

Model Reduction for Transport Problems via Nonlinear State Space Transformation

Christoph Lehrenfeld, Mario Ohlberger, Stephan Rave

USNCCM14

Montréal July 19, 2017

Outline

 Reduced Basis Methods for Nonlinear Evolution Equations: Trouble with Advection Dominated Problems.

 The FrozenRB scheme. (Joint work with Mario Ohlberger.)

 Nonlinear MOR via Lagrangian Formulation. (Joint work in progress with Christoph Lehrenfeld.)

Reduced Basis Approximation of Nonlinear Evolution Equations

Full order problem

Find $u_{\mu}(t) \in V_h$ such that

$$\partial_t u_\mu(t) + \mathcal{L}_\mu(u_\mu(t)) = 0, \quad u_\mu(0) = u_0,$$

where $\mathcal{L}_{\mu}: \mathcal{P} \times V_h \rightarrow V_h$ is a parametric (nonlinear) Finite Volume operator.

Reduced order problem

For given $V_N \subset V_h$, find $\tilde{u}_\mu(t) \in V_N$ such that

$$\partial_t \tilde{u}_\mu(t) + \mathcal{P}_N(\mathcal{L}_\mu(\tilde{u}_{\mu,N}(t))) = 0, \quad \tilde{u}_\mu(0) = \mathcal{P}_N(u_0),$$

where $P_N : V_h \rightarrow V_N$ is orthogonal projection onto V_N .

Empirical Operator Interpolation (a.k.a. DEIM, EIM)

Problem: Still expensive to evaluate

 $P_N \circ \mathcal{L}_\mu : V_N \longrightarrow V_h \longrightarrow V_N.$

Solution:

Use locality of finite volume operators:

to evaluate *M* DOFs of $\mathcal{L}_{\mu}(u)$ we need $M' \leq C \cdot M$ DOFs of *u*.

Approximate

$$\mathcal{L}_{\mu} \approx \mathcal{I}_{M}[\mathcal{L}_{\mu}] := I_{M} \circ \mathcal{L}_{M,\mu} \circ R_{M'},$$

where

 $\begin{array}{ll} R_{M'} \colon V_h \to \mathbb{R}^{M'} & \text{restriction to } M' \text{ DOFs needed for evaluation} \\ \mathcal{L}_{M,\mu} \colon \mathbb{R}^{M'} \to \mathbb{R}^{M} & \mathcal{L}_{\mu} \text{ restricted to } M \text{ interpolation DOFs} \\ I_M \colon \mathbb{R}^M \to V_h & \text{linear combination with interpolation basis} \end{array}$

 Use greedy algorithm to determine DOFs and interpolation basis from operator evaluations on appropriate solution trajectories. Westfälische Wilhelms-Universität Münster

Full Reduction

Reduced order problem (with EI)

Find $\tilde{u}_{\mu}(t) \in V_{N}$ such that

 $\partial_t \tilde{u}_{\mu}(t) + \big\{ (\boldsymbol{P}_{\boldsymbol{N}} \circ \boldsymbol{I}_{\boldsymbol{M}}) \circ \mathcal{L}_{\boldsymbol{M},\mu} \circ \boldsymbol{R}_{\boldsymbol{M}'} \big\} (\tilde{u}_{\mu,\boldsymbol{N}}(t)) = 0, \quad \tilde{u}_{\mu}(0) = \boldsymbol{P}_{\boldsymbol{N}}(u_0).$

Offline/Online decomposition

- Precompute the linear operators $P_N \circ I_M$ and $R_{M'}$ w.r.t. basis of V_N .
- Effort to evaluate $(P_N \circ I_M) \circ \mathcal{L}_{M,\mu} \circ R_{M'}$ w.r.t. this basis:

 $\mathcal{O}(MN) + \mathcal{O}(M) + \mathcal{O}(MN).$

• Use POD-GREEDY algorithm for the construction of V_N .

Trouble with Advection Dominated Problems

Typically slow decay of Kolmogorov N-widths d_N of the solution manifold, but RB will only work well for rapid decay!

$$d_N := \inf_{\substack{V_N \subseteq V_h \\ \dim V_N \leq N}} \sup_{\substack{\mu \in \mathcal{P} \\ t \in [0,T]}} \inf_{v \in V_N} \|u(t) - v\|.$$

MOR via Nonlinear State Space Transformation 7

The FrozenRB Scheme

Trouble with Advection Dominated Problems

Typically slow decay of Kolmogorov N-widths d_N of the solution manifold, but RB will only work well for rapid decay!

