 × 10 subdomains
- 4 elements overlap
- 6 GenEO basis functions per domain

- enrich where $||\mathcal{R}|_{T}|| \ge 0.5/|\mathcal{T}_{H}| \cdot ||\mathcal{R}||$
- update V_N^0 , keep localized soution in V_N^T for next problem

Some Remarks

- Communication of V_h -dependet data only with neighbors of enriched subdomains.
- ▶ localized enrichment ≅ flexible multi-preconditioned projected CG with full orthogonalization.
- More iterations but less work.

	iterations	local solutions
PCG	118	11800
PCG + RB solution as initial value	84	8400
enrich localized (keep solutions in V_N^T)	38	1803
enrich everywhere (keep solutions in V_N^T)	36	3600
enrich localized (keep updates in V_N^T)	33	1718
enrich everywhere (keep updates in V_N^T)	29	2900

Two-Scale Reduced Basis Localized Orthogonal Decomposition

Multiscale Model Problem

For a fixed parameter $\mu \in \mathcal{P}$ find u_{μ} s.t.

- $\begin{aligned} &-\nabla\cdot A_{\mu}\nabla u_{\mu}=f,\qquad &\text{ in }\Omega,\\ &u_{\mu}=0,\qquad &\text{ on }\partial\Omega, \end{aligned}$
- Parameter space $\mathcal{P} \subset \mathbb{R}^m$, $m \in \mathbb{N}$
- ► Bounded Lipschitz domain $\Omega \subset \mathbb{R}^d$, Hilbert space V.
- ► $f \in L^2(\Omega)$, bilinear form a_μ and functional $F \in V'$.
- ► Homogeneous Dirichlet boundary conditions.
- ► $A_{\mu} \in L^{\infty}(\Omega, \mathbb{R}^{d \times d})$ symmetric and uniformly elliptic: $0 < \alpha \leq A_{\mu} \leq \beta < \infty$.

or in weak form

• Possibly high variations in A_{μ} (e.g. due to soil composition).

 $a_{\mu}(u_{\mu}, v) = F(v), \quad \forall v \in V$

Multiscale Orthogonal Decomposition

- ▶ Fine mesh \mathcal{T}_h and coarse mesh \mathcal{T}_H with maximal element diameter $H \gg h$, FE spaces V_h and $V_H := V_h \cap \mathcal{P}_1(\mathcal{T}_H)$.
- ▶ Interpolation operator $\mathcal{I}_H: V_h \rightarrow V_H$ (e.g. L^2 -projection).
- Finescale space V^{f} := ker(\mathcal{I}_{H}) = { $v \in V_{h} | \mathcal{I}_{H}(v) = 0$ }, decomposition $V = V_{H} + V^{f}$.

▶ Finescale correction Q_{μ} : $V_{H} \rightarrow V^{f}$ defined by

 $a_{\mu}(\mathcal{Q}_{\mu}\mathbf{v}_{H},\mathbf{v}^{\mathrm{f}}) = a_{\mu}(\mathbf{v}_{H},\mathbf{v}^{\mathrm{f}}), \qquad \forall \, \mathbf{v}^{\mathrm{f}} \in \mathbf{V}^{\mathrm{f}}.$

- Multiscale space $V_{\mu}^{\text{ms}} := (I Q_{\mu})V_{H}$.
- *a*-orthogonal decomposition $V_h = V_{\mu}^{ms} \oplus_a V^{f}$.
Localization

- ► Truncated finescale space $V^{f}(U_{k}(T)) := \{ v \in V^{f} | v |_{O(U_{k}(T))} = 0 \}.$
- For each $T \in \mathcal{T}_H$, define localized correctors $\mathcal{Q}_k^T \mathbf{v}_H \in \mathbf{V}^{\mathsf{f}}(U_k(T))$

$$a_{U_k(T)}(\mathcal{Q}_k^T \mathbf{v}_H, \mathbf{v}^f) = a_T(\mathbf{v}, \mathbf{v}^f), \qquad \forall \, \mathbf{v}^f \in \mathbf{V}^f(U_k(T)),$$

• Localized corrector operator
$$Q_k = \sum_{T \in \mathcal{T}_H} Q_k^T$$

► LOD space
$$V_k^{\text{ms}} := \{\lambda_x - \mathcal{Q}_k \lambda_x \mid x \in \mathcal{N}_H\}$$

Lemma [Målqvist/Peterseim '14]

The correctors Q decay exponentially, e.g.

$$\left\| \mathcal{Q} - \mathcal{Q}_k \right\| \leq C_{\mathcal{Q}} k^{d/2} \, \theta^k \left\| \mathcal{Q} \right\|,$$

where $0 < \theta < 1$ and C_0 depends on α/β but not on the variations of A_{μ} .

