- energy $E[u] = \int_{\Omega} L(\nabla u(x), u(x), x) dx$ defined for (weakly) differentiable functions $u: \Omega \to \mathbb{R}$
- *Gâteaux derivative* of *E* in direction $v : \Omega \to \mathbb{R}$:

$$\partial_u E[u](v) = \frac{\mathrm{d}}{\mathrm{d}t} E[u + tv] = \int_{\Omega} L_p(\nabla u, u, x) \cdot \nabla v + L_z(\nabla u, u, x) v \, \mathrm{d}x$$

Consider the minimisation problem

$$\min_{u:\Omega\to\mathbb{R}} E[u] \text{ subject to } u = g \text{ on } \partial\Omega$$

and assume it has a smooth minimiser u^* . Then for any $v \in C_c^{\infty}(\Omega)$, 0 must be a minimiser of $t \mapsto E[u^* + tv]$, i. e. $\partial_u E[u^*](v) = 0$. Integration by parts yields

$$0 = \int_{\Omega} \nu \left(-\operatorname{div} L_p(\nabla u^*, u^*, x) + L_z(\nabla u^*, u^*, x) \right) dx$$

for all $v \in C_c^{\infty}(\Omega)$, i. e. u^* satisfies the PDE

$$0 = -\text{div}L_p(\nabla u(x), u(x), x) + L_z(\nabla u(x), u(x), x) \text{ in } \Omega \qquad \text{with } u = g \text{ on } \partial\Omega.$$

Beispiel 75.

We will now introduce a few functional analytic tools and then prove existence of minimisers (and thus solutions to the PDEs) for a broad class of nonlinear energies.

Definition 76 (Dual space). *The* dual space X' to a Banach space X is the space of bounded linear functionals $f: X \to \mathbb{R}$ on X.

Definition 77 (Weak convergence). A sequence $x_k \in X$ is said to converge weakly against $x \in X$, $x_k \to x$, if $f(x_k) \to f(x)$ for any $f \in X'$.

A sequence $f_k \in X'$ is said to converge weakly-* against $f \in X'$, $f_k \stackrel{*}{\rightharpoonup} f$, if $f_k(x) \to f(x)$ for any $x \in X$.

Obviously, convergence in X or X' implies weak or weak-* convergence, respectively.

Theorem 78 (Weak-* compactness). The unit ball (and thus any bounded subset) in a separable Banach space X is weakly-* sequentially compact, i. e. any sequence contains a convergent subsequence.

Proof. See e. g. Alt, "Lineare Funktionalanalysis", p. 229.

Definition 79 (Reflexivity). A Banach space X is called reflexive, if it can be identified with its bidual (X')' (i. e. there is an isometric isomorphism between X and X''). Note: By the previous theorem, if X is separable, bounded sequences in X contain weakly convergent subsequences.

Theorem 80 (Reflexivity of Sobolev spaces). Let Ω be open, bounded, $\partial\Omega$ Lipschitz, $k \in \mathbb{N}_0$. $W^{k,p}(\Omega)$ for $p \in (0,\infty)$ is separable and reflexive.

Proof. See e.g. Alt, "Lineare Funktionalanalysis", p. 234.

Bemerkung 81. Knowing the reflexivity of $L^p(\Omega)$ for $p \in (0,\infty)$, it is now easy to see via Hölder's inequality that $(L^p(\Omega))'' \ge L^p(\Omega) \subset (L^{p^*}(\Omega))'$ i. e. $(L^p(\Omega))' \hookrightarrow L^{p^*}(\Omega)$. Likewise, $(L^p(\Omega))' \supset L^{p^*}(\Omega)$ via Hölder's inequality so that $L^p(\Omega)$ fact, by Radon-Nilvedyn Theorem,

$$(L^p(\Omega))' = L^{p^*}(\Omega).$$

Theorem 82. Assume

- L(p,z,x) is convex in p,
 L(p,z,x) is lower semi-continuous in z,
- $L(p,z,x) \ge \alpha |p|^q \beta$ for some $\alpha, \beta > 0, q \in (0,\infty)$.