$$d_N := \inf_{\substack{V_N \subseteq V_h \\ \dim V_N \leq N}} \sup_{\substack{\mu \in \mathcal{P} \\ t \in [0,T]}} \inf_{v \in V_N} \|u(t) - v\|.$$

Trouble with Advection Dominated Problems

Typically slow decay of Kolmogorov N-widths d_N of the solution manifold, but RB will only work well for rapid decay!

$$d_N := \inf_{\substack{V_N \subseteq V_h \\ \dim V_N \leq N}} \sup_{\substack{\mu \in \mathcal{P} \\ t \in [0, T]}} \inf_{v \in V_N} \|u(t) - v\|.$$

However: We can describe solution easily as

$$u_{\mu}(t,x) = u_0(x - \mu \cdot t \mod 1).$$

Nonlinear Approximation

• Write $u_{\mu}(t, x)$ as

 $u_{\mu}(t,x) = u_0(x - \mu \cdot t \mod 1) =: ((\mu \cdot t) \cdot u_0)(x)$

Nonlinear Approximation

• Write $u_{\mu}(t, x)$ as

 $u_{\mu}(t,x) = u_0(x - \mu \cdot t \mod 1) =: ((\mu \cdot t) \cdot u_0)(x)$

• **General idea:** Write
$$u_{\mu}(t, x)$$
 as

where \mathcal{V} function space, $v_{\mu}(t) \in \mathcal{V}$ and $g_{\mu}(t)$ is element of Lie group G acting on \mathcal{V} .

• $v_{\mu}(t, x)$ should be easier to approximate than $u_{\mu}(t, x)$!

Method of Freezing [Beyn, Thümmler, 2004], [Rowley et. al., 2000, 2003]

► Consider Lie group *G* acting on *V* and evolution equation of the form:

 $\partial_t u_\mu(t) + \mathcal{L}_\mu(u_\mu(t)) = 0, \quad u_\mu(0) = u_0, \quad u_\mu(t) \in \mathcal{V}$

Substituting the ansatz $u_{\mu}(t) = g_{\mu}(t) \cdot v_{\mu}(t)$ leads to:

$$\begin{split} \partial_t v_\mu(t) + g_\mu(t)^{-1} \mathcal{L}_\mu(g_\mu(t).v_\mu(t)) + \mathfrak{g}_\mu(t).v_\mu(t) &= 0\\ \\ \mathfrak{g}_\mu(t) = g_\mu(t)^{-1} \partial_t g_\mu(t). \end{split}$$

Method of Freezing [Beyn, Thümmler, 2004], [Rowley et. al., 2000, 2003]

► Consider Lie group *G* acting on *V* and evolution equation of the form:

 $\partial_t u_\mu(t) + \mathcal{L}_\mu(u_\mu(t)) = 0, \quad u_\mu(0) = u_0, \quad u_\mu(t) \in \mathcal{V}$

Substituting the ansatz $u_{\mu}(t) = g_{\mu}(t) \cdot v_{\mu}(t)$ leads to:

$$\partial_t v_\mu(t) + g_\mu(t)^{-1} \cdot \mathcal{L}_\mu(g_\mu(t).v_\mu(t)) + \mathfrak{g}_\mu(t).v_\mu(t) = 0$$

 $\mathfrak{g}_\mu(t) = g_\mu(t)^{-1} \partial_t g_\mu(t).$

▶ Have dim(G) additional degrees of freedom. → Add additional algebraic constraint (phase condition):

$$\Phi(v_{\mu}(t),\mathfrak{g}_{\mu}(t))=0.$$

• Further assume invariance of \mathcal{L}_{μ} under action of *G*:

$$h^{-1}$$
. $\mathcal{L}_{\mu}(h.w) = \mathcal{L}_{\mu}(w) \quad \forall h \in G, w \in \mathcal{V}.$

MOR via Nonlinear State Space Transformation 11

Method of Freezing [Beyn, Thümmler, 2004], [Rowley et. al., 2000, 2003]

Definition (Method of Freezing)

With initial conditions $v_{\mu}(0) = u(0), g_{\mu}(0) = e$, solve:

$$egin{aligned} &\partial_t v_\mu(t) + \mathcal{L}_\mu(v_\mu(t)) + \mathfrak{g}_\mu(t).v_\mu(t) = 0 \ &\Phi(v_\mu(t),\mathfrak{g}_\mu(t)) = 0 \end{aligned}$$
 f

