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1 Reminders on Measure Theory

1.1 Foundations

Reference: Ambrosio, Fusco, Pallara: Functions of Bounded Variation and Free Discontinuity
Problems, Chapters 1 & 2, [Ambrosio et al., 2000].

Definition 1.1 (σ-algebra). A collection E of subsets of a set X is called σ-algebra if

(i) ∅ ∈ E ; [A ∈ E ]⇒ [X \A ∈ E ];

(ii) for a sequence An ∈ E ⇒
⋃∞
n=0An ∈ E .

Comment: Closed under finite unions, intersections and countable intersections. A ∩ B = X \
((X \A) ∪ (X \B)).

Comment: Elements of E : ‘measurable sets’. Pair (X, E): ‘measure space’.

Example 1.2. Borel algebra: smallest σ algebra containing all open sets of a topological space.
Comment: Intersection of two σ-algebras is again σ-algebra. ‘smallest’ is well-defined.

Definition 1.3 (Positive measure and vector measure). For measure space (X, E) a function
µ : E 7→ [0,+∞] is called ‘positive measure’ if

(i) µ(∅) = 0;

(ii) for pairwise disjoint sequence An ∈ E ⇒ µ (
⋃∞
n=0An) =

∑∞
n=0 µ(An)

For measure space (X, E) and Rm, m ≥ 1, a function µ : E 7→ Rm is called ‘measure’ if µ satisfies
(i) and (ii) with absolute convergence.

Comment: Measures are vector space, measures are finite, positive measures may be infinite.

Example 1.4. Examples for measures:

1. counting measure: #(A) = |A| if A finite, +∞ else.

2. Dirac measure: δx(A) = 1 if x ∈ A, 0 else.

3. Lebesgue measure L([a, b]) = b− a for b ≥ a.

4. Scaled measures: positive measure µ, function f ∈ L1(µ), new measure ν = f · µ. ν(A)
def.
=∫

A f(x) dµ(x).
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5. Weak gradient of discontinuous function f , µ = Df .∫
Ω
ϕ(x) · dµ(x) = −

∫
Ω

divϕ(x) f(x) dx

for ϕ ∈ C1(Ω).

Definition 1.5 (Total variation). For measure µ on (X, E) the total variation |µ| of A ∈ E is

|µ|(A) = sup

{ ∞∑
n=0

|µ(An)|

∣∣∣∣∣An ∈ E , pairwise disjoint,
∞⋃
n=0

An = A

}
.

|µ| is finite, positive measure on (X, E).

Comment: Careful with nomenclature in image analysis.

Definition 1.6. A set N ⊂ X is µ-negligible if ∃ A ∈ E with N ⊂ A and µ(A) = 0. Two
functions f , g : X → Y are identical ‘µ-almost everywhere’ when {x ∈ X|f(x) 6= g(x)} is
µ-negligible.

Example 1.7. Null sets are Lebesgue-negligible sets.

1.2 Measures and Maps

Definition 1.8 (Measurable functions, push-forward). Let (X, E), (Y,F) be measurable spaces.
A function f : X → Y is ‘measurable’ if f−1(A) ∈ E for A ∈ F .
For measure µ on (X, E) the ‘push-forward’ of µ under f to (Y,F), we write f]µ, is defined by
f]µ(A) = µ(f−1(A)) for A ∈ F .
Change of variables formula: ∫

X
g(f(x)) dµ(x) =

∫
Y
g(y) df]µ(y)

Sketch: Varying densities.

Example 1.9 (Marginal). Let proji : X ×X → X, proji(x0, x1) = xi. Marginals of measure γ
on X ×X:

proj0 ]γ(A) = γ(A×X) , proj1 ]γ(A) = γ(X ×A) .

Sketch: Discuss pre-images of proji.

