SUPPLEMENTARY NOTES

Teresa Esposito

Let $x \in \mathbb{R}^n$ and r > 0. Henceforth we denote by $B_r(x)$ the open ball of \mathbb{R}^n with center x and radius r,

$$B_r(x) = \{ y \in \mathbb{R}^n \colon |y - x| < r \}, \tag{0.1}$$

and by $\partial B_r(x)$ the boundary of $B_r(x)$,

$$\partial B_r(x) = \{ y \in \mathbb{R}^n \colon |y - x| = r \}.$$

$$(0.2)$$

If its center is the origin, the ball of radius r is denoted by B_r and, similarly, its spheric surface by ∂B_r .

1. Coarea formula and polar coordinates

The following integration formula holds.

Theorem 1.1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuous and summable. Then, for each point $x_0 \in \mathbb{R}^n$,

$$\int_{\mathbb{R}^n} f(x) \, dx = \int_0^\infty \left(\int_{\partial B_r(x_0)} f(x) \, dS(x) \right) dr, \tag{0.3}$$

where S denotes the surface measure on the boundary of $B_r(x_0)$.

Theorem 1.1 can be proved passing in polar coordinates in \mathbb{R}^n . Observe that the above theorem is a particular case of the following result.

Theorem 1.2 (Coarea formula). Let $u : \mathbb{R}^n \to \mathbb{R}$ be Lipschitz and assume that for a.e. $r \in \mathbb{R}$ the level set $\{x \in \mathbb{R}^n : u(x) = r\}$ is a smooth, (n-1)dimensional hypersurface in \mathbb{R}^n . Suppose also $f : \mathbb{R}^n \to \mathbb{R}$ to be continuous und summable. Then

$$\int_{\mathbb{R}^n} f(x) \left| \nabla u(x) \right| dx = \int_{-\infty}^{+\infty} \left(\int_{\{u=r\}} f(x) \, dS(x) \right) dr. \tag{0.4}$$

The *Coarea Formula* is a kind of "curvilinear" version of Fubini's Theorem and allows to convert n-dimensional integrals into integrals over the level surfaces of a suitable function.

Remark 1.3. Theorem 1.1 follows from Theorem 1.2 by taking $u(x) = |x - x_0|$.

2. Volume of the ball and measure of the spheric surface

In order to compute the volume $|B_r(x)|$ of the ball (0.1) and the measure $S(\partial B_r(x))$ of the spheric surface (0.2), let us introduce the so-called *Gamma function*. Let t > 0 and set

$$\Gamma(t) := \int_0^{+\infty} e^{-x} x^{t-1} \, dx. \tag{0.5}$$

Let us first check that the definition of the *Gamma function* (0.5) is well-posed.

Set $f(x) := e^{-x}x^{t-1}$; then, since $f(x) < x^{t-1}$ if x > 0 (being $e^{-x} < 1$) and t-1 > -1, we infer that f is summable at 0. On the other hand, since $\lim_{x \to +\infty} x^{t+1}e^{-x} = 0$, there exists M > 0 such that $x^{t+1}e^{-x} < 1$ for all x > M and, accordingly, $f(x) < 1/x^2$ for all x > M, which leads immediately to conclude the summability of f at $+\infty$. Thus, $\Gamma(t) < \infty$ for all t > 0. We see that

(1)
$$\Gamma(1) = \int_0^{+\infty} e^{-x} dx = 1$$

(2) $\Gamma(t+1) = \int_0^{+\infty} x^t e^{-x} dx = t \Gamma(t)$ for all $t > 0$.

These two properties show that the *Gamma function* extends to $(0, \infty)$ the factorial of a number; indeed, $\forall n \in \mathbb{N}$

$$\Gamma(n+1) = n \Gamma(n) = n (n-1) \Gamma(n-1) = \dots = n! \Gamma(1) = n!$$

Another expression of the *Gamma function* is given by

$$\Gamma(t) = 2^{1-t} \int_0^{+\infty} e^{-\frac{y^2}{2}} y^{2t-1} \, dy, \qquad (0.6)$$

and it is obtained by applying the change of variables $x = y^2/2$ in (0.5). Denoted by $Q_1 = [0, +\infty) \times [0, +\infty)$ the first quadrant of the plane, from (0.6) we deduce easily, applying first Fubini's theorem and then passing in polar coordinates, that

$$\left[\Gamma\left(\frac{1}{2}\right) \right]^2 = 2 \left(\int_0^{+\infty} e^{-\frac{x^2}{2}} dx \right) \left(\int_0^{+\infty} e^{-\frac{y^2}{2}} dy \right)$$