If $g \in W^{1,q}(\Omega)$, then E has a minimiser in $\{u \in W^{1,q}(\Omega) \mid u = g \text{ on } \partial\Omega\}$.

Proof. "Direct method of the calculus of variations"

- 1. Neither is $E \equiv \infty$ nor unbounded from below.
- 2. Consider a minimising sequence u_k with $E[u_k] \to \inf_u E[u]$ monotonically.
- 3. Show compactness of the sequence, i. e. existence of a (in some particular sense) converging subsequence $u_k \to u^*$ for some u^* . $||u_k||_{L^p} \le ||\nabla u_k||_{L^p} ||\nabla u_k||_{L^q(\Omega)} < C \text{ for all } k.$ $||u_k||_{L^p} \le ||\nabla u_k||_{L^p} ||\nabla u_k||_{L^q(\Omega)} + ||\nabla u_k||_{L^q(\Omega)} + ||\nabla u_k||_{L^q(\Omega)} = C \text{ for some (different) constant } C > 0.$ Since $W^{1,q}(\Omega)$ is reflexive, a subsequence u_k converges weakly against a $u^* \in \mathbb{R}$ $W^{1,q}(\Omega)$.
 - 4. Show lower semicontinuity of E along the converging sequence, i.e. $E[u] \le$ $\liminf_{k\to\infty} E[u_k].$

Due to the compact embedding $W^{1,q}(\Omega) \hookrightarrow L^q(\Omega)$, $u_k \to u^*$ strongly in $L^q(\Omega)$ for a subsequence and thus even pointwise a. e. after extracting another subsequence. By Egoroff's Theorem we can even find for each $\varepsilon > 0$ a measurable set $\Omega_{\varepsilon} \subset \Omega$ with $|\Omega \setminus \Omega_{\varepsilon}| < \varepsilon$ and $u_k \to u^*$ uniformly on Ω_{ε} .

Wlog., $L \ge 0$. By convexity of L in p,

$$\begin{split} & \liminf_{k \to \infty} \int_{\Omega} L(\nabla u_k, u_k, x) \, \mathrm{d}x \\ & \geq \liminf_{k \to \infty} \left(\int_{\Omega} L(\nabla u^*, u_k, x) \, \mathrm{d}x + \int_{\Omega} L_p(\nabla u^*, u_k, x) \cdot (\nabla u_k - \nabla u^*) \, \mathrm{d}x \right). \end{split}$$

We have

$$\begin{split} \liminf_{k \to \infty} \int_{\Omega} L(\nabla u^*, u_k, x) \, \mathrm{d}x &\geq \liminf_{k \to \infty} \int_{\Omega} \inf_{j \geq k} L(\nabla u^*, u_j, x) \, \mathrm{d}x \\ &\stackrel{(A)}{=} \int_{\Omega} \liminf_{k \to \infty} L(\nabla u^*, u_k, x) \, \mathrm{d}x \stackrel{(B)}{\geq} \int_{\Omega} L(\nabla u^*, u^*, x) \, \mathrm{d}x = E[u^*] \end{split}$$

by Beppo Levi's monotone convergence theorem (A) and the lower semi-continuity of L (B) (the fact $\liminf_k \int \Omega f_i \, \mathrm{d}x \geq \int_{\Omega} \liminf_k f_i \, \mathrm{d}x$ is also called "Fatou's lemma"). Furthermore,

$$\begin{split} &\int_{\Omega} L_p(\nabla u^*, u_k, x) \cdot (\nabla u_k - \nabla u^*) \, \mathrm{d}x \\ &\geq \int_{\Omega_{\varepsilon}} L_p(\nabla u^*, u^*, x) \cdot (\nabla u_k - \nabla u^*) \, \mathrm{d}x + \int_{\Omega_{\varepsilon}} (L_p(\nabla u^*, u_k, x) - L_p(\nabla u^*, u^*, x)) \cdot (\nabla u_k - \nabla u^*) \, \mathrm{d}x \end{split}$$

of which the first term converges to zero due to the weak convergence of u_k and the second due to Hölder's inequality and the uniform convergence. Letting $\varepsilon \to 0$ yields the result.

Parabolic PDEs

Heat equation

Hyperbolic PDEs

Wave equation