1.3 Comparison, Decomposition

Definition 1.10 (Absolute continuity, singularity). Let µ be positive measure, ν measure on
measurable space (X, E). ν is ‘absolutely continuous’ w.r.t. µ, we write ν � µ, if [µ(A) = 0]⇒
[ν(A) = 0].
Sketch: Density � Lebesgue, density 6� density when support different, Dirac measures 6�
Lebesgue, mixed measures 6� density, mixed measures� mixed measures when Diracs coincide.
Positive measures µ, ν are ‘mutually singular’, we write µ ⊥ ν, if ∃ A ∈ E such that µ(A) = 0,
µ(X \A) = 0. For general measures replace µ, ν by |µ|, |ν|.
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Definition 1.11 (σ-finite). A positive measure µ is called σ-finite if X =
⋃∞
n=0An for sequence

An ∈ E with µ(An) < +∞.

Example 1.12. Lebesgue measure is not finite but σ-finite.

Theorem 1.13 (Radon–Nikodym, Lebesgue decomposition [Ambrosio et al., 2000, Theorem
1.28]). Let µ be σ-finite positive measure. ν general measure.
Radon–Nikodym: For ν � µ there is a function f ∈ L1(µ) such that ν = f · µ.
Lebesgue decomposition: there exist unique measures νa, νs such that

ν = νa + νs, νa � µ, νs ⊥ µ .

Note: νa = f · µ for some f ∈ L1(µ).

Corollary 1.14. A real-valued measure ν can be decomposed into ν = ν+ − ν− with ν+, ν−
mutually singular positive measures.

Proof. Since ν � |ν| there exists f ∈ L1(|ν|) with ν = f · |ν|. Set A+ = f−1((0,+∞)),
A− = f−1((−∞, 0)) and set ν±(B) = |ν(B ∩A±)|.

Comment: f is only unique |ν|-almost everywhere.

1.4 Duality

References: Kurdila, Zabarankin: Convex functional analysis [Kurdila and Zabarankin, 2005].
For Hilbert spaces: Bauschke, Combettes: Convex Analysis and Monotone Operator Theory in
Hilbert Spaces [Bauschke and Combettes, 2011]

Definition 1.15 (Dual space). For normed vector space (X, ‖ · ‖X) its topological dual space is
given by

X∗ = {y : X → R | y linear, continous, i.e. ∃C <∞, |y(x)| ≤ C ‖x‖X ∀x ∈ X} .

Norm on X∗:

‖y‖X∗ = sup {|y(x)||x ∈ X, ‖x‖X ≤ 1}

(X∗, ‖ · ‖X∗) is Banach space. For y(x) one often writes 〈y, x〉 or 〈y, x〉X∗,X .

Comment: Linear not necessarily continuous in infinite dimensions. Dual norm is operator norm.

Definition 1.16 (Weak convergence). A sequence xn inX converges weakly to x ∈ X if y(xn)→
y(x) for all y ∈ X∗. We write xn ⇀ x.

Definition 1.17 (Weak* convergence). A sequence yn in X∗ converges weakly to y ∈ X∗ if
yn(x)→ y(x) for all x ∈ X. We write yn

∗
⇀ y.

Application to measures:

Definition 1.18 (Radon measures). Let (X, d) be compact metric space, let E be Borel-σ-
algebra. A finite measure (positive or vector valued) is called a ‘Radon measure’. Write:

• M+(X): positive Radon measures,
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• P(X) ⊂M+(X): Radon probability measures (total mass = 1),

• M(X)m: (vector valued) Radon measures.

Theorem 1.19 (Regularity [Ambrosio et al., 2000, Proposition 1.43]). For positive Radon mea-
sures on (X, E) one has for A ∈ E

µ(A) = sup {µ(B) |B ∈ E , B ⊂ A, B compact} = inf {µ(B) |B ∈ E , A ⊂ B, B open} .

Theorem 1.20 (Duality [Ambrosio et al., 2000, Theorem 1.54]). Let (X, d) be compact metric
space. Let C(X)m be space of continuous functions from X to Rm, equipped with sup-norm.
The topological dual of C(X)m can be identified with the spaceM(X)m equipped with the total
variation norm ‖µ‖M

def.
= |µ|(X). Duality pairing for µ ∈M(X)m, f ∈ C(X)m:

µ(f) = 〈µ, f〉M,C =

∫
X
f(x) dµ(x)

Corollary 1.21. Two measures µ, ν ∈M(X)m with µ(f) = ν(f) for all f ∈ C(X)m coincide.

