
SUPPLEMENTARY NOTES
Teresa Esposito

Let x ∈ Rn and r > 0. Henceforth we denote by Br(x) the open ball of Rn

with center x and radius r,

Br(x) = {y ∈ Rn : |y − x| < r}, (0.1)

and by ∂Br(x) the boundary of Br(x),

∂Br(x) = {y ∈ Rn : |y − x| = r}. (0.2)

If its center is the origin, the ball of radius r is denoted by Br and, similarly,
its spheric surface by ∂Br.

1. Coarea formula and polar coordinates

The following integration formula holds.

Theorem 1.1. Let f : Rn → R be continuous and summable. Then, for each
point x0 ∈ Rn, ˆ

Rn

f(x) dx =
ˆ ∞

0

(ˆ
∂Br(x0)

f(x) dS(x)
)
dr, (0.3)

where S denotes the surface measure on the boundary of Br(x0).

Theorem 1.1 can be proved passing in polar coordinates in Rn. Observe
that the above theorem is a particular case of the following result.

Theorem 1.2 (Coarea formula). Let u : Rn → R be Lipschitz and assume
that for a.e. r ∈ R the level set {x ∈ Rn : u(x) = r} is a smooth, (n − 1)-
dimensional hypersurface in Rn. Suppose also f : Rn → R to be continuous
und summable. Thenˆ

Rn

f(x) |∇u(x)| dx =
ˆ +∞

−∞

(ˆ
{u= r}

f(x) dS(x)
)
dr. (0.4)

The Coarea Formula is a kind of “curvilinear” version of Fubini’s Theorem
and allows to convert n-dimensional integrals into integrals over the level
surfaces of a suitable function.

Remark 1.3. Theorem 1.1 follows from Theorem 1.2 by taking u(x) =
|x− x0|.
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2. Volume of the ball and measure of the spheric surface

In order to compute the volume |Br(x)| of the ball (0.1) and the mea-
sure S(∂Br(x)) of the spheric surface (0.2), let us introduce the so-called
Gamma function. Let t > 0 and set

Γ(t) :=
ˆ +∞

0
e−xxt−1 dx. (0.5)

Let us first check that the definition of the Gamma function (0.5) is well-
posed.
Set f(x) := e−xxt−1; then, since f(x) < xt−1 if x > 0 (being e−x < 1) and
t − 1 > −1, we infer that f is summable at 0. On the other hand, since

lim
x→+∞

xt+1e−x = 0, there exists M > 0 such that xt+1e−x < 1 for all x > M

and, accordingly, f(x) < 1/x2 for all x > M , which leads immediately to
conclude the summability of f at +∞. Thus, Γ(t) <∞ for all t > 0.
We see that

(1) Γ(1) =
ˆ +∞

0
e−x dx = 1

(2) Γ(t+ 1) =
ˆ +∞

0
xte−x dx = tΓ(t) for all t > 0.

These two properties show that the Gamma function extends to (0,∞) the
factorial of a number; indeed, ∀n ∈ N

Γ(n+ 1) = nΓ(n) = n (n− 1) Γ(n− 1) = · · · = n! Γ(1) = n! .

Another expression of the Gamma function is given by

Γ(t) = 21−t
ˆ +∞

0
e−

y2
2 y2t−1 dy, (0.6)

and it is obtained by applying the change of variables x = y2/2 in (0.5).
Denoted by Q1 = [0,+∞)× [0,+∞) the first quadrant of the plane, from
(0.6) we deduce easily, applying first Fubini’s theorem and then passing in
polar coordinates, that[

Γ
(1

2

)]2
= 2

(ˆ +∞

0
e−

x2
2 dx

)(ˆ +∞

0
e−

y2
2 dy

)

= 2
¨
Q1

e−(x2+y2)/2 dx dy = 2
ˆ π/2

0
dϑ

ˆ ∞
0

% e−
%2
2 d% = π;
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hence Γ(1/2) =
√
π.

Let ωn and σn denote the volume of the unit ball B1 of Rn and the measure
of the spheric surface of B1, respectively; clearly

|Br(x)| = rnωn, S(∂Br(x)) = rn−1σn. (0.7)

Theorem 2.1. Let n ≥ 2. Then, σn = nωn.

Proof. Applying (0.3) with f ≡ 1, we get immediately

ωn =
ˆ
B1

dx =
ˆ 1

0

(ˆ
∂B%

dS

)
d% =

ˆ 1

0
S(∂B%) d%

= σn

ˆ 1

0
%n−1 d% = σn

n
.

�

Finally we give the expression of the volume ωn of the unit ball, for all n.

Theorem 2.2. Let n ≥ 1. Then

ωn = πn/2

(n/2)Γ(n/2) . (0.8)

Proof. Being Γ(1) = 1 and Γ(1/2) =
√
π, (0.8) is verified for n = 1 and

n = 2:

ω1 = π1/2

(1/2)Γ(1/2) = 2, ω2 = π

1 · Γ(1) = π.

Then, let us prove (0.8) for n ≥ 3 by induction on n; suppose (0.8) is true
for n− 2, with n ≥ 3, and let us show that it is true for n.
Take x ∈ B1; then we can write x = (x′, x′′), with x′ = (x1, x2) and
x′′ = (x3, . . . , xn) such that

x′ ∈ D1 = {(x1, x2) ∈ R2 : x2
1 + x2

2 < 1}

and

x′′ ∈ (B1)x′ = {x′′ ∈ Rn−2 : (x′, x′′) ∈ B1}

= {(x3, . . . , xn) ∈ Rn−2 : x2
3 + · · ·+ x2

n < 1− x2
1 − x2

2}.
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Thus, appealing to Fubini’s theorem and using the induction hypotesis, we
have

ωn =
ˆ
B1

dx =
ˆ
D1

dx′
ˆ

(B1)x′

dx′′

=
ˆ
D1

ωn−2
(
1− x2

1 − x2
2

)(n−2)/2
dx1 dx2

= ωn−2

ˆ 2π

0
dϑ

ˆ 1

0
(1− %)(n−2)/2 % d%

= 2π
n
ωn−2 = 2π

n

π(n−2)/2

n−2
2 Γ

(
n−2

2

)
= 2π

n

π(n−2)/2

Γ(n/2) = πn/2

(n/2)Γ(n/2) .

�

References
[1] N. Fusco, Note integrative per il corso di equazioni alle derivate parziali.


	1. Coarea formula and polar coordinates
	2. Volume of the ball and measure of the spheric surface