MOR for Large Systems

$$\left\| \mathcal{Q} - \mathcal{Q}_k \right\| \le C_{\mathcal{Q}} k^{a/2} \,\theta^k \left\| \mathcal{Q} \right\|$$

Petrov Galerkin Formulation [Elfverson/Ginting/Henning'15]

Petrov-Galerkin LOD method

Find $u_H^{\text{ms}} \in V_k^{\text{ms}}$ such that $a(u_k^{\text{ms}}, v) = F(v), \quad \forall v \in V_H.$

- No interaction between correctors required.
- Reduced memory consumption.
- Still similar convergence results.

Convergence theorem

$$\|u_{h,\mu} - u_{H,k,\mu}\|_{L^2} + \|u_{h,\mu} - u_{H,k,\mu}^{ms}\|_1 \lesssim (H + \theta^k k^{d/2}) \|f\|_{L^2(\Omega)}$$

Figure: Energy error $|||u_{\varepsilon} - u_{h,k}^{ms}|||$ for the PG–LOD and $|||u_{\varepsilon} - u_{h}|||$ for the FEM for 1d model problem from **[Peterseim'16]**.

Two-Scale Formulation of the LOD

Two-Scale space

$$\begin{split} \mathfrak{V} &:= V_H \oplus V_{h,k,T_1}^{\mathsf{f}} \oplus \cdots \oplus V_{h,k,T_{|\mathcal{T}_H|}}^{\mathsf{f}} \\ & \|\|\boldsymbol{u}\|\|_1^2 := \|\boldsymbol{u}_H\|_1^2 + \sum_{T \in \mathcal{T}_H} \|\boldsymbol{u}_T^{\mathsf{f}}\|_1^2 \end{split}$$

Two-Scale Formulation of the LOD

Two-Scale space

$$\begin{split} \mathfrak{V} &:= V_H \oplus V_{h,k,T_1}^{\mathsf{f}} \oplus \cdots \oplus V_{h,k,T_{|\mathcal{T}_H|}}^{\mathsf{f}} \\ & \|\|\mathbf{u}\|\|_1^2 := \|u_H\|_1^2 + \sum_{T \in \mathcal{T}_H} \|u_T^{\mathsf{f}}\|_1^2 \end{split}$$

Two-scale bilinear form

$$\mathfrak{B}_{\mu}(\mathfrak{u},\mathfrak{v}):=a_{\mu}(u_{H}-\sum_{T\in\mathcal{T}_{H}}u_{T}^{\mathsf{f}},v_{H})+\rho^{1/2}\sum_{T\in\mathcal{T}_{H}}a_{\mu}(u_{T}^{\mathsf{f}},v_{T}^{\mathsf{f}})-a_{\mu}^{T}(u_{H},v_{T}^{\mathsf{f}}),$$

Two-Scale Formulation of the LOD

Two-Scale space

$$\begin{split} \mathfrak{V} &:= V_H \oplus V_{h,k,T_1}^{\mathsf{f}} \oplus \cdots \oplus V_{h,k,T_{|\mathcal{T}_H|}}^{\mathsf{f}} \\ & \|\|\mathbf{u}\|\|_1^2 &:= \|u_H\|_1^2 + \sum_{T \in \mathcal{T}_H} \|u_T^{\mathsf{f}}\|_1^2 \end{split}$$

Two-scale bilinear form

$$\mathfrak{B}_{\mu}(\mathfrak{u},\mathfrak{v}):=a_{\mu}(u_{H}-\sum_{T\in\mathcal{T}_{H}}u_{T}^{\mathsf{f}},v_{H})+\rho^{1/2}\sum_{T\in\mathcal{T}_{H}}a_{\mu}(u_{T}^{\mathsf{f}},v_{T}^{\mathsf{f}})-a_{\mu}^{T}(u_{H},v_{T}^{\mathsf{f}}),$$