Theorem 1.22 (Banach–Alaoglu [Kurdila and Zabarankin, 2005, Theorem 2.4.4]). Let X be a
separable normed space. Any bounded sequence in X∗ has a weak∗ convergent subsequence.

Comment: Since C(X) is separable, any bounded sequence in M(X) has a weak∗ convergent
subsequence.

2 Monge formulation of optimal transport

Comment: Gaspard Monge: French mathematician and engineer, 18th century. Studied problem
of optimal allocation of resources to minimize transport cost.

Sketch: Bakeries and cafes

Example 2.1 (According to Villani). Every morning in Paris bread must be transported from
bakeries to cafes for consumption. Every bakery produces prescribed amount of bread, every
cafe orders prescribed amount. Assume: total amounts identical. Look for most economical way
to distribute bread.

Mathematical model:

• Ω ⊂ R2: area of Paris

• µ ∈ P(Ω): distribution of bakeries and produced amount of bread,

• ν ∈ P(Ω): distribution of cafes and consumed amount of bread

• Cost function c : Ω × Ω → R+. c(x, y) gives cost of transporting 1 unit of bread from
bakery at x to cafe at y.

• Describe transport by map T : Ω → Ω. Bakery at x will deliver bread to cafe at T (x).
Consistency condition: T]µ = ν.

Comment: Each cafe receives precisely ordered amount of bread.
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• Total cost of transport map

CM (T ) =

∫
Ω
c(x, T (x)) dµ(x)

Comment: For bakery at location x pay c(x, T (x)) · µ(x). Sum (i.e. integrate) over all
bakeries.

Definition 2.2. Monge optimal transport problem: find T that minimizes CM .

Problems:

• Do maps T with T]µ = ν exist? Can not split mass.

Sketch: Splitting of mass.

• Does minimal T exist? Non-linear, non-convex constraint and objective.

Comment: ⇒ problem remained unsolved for long time.

3 Kantorovich formulation of optimal transport

Comment: Leonid Kantorovich: Russian mathematician, 20th century. Founding father of linear
programming, proposed modern formulation of optimal transport. (Nobel prize in economics
1975.)
Do not describe transport by map T , but by positive measure π ∈M+(Ω× Ω).

Definition 3.1 (Coupling / Transport Plan). Let µ, ν ∈ P(Ω). Set of ‘couplings’ or ‘transport
plans’ Π(µ, ν) is given by

Π(µ, ν) =
{
π ∈ P(Ω× Ω)

∣∣ proj0 ]π = µ, proj1 ]π = ν
}
.

Example 3.2. Π(µ, ν) 6= ∅, contains at least product measure µ⊗ν ∈ Π(µ, ν). (µ⊗ν)(A×B) =
µ(A) · ν(B) for measurable A, B ⊂ Ω.

Definition 3.3. For compact metric space (Ω, d), µ, ν ∈ P(Ω), c ∈ C(Ω× Ω) the Kantorovich
optimal transport problem is given by

C(µ, ν) = inf

{∫
Ω×Ω

c(x, y) dπ(x, y)

∣∣∣∣π ∈ Π(µ, ν)

}
(1)

Comment: Linear (continuous) objective, affine constraint set.

Comment: Language of measures covers finite dimensional and infinite dimensional case.

Theorem 3.4. Minimizers of (1) exist.

Proof. • Let πn be minimizing sequence. Since πn ∈ P(Ω×Ω) have ‖πn‖M = 1. By Banach-
Alaoglu (Theorem 1.22) ∃ converging subsequence. After extraction of subsequence have
convergent minimizing sequence πn

∗
⇀ π.

• Positivity: π is a positive measure. Otherwise find function φ ∈ C(Ω×Ω) with
∫

Ω×Ω φ dπ <
0 (use Corollary 1.14 and Theorem 1.19 for construction) which contradicts weak∗ conver-
gence.
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• Unit mass: π(Ω× Ω) =
∫

Ω×Ω 1 dπ = limn→∞
∫

Ω×Ω 1 dπn = πn(Ω× Ω) = 1

• Marginal constraint: For every φ ∈ C(Ω)∫
Ω
φ dproj0 ]π =

∫
Ω×Ω

φ ◦ proj0 dπ

= lim
n→∞

∫
Ω×Ω

φ ◦ proj0 dπn = lim
n→∞

∫
Ω
φ dproj0 ]πn =

∫
Ω
φ dµ

So proj0 ]π = µ. Analogous: proj1 ]π = ν.

