- 1. (From Evans, "PDEs") We say $v \in C^2(\Omega)$ is subharmonic if $-\Delta v \leq 0$ in Ω .
 - (a) Prove for subharmonic v that $v(x) \leq \frac{1}{|B_r(x)|} \int_{B_r(x)} v \, dy$ for all $B_r(x) \subset \Omega$. (1 pt)
 - (b) Prove that therefore $\max_{\overline{\Omega}} v = \max_{\partial \Omega} v$.
 - (c) Let $\phi : \mathbb{R} \to \mathbb{R}$ be smooth and convex. Assume u is harmonic and $v := \phi(u)$. Prove v is subharmonic.
 - (d) Prove $v := |\nabla u|^2$ is subharmonic, whenever u is harmonic.
- 2. (From Evans, "PDEs") Let Ω be a bounded, open subset of \mathbb{R}^n . Prove that there exists a constant C, depending only on Ω , such that

$$\max_{\overline{\Omega}} |u| \le C(\max_{\partial\Omega} |g| + \max_{\overline{\Omega}} |f|)$$

whenever u is a smooth solution of

$$\begin{cases} -\Delta u = f & \text{in } \Omega\\ u = g & \text{on } \partial\Omega \,. \end{cases}$$

(Hint: $-\Delta(u + \frac{|x|^2}{2n}\lambda) \le 0$ for $\lambda := \max_{\overline{\Omega}} |f|.$)

- 3. Derive the mean value formula for harmonic functions by integrating $u(y)\Delta\Phi(y-x)$ twice by parts on $B_r(x)$ for the fundamental solution Φ . (1 pt)
- 4. Let $\Delta u = 0$ for r < 1 with $u = g(\theta)$ on r = 1 (where r, θ are 2D polar coordinates). Derive Poisson's integral formula

$$u(r,\theta) = \frac{1}{2\pi} \int_0^{2\pi} \frac{(1-r^2)g(\phi) \,\mathrm{d}\phi}{1+r^2 - 2r\cos(\theta - \phi)} \,.$$

 $(3\,\mathrm{pt})$

 $(1.5\,{\rm pt})$

 $(1 \, \mathrm{pt})$

 $(1 \, \mathrm{pt})$

 $(1 \, \mathrm{pt})$

 $(3 \, \mathrm{pt})$

- 5. Find a Green's function for $\Delta u = f$ on $\{x \in \mathbb{R}^n | x_n > 0\}$ with $\partial u / \partial \nu = g$ on $\{x_n = 0\}$. (1 pt)
- 6. Find a Green's function for $\Delta u = f$ on [0, 1] with u(0) = a, u(1) = b.
- 7. (From Gilbarg & Trudinger, "Elliptic PDEs") Let $G^{y}(x)$ be the Green's function for the Dirichlet problem on a bounded domain Ω . Prove $G^{y}(x) = G^{x}(y) < 0$ for all $x, y \in \Omega$ with $x \neq y$. (1.5 pt)