Proposition

The two-scale solution $\mathfrak{u}_{\mu} \in \mathfrak{V}$ of

$$\mathfrak{B}_{\mu}(\mathfrak{u}_{\mu},\mathfrak{v})=F(v_{H})\qquad\forall\mathfrak{v}\in\mathcal{V}.$$

is uniquely determined and given by $\mathfrak{u}_{\mu} = \Big[u_{H,k,\mu}, \mathcal{Q}_{k,\mu}^{\mathcal{T}_1}(u_{H,k,\mu}), \dots, \mathcal{Q}_{k,\mu}^{\mathcal{T}_{|\mathcal{T}_H|}}(u_{H,k,\mu}) \Big].$

Stephan Rave (stephan.rave@wwu.de)

Two-scale Stability Estimate

Proposition

Let $\rho := C_{ovl} \cdot \kappa$, then \mathfrak{B}_{μ} is $\|\| \cdot \||_{a,\mu} \cdot \|| \cdot \||_1$ -continuous and inf-sup stable with the following bounds on the respective constants:

$$\sup_{0\neq u\in\mathfrak{V}}\sup_{0\neq v\in\mathfrak{V}}\frac{\mathfrak{B}_{\mu}(\mathfrak{u},\mathfrak{v})}{\|\|u\|\|_{a,\mu}\cdot\|\|v\|\|_{1}}\leq\beta^{1/2}\quad\text{and}\quad\inf_{0\neq u\in\mathfrak{V}}\sup_{0\neq v\in\mathfrak{V}}\frac{\mathfrak{B}_{\mu}(\mathfrak{u},\mathfrak{v})}{\|\|u\|\|_{a,\mu}\cdot\|\|v\|\|_{1}}\geq\gamma_{k}/\sqrt{5}.$$

where

$$\|\|\mathbf{u}\|\|_{a,\mu}^2 := \|u_H - \sum_{T \in \mathcal{T}_H} u_T^f\|_{a,\mu}^2 + \rho \sum_{T \in \mathcal{T}_H} \|\mathcal{Q}_{k,\mu}^T(u_H) - u_T^f\|_{a,\mu}^2$$

Error Bound

$$\begin{split} & \left\{ \| u_{H,k,\mu} - u_{H} \|_{1}^{2} + \rho \sum_{T \in \mathcal{T}_{H}} \| \mathcal{Q}_{k,\mu}^{T}(u_{H}) - u_{T}^{f} \|_{1}^{2} \right\}^{1/2} \leq \sqrt{5} C_{\mathcal{I}_{H}} \alpha^{-1/2} \gamma_{k}^{-1} \sup_{\mathfrak{v} \in \mathfrak{V}} \frac{\mathfrak{F}(\mathfrak{v}) - \mathfrak{B}_{\mu}(\mathfrak{u},\mathfrak{v})}{\| \mathfrak{v} \|_{1}} \\ & \leq \sqrt{15} C_{\mathcal{I}_{H}} (C_{\mathsf{ovl}} + 1)^{1/2} \kappa^{1/2} \gamma_{k}^{-1} \beta^{1/2} \Big\{ \| u_{H,k,\mu} - u_{H} \|_{1}^{2} + \rho \sum_{T \in \mathcal{T}_{H}} \| \mathcal{Q}_{k,\mu}^{T}(u_{H}) - u_{T}^{f} \|_{1}^{2} \Big\}^{1/2}. \end{split}$$

Stephan Rave (stephan.rave@wwu.de)

Two-Scale Reduced Basis Approach

Stage 1 (for each $T \in \mathcal{T}_H$)

ROM:

$$a_{\mu}(\mathcal{Q}_{k,\mu}^{T,rb}(v_{H}),v_{T}^{\mathsf{f}})=a_{\mu}^{T}(v_{H},v_{T}^{\mathsf{f}}), \qquad \forall v_{T}^{\mathsf{f}}\in V_{k,T}^{\mathsf{f},rb}.$$

Output:

$$\mathbb{K}^{rb}_{\mu} := \sum_{T \in \mathcal{T}_{\mu}} \mathbb{K}^{rb}_{T,\mu}, \quad \left(\mathbb{K}^{rb}_{T,\mu}\right)_{ji} := (A_{\mu}(x_T \nabla - \nabla \mathcal{Q}^{T,rb}_{k,\mu})\phi_i, \nabla \phi_j)_{U_k(T)}$$