• So: π ∈ Π(µ, ν).

• Since c ∈ C(Ω× Ω) and πn
∗
⇀ π have∫

Ω×Ω
c dπ = lim

n→∞

∫
Ω×Ω

c dπn .

Therefore, π is minimizer.

Comment: For proof under more general conditions see for instance [Villani, 2009, Chapter 4]
Proof two additional useful results to get some practice and intuition.

Proposition 3.5 (Restriction [Villani, 2009, Theorem 4.6]). Let µ, ν ∈ P(Ω), c ∈ C(Ω×Ω), let
π be optimizer for C(µ, ν). Let π̃ ∈M+(Ω×Ω), π̃(Ω×Ω) > 0, π̃(A) ≤ π(A) for all measurable
A ⊂ Ω × Ω. Set π′ = π̃

π̃(Ω×Ω) , π
′ ∈ P(Ω × Ω). Let µ′ = proj0 ]π′, ν ′ = proj1 ]π′. Then π′ is

minimal for C(µ′, ν ′).

Example 3.6. π̃(A)
def.
= π(A ∩ (Ω0 × Ω1)) for Ω0, Ω1 ⊂ Ω.

Sketch: Restriction to subset. More general restriction.

Proof. • Assume π′ is not optimal. Then there is a measure π′′ ∈ Π(µ′, ν ′) with strictly
better cost.

• Consider the measure π̂ = π − π̃ + π̃(Ω × Ω) · π′′. π̂ is a positive measure since π̃ ≤ π.
π̂ ∈ P(Ω× Ω) since π′′ ∈ P(Ω× Ω).

proj0 ]π̂ = proj0 ]π − proj0 ]π̃ + π̃(Ω× Ω) · proj0 ]π′′

= µ− π̃(Ω× Ω) ·
(
µ′ − µ′

)
= µ

So π̂ ∈ Π(µ, ν).

• π̂ has lower transport cost than π:∫
Ω×Ω

c dπ̂ =

∫
Ω×Ω

c dπ − π̃(Ω× Ω)

∫
Ω×Ω

c dπ′ + π̃(Ω× Ω)

∫
Ω×Ω

c dπ′′ <
∫

Ω×Ω
c dπ

• So π is not optimal which is a contradiction. Therefore π′ must be optimal.

Proposition 3.7 (Convexity [Villani, 2009, Theorem 4.8]). The function P(Ω)2 → R, (µ, ν) 7→
C(µ, ν) is convex.
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Proof. • Let µ0, µ1, ν0, ν1 ∈ P(Ω). Let πi be corresponding minimizers in C(µi, νi), i ∈
{0, 1}.

• For λ ∈ (0, 1) set

µ̂ = (1− λ)µ0 + λµ1 , ν̂ = (1− λ) ν0 + λ ν1 , π̂ = (1− λ)π0 + λπ1 .

• π̂ ∈ Π(µ̂, ν̂) since

proj0 ]π̂ = (1− λ) proj0 ]π0 + λ proj0 ]π1 = (1− λ)µ0 + λµ1 = µ̂ .

• Convexity:

C(µ̂, ν̂) ≤
∫

Ω×Ω
c dπ̂ = (1− λ)

∫
Ω×Ω

c dπ0 + λ

∫
Ω×Ω

c dπ1 = (1− λ)C(µ0, ν0) + λC(µ1, ν1)

4 Kantorovich duality

4.1 More duality

Definition 4.1 (Topologically paired spaces). Two vector spaces X, X∗ with locally convex
Hausdorff topology are called topologically paired spaces if all continuous linear functionals on
one space can be identified with all elements of the other.

Example 4.2. Let (Ω, d) be a compact metric space. C(X) and M(X) with the sup-norm
topology and the weak-∗ topology are topologically paired spaces.
Any continuous linear functional on C(X) can be identified with an element in M(X) by con-
struction. If Φ is a weak-∗ continuous linear functional on M(X) it can be identified with the
continuous function ϕ : x 7→ Φ(δx).

