
Hölder spaces
Ï Ω⊂Rn open, bounded
Ï u ∈C 0(Ω)

Ï γ ∈ [0,1]
[u]γ := sup

x,y∈Ω,x 6=y

|u(x)−u(y)|
|x − y |γ .

Definition (Hölder space)
For u ∈C k (Ω) define the Hölder norm

‖u‖C k,γ(Ω) =
∑

|α|≤k
‖Dαu‖C 0(Ω) +

∑
|α|=k

[Dαu]γ .

The function space
C k,γ(Ω) =

{
u ∈C k (Ω)

∣∣∣‖u‖C k,γ(Ω) <∞
}

is called the Hölder space with exponent γ.

Ï C k,0 =C k

Ï C 0,1 = space of Lipschitz-continuous functions



Theorem (Hölder space)
The Hölder space with the Hölder norm is a Banach space, i. e.

Ï C k,γ(Ω) is a vector space,
Ï ‖ ·‖C k,γ(Ω) is a norm,
Ï any Cauchy sequence in the Hölder space converges.

Proof.
Homework!



Weak derivative
Ï u, v ∈ L1

loc(Ω)
Ï α a multiindex
Ï C∞

c (Ω) = infinitely smooth functions with compact support in Ω

Definition
v is called the αth weak derivative of u,

Dαu = v ,

if

(1)
∫
Ω

uDαψdx = (−1)|α|
∫
Ω

vψdx

for all test functions ψ ∈C∞
c (Ω).

Remark
Ï (1) =̂ k times integration by parts
Ï u smooth ⇒ v = Dαu is classical derivative



Weak derivative

Example (on Ω= (0,2))

1. Ï u(x) =
{

x if 0<x≤1
1 if 1<x<2

Ï v(x) =
{

1 if 0<x≤1
0 if 1<x<2

v = Du, since for any ψ ∈C∞
c (Ω)∫ 2

0
uψ′ dx = . . . =−

∫ 2

0
vψdx ,

2. Ï u(x) =
{

x if 0<x≤1
2 if 1<x<2

u does not have a weak derivative, since

−
∫ 2

0
vψdx = . . . =−

∫ 1

0
ψdx −ψ(1)

cannot be fulfilled for all ψ ∈C∞
c (Ω) by any v ∈ L1

loc(Ω)



Lebesgue spaces

Definition (Lebesgue space)
Let p ∈ [1,∞].

‖u‖Lp (Ω) =
{(∫

Ω |u|p dx
)1/p (p <∞)

esssupΩ|u| (p =∞)

The Lebesgue space with exponent p is

Lp (Ω) = {
u :Ω→R

∣∣u measurable with ‖u‖Lp (Ω) <∞}
.

Theorem (Lebesgue space)
Lp (Ω) is a Banach space.



Sobolve spaces
Definition (Sobolev space)
Let p ∈ [1,∞], k ∈N0. The space

W k,p (Ω) = {
u ∈ L1

loc(Ω)
∣∣weak derivative Dαu ∈ Lp (Ω) for all |α| ≤ k

}
with ‖u‖W k,p (Ω) =

{(∑
|α|≤k

∫
Ω |Dαu|p dx

)1/p 1 ≤ p <∞∑
|α|≤k esssupΩ|Dαu| p =∞

is called a Sobolev space.

Theorem (Sobolev space)
W k,p (Ω) is a Banach space.

Remark
Ï W 0,p (Ω) ≡ Lp (Ω)

Ï W k,p
0 (Ω) = closure of C∞

c (Ω) in W k,p (Ω)

Ï H k (Ω) ≡W k,2(Ω) are Hilbert spaces (what is inner product?)



Properties of Lebesgue and Sobolev functions
Theorem (Hölder’s inequality)
Ï p, p∗ ∈ [1,∞] with 1

p + 1
p∗ = 1

Ï f ∈ Lp , g ∈ Lp∗

}
⇒

∫
Ω
| f g |dx ≤ ‖ f ‖Lp (Ω)‖g‖Lp∗ (Ω)

Theorem (Trace theorem)
Let Ω⊂Rn bounded, ∂Ω Lipschitz. There exists a continuous linear
operator T : W 1,p (Ω) → Lp (∂Ω), the trace, with
(i) Tu = u|∂Ω if u ∈W 1,p (Ω)∩C 0(Ω),
(ii) ‖Tu‖Lp (∂Ω) ≤C‖u‖W 1,p (Ω),

(iii) Tu = 0 ⇔ u ∈W 1,p
0 (Ω).

Theorem (Poincaré’s inequality)
Ω⊂Rn bounded, open, connected, ∂Ω Lipschitz. ∃C =C (n, p,Ω)

‖u −Ö
Ωu dx‖Lp (Ω) ≤C‖∇u‖Lp (Ω) ∀u ∈W 1,p (Ω)

‖u‖Lp (Ω) ≤C‖∇u‖Lp (Ω) ∀u ∈W 1,p
0 (Ω)



Embedding theorems
Theorem (Sobolev embedding)
Ω⊂Rn open, bounded, ∂Ω Lipschitz, m1,m2 ∈N0, p1, p2 ∈ [1,∞). If

m1 ≥ m2 and m1 − n
p1

≥ m2 − n
p2

then W m1,p1 (Ω) ⊂W m2,p2 (Ω) and there is a constant C > 0 s. t.

‖u‖W m1,p1 (Ω) ≤C‖u‖W m2,p2 (Ω) ∀u .

If the inequalities are strict, W m1,p1 (Ω) ,→W m2,p2 (Ω) compactly.

Theorem (Hölder embedding)
Ω⊂Rn open, bounded, ∂Ω Lipschitz, m,k ∈N0, p ∈ [1,∞), α ∈ [0,1]. If

m − n
p ≥ k +α and α 6= 0,1

then W m,p (Ω) ⊂C k,α(Ω) and there is a constant C > 0 s. t.

‖u‖W m,p (Ω) ≤C‖u‖C k,α(Ω) ∀u .

If m − n
p < k +α , W m,p (Ω) ,→C k,α(Ω) compactly.