Error bound:

$$\|\mathcal{Q}_{k,\mu}^T(v_H) - \mathcal{Q}_{k,\mu}^{T,rb}(v_H)\|_{a,\mu} \leq \alpha^{-1/2} \sup_{v_t^f \in V_{h,k,T}^f} \frac{a_\mu^T(v_H, v_T^f) - a_\mu(\mathcal{Q}_{k,\mu}^{T,rb}(v_H), v_T^f)}{\|v_T^f\|_1}$$

Basis generation: weak greedy algorithm

Two-Scale Reduced Basis Approach

Stage 2

ROM:

$$\mathfrak{u}_{\boldsymbol{\mu}}^{rb} := \mathop{\arg\min}_{\mathfrak{u}\in\mathfrak{V}^{rb}} \sup_{\mathfrak{v}\in\mathfrak{V}} \frac{\mathfrak{F}(\mathfrak{v}) - \mathfrak{B}_{\boldsymbol{\mu}}(\mathfrak{u},\mathfrak{v})}{\|\|\mathfrak{v}\|\|_{1}}.$$

Error bound:

$$\left\{\|u_{H,k,\mu}-u_{H}\|_{1}^{2}+\rho\sum_{T\in\mathcal{T}_{H}}\|\mathcal{Q}_{k,\mu}^{T}(u_{H})-u_{T}^{f}\|_{1}^{2}\right\}^{1/2}\leq\sqrt{5}C_{\mathcal{I}_{H}}\alpha^{-1/2}\gamma_{k}^{-1}\sup_{\mathfrak{v}\in\mathfrak{V}}\frac{\mathfrak{F}(\mathfrak{v})-\mathfrak{B}_{\mu}(\mathfrak{u},\mathfrak{v})}{\|\|\mathfrak{v}\|\|_{1}}$$

Basis generation: weak greedy algorithm; snapshots computed with:

$$\mathbb{K}_{\mu}^{rb} \cdot \underline{u}_{H,k,\mu} = \mathbb{F}$$

$$\mathfrak{u}_{\mu} := [u_{H,k,\mu}, \mathcal{Q}_{k,\mu^*}^{T_1,rb}(u_{H,k,\mu}), \dots, \mathcal{Q}_{k,\mu^*}^{T,rb}(u_{H,k,\mu})]$$

Numerical Experiment

- ▶ \mathcal{P} : = [1, 5]³
- ▶ $|\mathcal{T}_h| = 67, 108, 864$
- ▶ $|\mathcal{T}_{H}| = 4,096$
- 1,024 processes
- **κ** ≈ 16
- Stage 2 greedy until Stage 1 error dominates.

tolerance ε_1	10	-1	10 ⁻²		
method	RBLOD	TSRBLOD	RBLOD	TSRBLOD	
$t_1^{\text{offline}}(T)$	4994	4052	10393	11241	
t ₁ offline	26008	20382	48379	53279	
t ₂ offline	-	5754	-	10385	
t ^{offline}	26008	26136 83403		63665	
cum. size St.1	147473	94417	278528	193289	
av. size St.1	9.00	23.05 17.00		47.19	
size St.2	-	10	-	18	
t ^{LOD}	484	.58	493.06		
t ^{online}	3.93	0.0006	4.62	0.001	
speed-up w.r.t LOD	123.15	8.32e5	106.79	4.93e5	
e ^{H1} ,rel	6.40e-4	1.99e-3	2.56e-5	2.04e-5	
e ^{L²,rel}	1.74e-4	1.95e-3	1.86e-6	8.86e-6	

Model Order Reduction with pyMOR

pyMOR main developers

Linus Balicki

René Fritze

Petar Mlinarić

Stephan Rave

Felix Schindler

pyMOR - Model Order Reduction with Python

Goal

One library for algorithm development and large-scale applications.

- Started late 2012, 20k lines of Python code, 6k single commits.
- BSD-licensed, fork us on GitHub!
- Quick prototyping with Python 3.
- ▶ Comes with small NumPy/SciPy-based discretization toolkit for getting started quickly.
- Seamless integration with high-performance PDE solvers.

Generic Algorithms and Interfaces for MOR

- VectorArray, Operator, Model classes represent objects in solver's memory.
- ▶ No communication of high-dimensional data.
- ▶ Tight, low-level integration with external solver.
- No MOR-specific code in solver.