Definition 4.3 (Fenchel–Legendre conjugates). Let X, X∗ be topologically paired spaces. Let
f : X → R ∪ {∞}. Its Fenchel–Legendre conjugate f∗ : X∗ → R ∪ {∞} is given by

f∗(y) = sup{〈y, x〉 − f(x)|x ∈ X} .

f∗ is convex, lsc on X∗. Likewise, for g : X∗ → R ∪ {∞} define conjugate g∗. If f, g convex, lsc
then f = f∗∗, g = g∗∗.

Comment: Lsc: lower semicontinuous, [xn → x]⇒ [f(x) ≤ lim infn→∞ f(xn)]

Theorem 4.4 (Fenchel–Rockafellar [Rockafellar, 1967]). Let (X,X∗), (Y, Y ∗) be two pairs of
topologically paired spaces. Let f : X → R ∪ {∞}, g : Y → R ∪ {∞}, A : X → Y linear,
continuous. Assume ∃ x ∈ X such that f finite at x, g finite and continuous at Ax. Then

inf {f(x) + g(Ax)|x ∈ X} = max {−f∗(−A∗z)− g∗(z)|z ∈ Y ∗} .

Maximizer of rhs exists. A∗ : Y ∗ → X∗ is adjoint of A defined by 〈z,Ax〉Y ∗,Y = 〈A∗z, x〉X∗,X .

Comment: Can sometimes be used ‘in both directions’ to establish existence of both primal and
dual problem.
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4.2 Dual Kantorovich Problem

Theorem 4.5. Given the setting of Definition 3.3 one finds

C(µ, ν) = sup

{∫
Ω
α dµ+

∫
Ω
β dν

∣∣∣∣α, β ∈ C(Ω), α(x) + β(y) ≤ c(x, y) for all (x, y) ∈ Ω2

}
(2)

Proof. • Problem (2) can be written as

C(µ, ν) = − inf
{
f(α, β) + g(A(α, β))

(
α, β) ∈ C(Ω)2

}
with

f : C(Ω)2 → R, (α, β) 7→ −
∫

Ω
α dµ−

∫
Ω
β dν

g : C(Ω2)→ R ∪ {∞}, ψ 7→

{
0 if ψ(x, y) ≤ c(x, y) for all (x, y) ∈ Ω2

+∞ else.

A : C(Ω)2 → C(Ω2), [A(α, β)](x, y) = α(x) + β(y) .

• f , g are convex, lsc. A is bounded, linear.

• Let (α, β) be two constant, finite functions with α(x) + β(y) < min{c(x′, y′)|(x′, y′) ∈ Ω2}.
Then f(α, β) <∞, g(A(α, β)) <∞ and g is continuous atA(α, β). Thus, with Theorem 4.4
(and Example 4.2)

C(µ, ν) = min
{
f∗(−A∗π) + g∗(π)

∣∣π ∈M(Ω2)
}
.

• One obtains:

f∗(−ρ,−σ) = sup

{
−
∫

Ω
α dρ−

∫
Ω
β dσ +

∫
Ω
α dµ+

∫
Ω
β dν

∣∣∣∣(α, β) ∈ C(Ω)2

}
=

{
0 if ρ = µ, σ = ν ,

+∞ else.

(Reasoning similar than for positivity of limit π in proof of Theorem 3.4.)

g∗(π) = sup

{∫
Ω2

ψ dπ
∣∣∣∣ψ ∈ C(Ω2), ψ(x, y) ≤ c(x, y) for all (x, y) ∈ Ω2

}
=

{∫
Ω2 c dπ if π ∈M+(Ω2),

+∞ else.

So far we have not yet proven existence of dual maximizers. For this we need some additional
arguments. We follow the presentation in [Santambrogio, 2015, Section 1.2].

Definition 4.6 (c-transform). For ψ ∈ C(Ω) define its c-transform ψc ∈ C(Ω) by

ψc(y) = inf {c(x, y)− ψ(x)|x ∈ Ω}
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and its c-transform ψc ∈ C(Ω) by

ψc(x) = inf {c(x, y)− ψ(y)|y ∈ Ω}

A function ψ is called c-concave if it can be written as ψ = φc for some φ ∈ C(Ω). Analogously,
ψ is c-concave if it can be written as ψ = φc.