 $\mathfrak{g}_{\mu}(t)=g(t)_{\mu}^{-1}\partial_{t}g_{\mu}(t)$

frozen PDAE

reconstruction equation

Orthogonality phase condition

$$\Phi(v, \mathfrak{g}) = 0 \iff \partial_t v(t) \perp \mathsf{LG.}v(t)$$
$$\iff (\mathcal{L}(v) + \mathfrak{g.}v, \mathfrak{h.}v) = 0 \quad \forall \mathfrak{h} \in \mathsf{LG}$$

$$(t_0) = - \frac{1}{LG} (t_0)$$

Example: 2D-Shifts

Consider $G = \mathbb{R}^2$, $LG = \mathbb{R}^2$ acting via

$$g.u(x) := u(x - g), \quad x \in \mathbb{R}^2$$
$$\mathfrak{q}.u = -\mathfrak{q} \cdot \nabla u$$

The Method of Freezing for 2D-shifts

Solve

$$\begin{aligned} \partial_t v_{\mu}(t) + \mathcal{L}_{\mu}(v_{\mu}(t)) - \mathfrak{g}_{\mu}(t) \cdot \nabla v_{\mu}(t) &= 0\\ \left[\left(\partial_{x_i} v_{\mu}, \, \partial_{x_j} v_{\mu} \right) \right]_{i,j} \cdot \left[\mathfrak{g}_{\mu} \right]_j &= \left[\left(\mathcal{L}_{\mu}(v_{\mu}), \, \partial_{x_i} v_{\mu} \right) \right]_i \end{aligned}$$

and

$$\partial_t g_\mu(t) = \mathfrak{g}_\mu(t)$$

with initial conditions $v_{\mu}(0) = u(0), g_{\mu}(0) = (0, 0)^{T}$.

Test Problem

2D Burgers-type problem

Solve on $\Omega = [0,2] \times [0,1]$:

$$\partial_t u + \nabla \cdot (\vec{v} \cdot u^{\mu}) = 0$$

 $u(0, x_1, x_2) = 1/2(1 + \sin(2\pi x_1)\sin(2\pi x_2))$

for $t \in [0, 0.3]$, $\vec{v} \in \mathbb{R}$ with periodic boundary conditions and $\mu \in \mathcal{P} = [1, 2]$.

- Finite volume (Lax-Friedrichs) space discretization on 240 x 120 grid.
- Explicit Euler time-stepping (200 time steps).
- Same problem as in [Drohmann, Haasdonk, Ohlberger, 2012].
- (The following videos are actually computed on a 120 x 60 grid.)

Frozen vs. Non-frozen Solution $(\mu = 1, \vec{v} = (0.75, 1)^T)$

Frozen vs. Non-frozen Solution $(\mu = 1, \vec{v} = (0.75, 1)^T)$

Frozen Solution for p = 1.00

Reconstruted Solution for p = 1.00

Frozen vs. Non-frozen Solution $(\mu = 1, \vec{v} = (0.75, 1)^T)$

Frozen Solution for p = 1.00

Reconstruted Solution for p = 1.00

Frozen vs. Non-frozen Solution $(\mu = 2, \vec{v} = (0.75, 1)^T)$

1.8

0.9

g'_x(t)

g',(t)

Frozen vs. Non-frozen Solution $(\mu = 2, \vec{v} = (0.75, 1)^T)$

Frozen Solution for p = 2.00

Frozen vs. Non-frozen Solution $(\mu = 2, \vec{v} = (0.75, 1)^T)$

Frozen Solution for p = 2.00

Combining RB with the Method of Freezing

FrozenRB-Scheme for 2D-shifts [Ohlberger, R, 2013]

Solve

$$\begin{aligned} \partial_t \tilde{v}_{\mu(t)} + & \mathbf{P}_{\mathbf{N}} \circ \mathcal{I}_{\mathbf{M}}[\mathcal{L}_{\mu}](\tilde{v}_{\mu}(t)) - \tilde{\mathfrak{g}}_{\mu(t)} \cdot (\mathbf{P}_{\mathbf{N}} \circ \nabla)(\tilde{v}_{\mu}(t)) = \mathbf{0} \\ & \left[\left(\partial_{x_i} \tilde{v}_{\mu}, \, \partial_{x_j} \tilde{v}_{\mu} \right) \right]_{i,j} \cdot \left[\tilde{\mathfrak{g}}_{\mu} \right]_j = \left[\left(\mathcal{I}_{\mathbf{M}}[\mathcal{L}_{\mu}](\tilde{v}_{\mu}), \, \partial_{x_i} \tilde{v}_{\mu} \right) \right]_j \end{aligned}$$

and

 $\partial_t \tilde{g}_\mu(t) = \tilde{\mathfrak{g}}_\mu(t)$

with initial conditions $\tilde{v}_{\mu}(0) = u(0)$, $\tilde{g}_{\mu}(0) = (0,0)^{T}$.