Implemented Algorithms

- ▶ Gram-Schmidt, POD, HAPOD.
- Greedy basis generation with different extension algorithms.
- Automatic (Petrov-)Galerkin projection of arbitrarily nested affine combinations of operators.
- ▶ Interpolation of arbitrary (nonlinear) operators, EI-Greedy, DEIM.
- A posteriori error estimation.
- System theory methods: balanced truncation, IRKA, ...
- Iterative linear solvers, eigenvalue computation, Newton algorithm, time-stepping algorithms.
- ▶ New! Non-intrusive MOR using artificial neural networks.

Feature Tour: FEniCS Support

- Directly interfaces FEniCS LA backend, no copies needed.
- Use same MOR code as with builtin discretization toolkit!
- Builtin support for empirical interpolation.
- Thermal block demo: 30 SLOC FEniCS + 15 SLOC wrapping for pyMOR.
- ▶ Easily increase FEM order, etc.

Figure: 3x3 thermal block problem top: red. solution, bottom: red. error left: pyMOR solver, right: FEniCS solver

Feature Tour: Empirical Interpolation with FEniCS

Nonlinear Poisson problem from FEniCS docs (for $\mu = 1$)

$-\nabla \cdot \left\{ (1 + \mu u^2(x, y)) \cdot \nabla u(x, y) \right\} = x \cdot \sin(y)$	for <i>x</i> , <i>y</i> ∈ (0, 1)
u(x,y)=1	for $x = 1$
$\nabla u(x,y) \cdot n = 0$	otherwise

- mesh = UnitSquareMesh(100, 100); V = FunctionSpace(mesh, "CG", 2).
- Time for solution: \approx 3.4 s.
- ▶ $\mu \in [1, 1000]$, RB size: 2, EI DOFs: 5, rel. error ≈ 10^{-6} .

- Local operator evaluation implemented using dolfin.SubMesh.
- ▶ Speedup: 80.
- See fenics_nonlinear demo.

Feature Tour: deal.II Support

- pymor-deall.II support module https://github.com/pymor/pymor-deal.II
- Python bindings for
 - dealii::Vector,
 - dealii::SparseMatrix.
- pyMOR wrapper classes.
- MOR demo for linear elasticity example from tutorial.

Figure: top: Solutions for $(\mu, \lambda) = (1, 1)$ and $(\mu, \lambda) = (1, 10)$, bottom: red. errs. and max./min. estimator effectivities vs. dim V_N .

Feature Tour: NGSolve Support

- Based on NGS-Py Python bindings for NGSolve.
- pyMOR wrappers for vector and matrix classes.
- 3d thermal block demo included.
- Joint work with Christoph Lehrenfeld.

Figure: 3d thermal block problem top: full/red. sol., bottom: err. for worst approx. μ and max. red. error vs. dim V_N .

Feature Tour: MOR for an NGSolve Free Boundary Problem [Lehrenfeld, R, 19]

Osmotic cell swelling model [Lippoth, Prokert, 2012]

Given $\Omega(0) \subset \mathbb{R}^d$, $u(0) \in H^1(\Omega(0))$ and coefficients u_{ext} , α , β , $\gamma \in \mathbb{R}$, the **concentration** u(t) and **normal velocity** w_{Γ} of $\Gamma(t)$ is given by:

$$\begin{split} & \partial_t u - \alpha \Delta u = 0 & & \text{in } \Omega(t), \\ & w_{\Gamma} u + \alpha \partial_{\mathbf{n}} u = 0 & & \text{on } \Gamma(t), \\ & -\beta \kappa + \gamma (u - u_{\text{ext}}) = w_{\Gamma} & & \text{on } \Gamma(t). \end{split}$$

- \blacktriangleright ALE formulation \rightarrow diffusion coeffs nonlinear in deformation field Ψ
- Empirical interpolation w.r.t. Ψ.

Feature Tour: Tools for interfacing MPI parallel solvers

- Automatically make sequential bindings MPI aware.
- Reduce HPC-Cluster models without thinking about MPI at all.
- Interactively debug MPI parallel solvers.

Figure: FV solution of 3D Burgers-type equation (27.6 · 10⁶ DOFs, 600 time steps) using

Table: Time (s) needed for solution using DUNE / DUNE with pyMOR timestepping.