Comment: Setting β = αc (or α = βc) in (2) corresponds to optimization over β for fixed α
(and vice versa). In general alternating optimization of (2) in α and β does not yield an optimal
solution.

Lemma 4.7. The set of c-concave and c-concave functions are equicontinuous.

Proof. • Since c ∈ C(Ω×Ω) and (Ω, d) compact there is a continuous function ω : R+ → R+

with ω(0) = 0 such that |c(x, y)− c(x, y′)| ≤ ω(d(y, y′)).

• Let ψ = φc. Set φx : y 7→ c(x, y)−φ(x). For every x ∈ Ω have |φx(y)−φx(y′)| ≤ ω(d(y, y′)).
One finds

ψ(y) ≤ φx(y) ≤ φx(y′) + ω(d(y, y′))

for all x, y, y′ ∈ Ω. Taking the infimum over x one gets ψ(y) ≤ ψ(y′) + ω(d(y, y′)) and by
symmetry |ψ(y)− ψ(y′)| ≤ ω(d(y, y′)). This implies equicontinuity of c-concave functions.

• Argument for φc analogous.

Theorem 4.8 (Arzelà-Ascoli [Rudin, 1986, Thm. 11.28]). If (Ω, d) is a compact metric space
and (fn)n is a sequence of uniformly bounded, equicontinuous functions in C(Ω) then (fn)n has
a uniformly converging subsequence.

Theorem 4.9 ([Santambrogio, 2015, Prop. 1.11]). Maximizers of (2) exist.

Proof. • For feasible (α, β) with finite score in (2) one can always replace β by αc and
subsequently α by (αc)c which are still feasible and do not decrease the functional value.
Hence, we may impose the additional constraint that (α, β) in (2) are (c, c)-concave.

• Replacing feasible (α, β) in (2) by

(x 7→ α(x)− C, y 7→ β(y) + C) with C = min
x′∈Ω

α(x′)

does not change the functional value or affect the constraints.

• Arguing as in Lemma 4.7 one finds for c-concave α with minx α(x) = 0 that α(x) ∈
[0, ω(diam Ω)] and for the corresponding β = αc that β(y) ∈ [min c− ω(diam Ω),max c].

• Hence, we may consider maximizing sequences of (2) that are uniformly bounded and
equicontinuous. By the Arzelà-Ascoli Theorem there exists a uniformly converging sub-
sequence. Since the objective (and the constraints) of (2) are upper semicontinuous (see
proof of Theorem 4.5), the limit must be a maximizer.
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Corollary 4.10 (Primal-Dual Optimality Condition). If π solves (1) and (α, β) solve (2) then
α(x) + β(y) = c(x, y) π-almost everywhere.

Proof.∫
Ω×Ω

c(x, y) dπ(x, y) =

∫
Ω
α dµ+

∫
Ω
β dν =

∫
Ω×Ω

[α(x) + β(y)]dπ(x, y) ≤
∫

Ω×Ω
c(x, y) dπ(x, y)

Remark 4.11 (Economic Interpretation of Kantorovich Duality). Bakeries and cafes hire a
third-party company to do the transportation and agree to split the transport cost. When
picking up bread at bakery x in the morning, the company charges an advance payment α(x)
per unit of bread for the transport. Upon delivery at a cafe at y it charges a final payment β(y)
per unit of bread from the cafe.
The total payment to the company will be

∫
Ω α dµ+

∫
Ω β dν. It is left to the company to decide

which bread to deliver where. And they will want to minimize the total transport cost, i.e. to
find the global minimum of

∫
Ω×Ω c dπ.

But it can never charge more than c(x, y)−α(x) when dropping of bread from x at y, otherwise
the cafe y may complain and try to hire another company to get bread from bakery x at a lower
price. When every cafe receives bread from its ‘subjectively cheapest’ bakery (and similarly each
bakery delivers to its ‘subjectively cheapest’ cafe), the transport plan is said to be at equilibrium:
no party will attempt to change its partner in a local attempt to reduce its costs.
Kantorovich duality states that for the optimal transport model the global minimum and equi-
librium coincide.
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