- ► EI-GREEDY, POD-GREEDY algorithms for basis generation.
- Full offline/online decomposition.
- No additional evaluations of nonlinearity (small overhead).

MOR via Nonlinear State Space Transformation 21

> 0.80.60.4

> 0.2Ω

Results for the Burgers Problem $(\vec{v} = (1, 1)^T)$

Left: 100 no freezing - frozen ▶ 1.9 · *N* interpolation points. 10^{-1} nax. L[∞]-L²-error • Test set: 100 random μ . 10^{-2} 10^{-3} Bottom: • dim $V_N = 20$, 38 interpolation points. 10^{-4} ▶ $\mu = 1.5$. 20 40 60 80 100 0 basis vectors (N) detailed, no freezing reduced, no freezing reduced, frozen = 0.150.3Ш

MOR via Nonlinear State Space Transformation 22

Nonlinear MOR via Lagrangian Formulation

A Free Boundary Problem

Osmotic cell swelling model

$\partial_t u - \alpha \Delta u = 0$	in $\Omega(t)$
$\mathcal{V}_n u + \alpha \partial_n u = 0$	on $\partial \Omega(t)$
$-\beta\kappa + \gamma(u - u_0) = \mathcal{V}_n$	on $\partial \Omega(t)$

- ► *u*: concentration field
- u₀: concentration in outside
- \mathcal{V}_n : normal velocity of $\partial \Omega(t)$
- κ : curvature of $\partial \Omega(t)$

osmosis

Eulerian Approximation in $L^2(\mathbb{R}^2)$

Could consider u(t) ∈ L²(Ω(t)) → L²(ℝ²) to define joint approximation space.

Eulerian Approximation in $L^2(\mathbb{R}^2)$

- Could consider u(t) ∈ L²(Ω(t)) → L²(ℝ²) to define joint approximation space.
- However, moving domain boundary leads to slow singular value decay of solution trajectory:

osmosis

Lagrangian Formulation

- Fix reference domain Ω and introduce deformation field Ψ(t) s.t. Ψ(t)(Ω) = Ω(t).
- Time-discrete concentration equation on $\widehat{\Omega}$,

$$\begin{split} \int_{\hat{\Omega}} J_{n+1} \hat{u}_{n+1} \hat{v} \, dx + \Delta t \int_{\hat{\Omega}} J_{n+1} \partial_t \Psi_{n+1} \cdot (\partial_x \Psi_{n+1}^{-T} \cdot \nabla_{\hat{x}} \hat{v}) \hat{u}_{n+1} dx \\ &+ \Delta t \int_{\hat{\Omega}} \alpha J_{n+1} (\partial_x \Psi_{n+1}^{-T} \nabla_{\hat{x}} u) \cdot (\partial_x \Psi_{n+1}^{-T} \nabla_{\hat{x}} \hat{v}) \, dx = \int_{\hat{\Omega}} J_n \hat{u}_n \hat{v} \, dx, \end{split}$$

where $J_n := |\det(\partial_x \Psi_n)|$.

• Compute updated Ψ_{n+1} on $\partial \widehat{\Omega}$, and extend to $\widehat{\Omega}$ via harmonic extension.

osmosis

After space discretization this corresponds to moving-mesh approach (\rightarrow ALE), where $\Psi(t)(v)$ is the trajectory of the vertex v.

Nonlinear MOR via Lagrangian Formulation

Lagrangian ROM construction:

- Both trajectories û(t), Ψ(t) are smooth and exhibit fast singular value decay.
- Compute low-rank approximation spaces
 V_û, V_Ψ via POD.
- Note: V_{Ψ} acts nonlinearly on $V_{\hat{u}}$.
- Use Matrix-DEIM to approximate system matrices.

Nonlinear MOR via Lagrangian Formulation

Lagrangian ROM construction:

- Both trajectories û(t), Ψ(t) are smooth and exhibit fast singular value decay.
- Compute low-rank approximation spaces
 V_û, V_Ψ via POD.
- Note: V_{Ψ} acts nonlinearly on $V_{\hat{u}}$.
- Use Matrix-DEIM to approximate system matrices.

Preliminary MOR results:

- FOM: 2796 / 5592 DOFs
- ROM: 12 / 11 DOFs
- 10 / 14 / 12 / 16 interpolation points
- rel. space-time error: 10⁻⁴

Thank you for your attention!

My homepage http://stephanrave.de/

Ohlberger, R, *Nonlinear reduced basis approximation of parameterized evolution equations via the method of freezing*, C. R. Math. Acad. Sci. Paris, 351 (2013).

Ohlberger, R, *Reduced Basis Methods: Success, Limitations and Future Challenges*, Proceedings of ALGORITMY 2016.