SUPPLEMENTARY NOTES
 Teresa Esposito

Let $x \in \mathbb{R}^{n}$ and $r>0$. Henceforth we denote by $B_{r}(x)$ the open ball of R^{n} with center x and radius r,

$$
\begin{equation*}
B_{r}(x)=\left\{y \in \mathbb{R}^{n}:|y-x|<r\right\} \tag{0.1}
\end{equation*}
$$

and by $\partial B_{r}(x)$ the boundary of $B_{r}(x)$,

$$
\begin{equation*}
\partial B_{r}(x)=\left\{y \in \mathbb{R}^{n}:|y-x|=r\right\} \tag{0.2}
\end{equation*}
$$

If its center is the origin, the ball of radius r is denoted by B_{r} and, similarly, its spheric surface by ∂B_{r}.

1. Coarea formula and polar coordinates

The following integration formula holds.
Theorem 1.1. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuous and summable. Then, for each point $x_{0} \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f(x) d x=\int_{0}^{\infty}\left(\int_{\partial B_{r}\left(x_{0}\right)} f(x) d S(x)\right) d r \tag{0.3}
\end{equation*}
$$

where S denotes the surface measure on the boundary of $B_{r}\left(x_{0}\right)$.
Theorem 1.1 can be proved passing in polar coordinates in \mathbb{R}^{n}. Observe that the above theorem is a particular case of the following result.

Theorem 1.2 (Coarea formula). Let $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be Lipschitz and assume that for a.e. $r \in \mathbb{R}$ the level set $\left\{x \in \mathbb{R}^{n}: u(x)=r\right\}$ is a smooth, $(n-1)$ dimensional hypersurface in \mathbb{R}^{n}. Suppose also $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ to be continuous und summable. Then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f(x)|\nabla u(x)| d x=\int_{-\infty}^{+\infty}\left(\int_{\{u=r\}} f(x) d S(x)\right) d r . \tag{0.4}
\end{equation*}
$$

The Coarea Formula is a kind of "curvilinear" version of Fubini's Theorem and allows to convert n-dimensional integrals into integrals over the level surfaces of a suitable function.

Remark 1.3. Theorem 1.1 follows from Theorem 1.2 by taking $u(x)=$ $\left|x-x_{0}\right|$.

2. Volume of the ball and measure of the spheric surface

In order to compute the volume $\left|B_{r}(x)\right|$ of the ball (0.1) and the measure $S\left(\partial B_{r}(x)\right)$ of the spheric surface (0.2), let us introduce the so-called Gamma function. Let $t>0$ and set

$$
\begin{equation*}
\Gamma(t):=\int_{0}^{+\infty} e^{-x} x^{t-1} d x \tag{0.5}
\end{equation*}
$$

Let us first check that the definition of the Gamma function (0.5) is wellposed.
Set $f(x):=e^{-x} x^{t-1}$; then, since $f(x)<x^{t-1}$ if $x>0$ (being $e^{-x}<1$) and $t-1>-1$, we infer that f is summable at 0 . On the other hand, since $\lim _{x \rightarrow+\infty} x^{t+1} e^{-x}=0$, there exists $M>0$ such that $x^{t+1} e^{-x}<1$ for all $x>M$ and, accordingly, $f(x)<1 / x^{2}$ for all $x>M$, which leads immediately to conclude the summability of f at $+\infty$. Thus, $\Gamma(t)<\infty$ for all $t>0$.
We see that
(1) $\Gamma(1)=\int_{0}^{+\infty} e^{-x} d x=1$
(2) $\Gamma(t+1)=\int_{0}^{+\infty} x^{t} e^{-x} d x=t \Gamma(t)$ for all $t>0$.

These two properties show that the Gamma function extends to $(0, \infty)$ the factorial of a number; indeed, $\forall n \in \mathbb{N}$

$$
\Gamma(n+1)=n \Gamma(n)=n(n-1) \Gamma(n-1)=\cdots=n!\Gamma(1)=n!.
$$

Another expression of the Gamma function is given by

$$
\begin{equation*}
\Gamma(t)=2^{1-t} \int_{0}^{+\infty} e^{-\frac{y^{2}}{2}} y^{2 t-1} d y \tag{0.6}
\end{equation*}
$$

and it is obtained by applying the change of variables $x=y^{2} / 2$ in 0.5 . Denoted by $Q_{1}=[0,+\infty) \times[0,+\infty)$ the first quadrant of the plane, from (0.6) we deduce easily, applying first Fubini's theorem and then passing in polar coordinates, that