MPI ranks	1	2	3	6	12	24	48	96	192
DUNE pyMOR	17076 17742	8519 8904	5727 6014	2969 3139	1525 1606	775 816	395 418	202 213	107 120
overhead	3.9%	4.5%	5.0%	5.7%	5.3%	5.3%	6.0%	5.4%	11.8%

Feature Tour: System-Theoretic MOR with FEniCS

- MPI distributed heatsink model with FEniCS
- Heat conduction with Robin boundary
- Input: heat flow at base
- Output: temperature at base
- MOR: Balanced truncation and Padé approximation

System-Theoretic MOR with FEniCS – Implementation

Model assembly with FEniCS

```
def discretize():
       domain = ...
       mesh = ms.generate_mesh(domain, RESOLUTION)
       subdomain data = ...
4
       V = df.FunctionSpace(mesh, 'P', 1)
       u = df.TrialFunction(V)
       v = df.TestFunction(V)
8
       ds = df.Measure('ds', domain=mesh, subdomain_data=boundary_markers)
9
       A = df.assemble(- df.Constant(100.) * df.inner(df.grad(u), df.grad(v)) * df.dx
       - df.Constant(0,1) * u * v * ds(1))
       B = df.assemble(df.Constant(1000.) * v * ds(2))
13
       E = df.assemble(u * v * df.dx)
14
```


System-Theoretic MOR with FEniCS – Implementation

```
pyMOR wrapping
```

```
1 # def discretize (cont.)
2 # monkey patch apply_inverse_adjoint, assuming symmetriy
3 FenicsMatrixOperator.apply_inverse_adjoint = FenicsMatrixOperator.apply_inverse
4 
5 space = FenicsVectorSpace(V)
6 A = FenicsMatrixOperator(A, V, V)
7 B = VectorOperator(space.make_array([B]))
8 C = B.H
9 E = FenicsMatrixOperator(E, V, V)
10 fom = LTIModel(A, B, C, None, E)
11 return fom
12 return fom
13 return fom
14 return fom
15 return f
```


System-Theoretic MOR with FEniCS – Implementation

pyMOR wrapping

```
# def discretize (cont.)
    # monkey patch apply_inverse_adjoint, assuming symmetriy
FenicsMatrixOperator.apply_inverse_adjoint = FenicsMatrixOperator.apply_inverse
space = FenicsVectorSpace(V)
A = FenicsMatrixOperator(A, V, V)
B = VectorOperator(space.make_array([B]))
C = B.H
E = FenicsMatrixOperator(E, V, V)
fom = LTIModel(A, B, C, None, E)
return fom
```

MPI wrapping

```
1 from pymor.tools import mpi
2 if mpi.parallel:
3 from pymor.models.mpi import mpi_wrap_model
4 fom = mpi_wrap_model(discretize, use_with=True)
6 else:
6 fom = discretize()
```


System-Theoretic MOR with FEniCS – Implementation

Balanced Truncation

```
1 reductor = BTReductor(fom)
2 bt_rom = reductor.reduce(10)
3 
4 bt_rom.mag_plot(np.logspace(-2, 4, 100), Hz=True)
```

Padé approximation

```
1 k = 10
2 V = arnoldi(fom.A, fom.E, fom.B, [0] * r)
3 W = arnoldi(fom.A, fom.E, fom.C, [0] * r, trans=True)
4 pade_rom = LTIPGReductor(fom, W, V, False).reduce()
5 
6 pade_rom.mag_plot(np.logspace(-2, 4, 100), Hz=True)
```


Thank you for your attention!

Feinauer, Hein, R, Schmidt, Westhoff, et al., *MULTIBAT: Unified Workflow for fast electrochemical 3D simulations of lithium-ion cells combining virtual stochastic microstructures, electrochemical degradation models and model order reduction*, J. Comp. Sci. 31, 2019.

Himpe, Leibner, R, *Hierarchical Approximate Proper Orthogonal Decomposition*, SISC 40(5), 2018.

Buhr, Engwer, Ohlberger, R, *ArbiLoMod, a Simulation Technique Designed for Arbitrary Local Modifications*, SISC, 39(4), 2017.

Gander, R, Localized Reduced Basis Additive Schwarz Methods, arXiv 2103.10884, 2021.

Milk, R, Schindler, *pyMOR – Generic Algorithms and Interfaces for Model Order Reduction*, SISC 38(5), 2016. pip3 install pymor