= $2 \iint_{Q_1} e^{-(x^2 + y^2)/2} dx \, dy = 2 \int_0^{\pi/2} d\vartheta \int_0^\infty \varrho \, e^{-\frac{\varrho^2}{2}} \, d\varrho = \pi;$

hence $\Gamma(1/2) = \sqrt{\pi}$.

Let ω_n and σ_n denote the volume of the unit ball B_1 of \mathbb{R}^n and the measure of the spheric surface of B_1 , respectively; clearly

$$|B_r(x)| = r^n \omega_n, \qquad S(\partial B_r(x)) = r^{n-1} \sigma_n. \tag{0.7}$$

Theorem 2.1. Let $n \geq 2$. Then, $\sigma_n = n\omega_n$.

Proof. Applying (0.3) with $f \equiv 1$, we get immediately

$$\omega_n = \int_{B_1} dx = \int_0^1 \left(\int_{\partial B_{\varrho}} dS \right) d\varrho = \int_0^1 S(\partial B_{\varrho}) d\varrho$$
$$= \sigma_n \int_0^1 \varrho^{n-1} d\varrho = \frac{\sigma_n}{n}.$$

Finally we give the expression of the volume ω_n of the unit ball, for all n. **Theorem 2.2.** Let $n \ge 1$. Then

$$\omega_n = \frac{\pi^{n/2}}{(n/2)\Gamma(n/2)}.$$
 (0.8)

Proof. Being $\Gamma(1) = 1$ and $\Gamma(1/2) = \sqrt{\pi}$, (0.8) is verified for n = 1 and n = 2:

$$\omega_1 = \frac{\pi^{1/2}}{(1/2)\Gamma(1/2)} = 2, \qquad \omega_2 = \frac{\pi}{1 \cdot \Gamma(1)} = \pi.$$

Then, let us prove (0.8) for $n \ge 3$ by induction on n; suppose (0.8) is true for n-2, with $n \ge 3$, and let us show that it is true for n.

Take $x \in B_1$; then we can write x = (x', x''), with $x' = (x_1, x_2)$ and $x'' = (x_3, \ldots, x_n)$ such that

$$x' \in D_1 = \{(x_1, x_2) \in \mathbb{R}^2 \colon x_1^2 + x_2^2 < 1\}$$

and

$$x'' \in (B_1)_{x'} = \{x'' \in \mathbb{R}^{n-2} \colon (x', x'') \in B_1\}$$

= $\{(x_3, \dots, x_n) \in \mathbb{R}^{n-2} \colon x_3^2 + \dots + x_n^2 < 1 - x_1^2 - x_2^2\}.$

Thus, appealing to Fubini's theorem and using the induction hypotesis, we have

$$\begin{split} \omega_n &= \int_{B_1} dx = \int_{D_1} dx' \int_{(B_1)_{x'}} dx'' \\ &= \int_{D_1} \omega_{n-2} \left(1 - x_1^2 - x_2^2 \right)^{(n-2)/2} dx_1 dx_2 \\ &= \omega_{n-2} \int_0^{2\pi} d\vartheta \int_0^1 (1 - \varrho)^{(n-2)/2} \varrho d\varrho \\ &= \frac{2\pi}{n} \omega_{n-2} = \frac{2\pi}{n} \frac{\pi^{(n-2)/2}}{\frac{n-2}{2} \Gamma\left(\frac{n-2}{2}\right)} \\ &= \frac{2\pi}{n} \frac{\pi^{(n-2)/2}}{\Gamma(n/2)} = \frac{\pi^{n/2}}{(n/2)\Gamma(n/2)}. \end{split}$$

L				
L				
L				
L	_	_	_	

References

[1] N. Fusco, Note integrative per il corso di equazioni alle derivate parziali.