$$
\begin{aligned}
{\left[\Gamma\left(\frac{1}{2}\right)\right]^{2} } & =2\left(\int_{0}^{+\infty} e^{-\frac{x^{2}}{2}} d x\right)\left(\int_{0}^{+\infty} e^{-\frac{y^{2}}{2}} d y\right) \\
& =2 \iint_{Q_{1}} e^{-\left(x^{2}+y^{2}\right) / 2} d x d y=2 \int_{0}^{\pi / 2} d \vartheta \int_{0}^{\infty} \varrho e^{-\frac{\rho^{2}}{2}} d \varrho=\pi ;
\end{aligned}
$$

hence $\Gamma(1 / 2)=\sqrt{\pi}$.
Let ω_{n} and σ_{n} denote the volume of the unit ball B_{1} of \mathbb{R}^{n} and the measure of the spheric surface of B_{1}, respectively; clearly

$$
\begin{equation*}
\left|B_{r}(x)\right|=r^{n} \omega_{n}, \quad S\left(\partial B_{r}(x)\right)=r^{n-1} \sigma_{n} . \tag{0.7}
\end{equation*}
$$

Theorem 2.1. Let $n \geq 2$. Then, $\sigma_{n}=n \omega_{n}$.

Proof. Applying (0.3) with $f \equiv 1$, we get immediately

$$
\begin{aligned}
\omega_{n} & =\int_{B_{1}} d x=\int_{0}^{1}\left(\int_{\partial B_{\varrho}} d S\right) d \varrho=\int_{0}^{1} S\left(\partial B_{\varrho}\right) d \varrho \\
& =\sigma_{n} \int_{0}^{1} \varrho^{n-1} d \varrho=\frac{\sigma_{n}}{n}
\end{aligned}
$$

Finally we give the expression of the volume ω_{n} of the unit ball, for all n.
Theorem 2.2. Let $n \geq 1$. Then

$$
\begin{equation*}
\omega_{n}=\frac{\pi^{n / 2}}{(n / 2) \Gamma(n / 2)} . \tag{0.8}
\end{equation*}
$$

Proof. Being $\Gamma(1)=1$ and $\Gamma(1 / 2)=\sqrt{\pi}, 0.8)$ is verified for $n=1$ and $n=2$:

$$
\omega_{1}=\frac{\pi^{1 / 2}}{(1 / 2) \Gamma(1 / 2)}=2, \quad \omega_{2}=\frac{\pi}{1 \cdot \Gamma(1)}=\pi .
$$

Then, let us prove (0.8) for $n \geq 3$ by induction on n; suppose (0.8) is true for $n-2$, with $n \geq 3$, and let us show that it is true for n.
Take $x \in B_{1}$; then we can write $x=\left(x^{\prime}, x^{\prime \prime}\right)$, with $x^{\prime}=\left(x_{1}, x_{2}\right)$ and $x^{\prime \prime}=\left(x_{3}, \ldots, x_{n}\right)$ such that

$$
x^{\prime} \in D_{1}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2}<1\right\}
$$

and

$$
\begin{aligned}
x^{\prime \prime} \in\left(B_{1}\right)_{x^{\prime}} & =\left\{x^{\prime \prime} \in \mathbb{R}^{n-2}:\left(x^{\prime}, x^{\prime \prime}\right) \in B_{1}\right\} \\
& =\left\{\left(x_{3}, \ldots, x_{n}\right) \in \mathbb{R}^{n-2}: x_{3}^{2}+\cdots+x_{n}^{2}<1-x_{1}^{2}-x_{2}^{2}\right\} .
\end{aligned}
$$

Thus, appealing to Fubini's theorem and using the induction hypotesis, we have

$$
\begin{aligned}
\omega_{n} & =\int_{B_{1}} d x=\int_{D_{1}} d x^{\prime} \int_{\left(B_{1}\right)_{x^{\prime}}} d x^{\prime \prime} \\
& =\int_{D_{1}} \omega_{n-2}\left(1-x_{1}^{2}-x_{2}^{2}\right)^{(n-2) / 2} d x_{1} d x_{2} \\
& =\omega_{n-2} \int_{0}^{2 \pi} d \vartheta \int_{0}^{1}(1-\varrho)^{(n-2) / 2} \varrho d \varrho \\
& =\frac{2 \pi}{n} \omega_{n-2}=\frac{2 \pi}{n} \frac{\pi^{(n-2) / 2}}{\frac{n-2}{2} \Gamma\left(\frac{n-2}{2}\right)} \\
& =\frac{2 \pi}{n} \frac{\pi^{(n-2) / 2}}{\Gamma(n / 2)}=\frac{\pi^{n / 2}}{(n / 2) \Gamma(n / 2)}
\end{aligned}
$$

References

[1] N. Fusco, Note integrative per il corso di equazioni alle derivate parziali.

