1. (From Gilbarg & Trudinger, "Elliptic PDEs") Let $u \in H^2(\Omega)$, u = 0 on $\partial \Omega \in C^1$. Prove the interpolation inequality: For every $\varepsilon > 0$,

$$\int_{\Omega} |Du|^2 \, \mathrm{d}x \le \varepsilon \int_{\Omega} (\Delta u)^2 \, \mathrm{d}x + \frac{1}{4\varepsilon} \int_{\Omega} u^2 \, \mathrm{d}x \,. \tag{1 pt}$$

- 2. (From Evans, "PDEs") Let $\Omega \subset \mathbb{R}^n$ have smooth boundary. Prove that $C^{k,\alpha}(\overline{\Omega}), k \in \{0, 1, \ldots\}, \alpha \in (0, 1]$, is a Banach space. $(4 \, \mathrm{pt})$
- 3. Let $\Omega \subset \mathbb{R}^n$ be open and bounded. For $p, q, r \in [1, \infty]$ with $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$ derive the generalized Hölder inequality

$$||fg||_{L^{r}(\Omega)} \leq ||f||_{L^{p}(\Omega)} ||g||_{L^{q}(\Omega)}$$

for $f \in L^p(\Omega)$, $g \in L^q(\Omega)$ from the standard Hölder inequality. Analogously, derive e II 11 e 11

$$\|f_1 f_2 \cdots f_m\|_{L^r(\Omega)} \le \|f_1\|_{L^{p_1}(\Omega)} \|f_2\|_{L^{p_2}(\Omega)} \cdots \|f_m\|_{L^{p_m}(\Omega)}$$

for $\frac{1}{p_1} + \ldots + \frac{1}{p_m} = \frac{1}{r}$.

- 4. (From Gilbarg & Trudinger, "Elliptic PDEs") Derive the maximum principle for harmonic functions u by considering the necessary conditions for a relative maximum. (Hint: First show that the function $v = u + \frac{\varepsilon}{4} |x|^2$ cannot have an internal local maximum.) $(2 \, \mathrm{pt})$
- 5. Let u_k be a monotonically increasing sequence of harmonic functions on the open domain Ω . Prove Harnack's convergence theorem: If $u_k(x_0)$ converges for an $x_0 \in \Omega$, then the sequence converges pointwise against a harmonic function. $(3 \, \mathrm{pt})$
- 6. Assume u is harmonic in $\Omega \subset \mathbb{R}^n$. Using the mean value formula for partial derivatives of u, prove that there is a constant C such that

$$|\nabla u(x)| \le \frac{C}{r^{n+1}} ||u||_{L^1(B_r(x))}$$

for each ball $B_r(x) \subset \Omega$.

7. (From Gilbarg & Trudinger, "Elliptic PDEs") Using the previous estimate, prove Liouville's theorem: A harmonic function defined over \mathbb{R}^n and bounded is constant. $(1 \, \mathrm{pt})$

 $(1 \, \mathrm{pt})$

 $(1 \, \mathrm{pt})$

 $(2 \, \mathrm{pt})$