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1 Introduction

”Mathematical Imaging” is a notion that was unknown in the mathematical
world of the 70-ties of the last century. By now it has become a lively mathe-
matical discipline. Mathematical Imaging comprises image processing (often
considered as part of engineering), image understanding (part of artificial in-
telligence) and image reconstruction (generating images from data produced
by specifically designed devices). This paper deals with this last kind of
imaging, i.e. with techniques such as X-ray computed tomography, emis-
sion tomography, near infrared imaging, electrical impedance tomography,
seismic imaging, radar, and ultrasound tomography. This list is necessarily
incomplete. New imaging modalities come up every fortnight.

Many image reconstruction problems can be formulated as inverse prob-
lems of partial differential equations. It is this point of view that we adopt
in this note. The goal is a unified theory of image reconstruction. It turns
out that a large class of reconstruction algorithms can be formulated inde-
pendently of the type of the underlying differential equation and were known
in the respective fields of applications previously under various names. Like-
wise the structure of exact and approximate inversion formulas (if available)
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is surprisingly similar. On the other hand the quality of the reconstructed im-
age can often be predicted simply from the type of the underlying differential
equation.

The plan of the paper is as follows: We start with three techniques (X-
ray tomography (CT), single particle emission tomography (SPECT) and
positron emission tomography (PET)) that are based on the transport equa-
tion. We demonstrate the advantage of the differential equations point of
view over the traditional integral geometric approach by accurate modelling
(scatter) and new inversion formulas (Novikov). As a further example for
the transport equation we discuss near infrared imaging (NIR), where we
will make the transitions to elliptic equations by the diffusion approximation.
Another example for imaging with elliptic equations is electrical impedance
tomography (EIT). We conclude the paper with seismic imaging, synthetic
aperture radar (SAR) and ultrasound tomography which are governed by the
wave equation.

2 X-ray tomography (CT)

Even though elementary mathematical methods were used in imaging well
before the 70-ties (e.g. in seismics and radar), the advent of CT in 1973 was
the beginning of the new mathematical discipline of imaging. It lead to a
mathematical sophistication that was unheard of in imaging before.

The principle of CT is nowadays well known; see Figure 1. A thin X-ray
beam scans a cross section of the human body, and a computer produces an
image. A modern CT scanner is shown in Figure 2. In Figure 3 we see the
data measured in the scanning process and the reconstructed image.

Figure 1: Principle of Computerized Tomography (CT).

2



Figure 2: Modern CT scanner.

Figure 3: Data set (left) for an abdominal cross section (right). Note that
the discontinuities in the cross section can clearly be seen in the data set.

The most simple mathematical model of CT assumes that the scanner
measures the line integrals of the absorption coefficient f(x). This gives rise
to the Radon transform

(Rf)(θ, s) =
∫

x·θ=s
f(x)dx, θ ∈ S1, s ∈ IR1

and the mathematical problem is to invert R. In principle this was solved by
Radon’s 1917 inversion formula

f = R∗Kg, g = Rf (2.1)
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where R∗ is the backprojection (the adjoint of R),

(R∗g)(x) =
∫

S1
g(θ, x · θ)dθ

and K the composition of the derivative and the Hilbert transform:

(Kg)(s) =
1

4π2

∫
g′(t)

s− tdt.

The early history of CT has still to be written. For a preliminary account see
[25]. The works [15] - [19] can serve as an introduction into the mathematical
and technical aspects of CT.

The most important reconstruction algorithm, the filtered backprojection
algorithm, can be viewed as a computer implementation of Radon’s inversion
formula. In the first commercially available CT scanner an iterative method
was used which is based on Kaczmarz’s 1937 method for solving linear sys-
tems of equations. Its update is

f ← f − αR∗θC−1
θ (Rθf − gθ) (2.2)

where
gθ = g(θ, ·), Rθf = (Rf)(θ, ·)

Cθ is a certain positive definite operator and α is a relaxation parameter.
All of the iterative reconstruction methods in this paper are patterned after
(2.2).

Research in the mathematics of CT is still going on. As an example I
mention truly 3-D-cone-beam CT, with the X-ray source on a helix and 2D
detector arrays. Katsevich’s algorithm [26] is among the most competitive
ones, see Figure 4. The computational bottleneck is the backprojection which
still needs a speed up. Ideas include divide-and-conquer strategies and non-
equidistant fast Fourier transforms (FFT’s).
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Figure 4: Scanning geometry (left) and reconstructions (right) with different
reconstruction algorithms for helical scanning.

3 CT as an inverse problem of the transport

equation

After these introductory remarks we come to the main topic of this paper. We
formulate CT as an inverse problem for the transport equation. Introducing
the density u(x, θ) of the particles at x ∈ Ω travelling in direction θ ∈ S1 we
have in Ω× S1

θ · ∇u(x, θ) + f(x)u(x, θ) = δ(x− x0)δ(θ − θ0) (3.1)

and, in the absence of exterior radiation,

u(x, θ) = 0, x ∈ ∂Ω, θ · νx ≤ 0 (3.2)

with νx the exterior normal at x ∈ ∂Ω. (3.1), (3.2) is a reasonable problem
that admits a unique solution under natural conditions. The inverse problem
of CT consists in finding f from

u(x, θ), x, x0 ∈ ∂Ω, θ = (x− x0)/|x− x0|.

The inverse problem reduces immediately to the Radon transform since

u(x, θ) = H((x− x0) · θ)δ((x− x0)θ⊥)δ(θ − θ0)e

x∫
x0

fds

.
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This (trivial) example has already the main ingredients of imaging and partial
differential equations: The underlying physical process is described by the
partial differential equation, and the measurements give rise to boundary
values of the solution. From this overdeterminicity the model parameters (in
this case the X-ray absorption f) have to be determined. Integral geometry
comes in only because integral geometric transforms (in this case the Radon
transform) are exact (or approximate) solution operators.

4 Single particle emission computed tomog-

raphy (SPECT)

Now we consider the transport equation

θ · ∇u(x, θ) + a(x)u(x, θ) = f(x) in Ω× S1 (4.1)

u(x, θ) = 0, x ∈ ∂Ω, θ · νx ≤ 0. (4.2)

(4.1), (4.2) describes SPECT: A radiopharmaceutical is injected and the ra-
diation is measured outside the body in a tomographic fashion, see Figure
5. One seeks the distribution f of the radiopharmaceutical. We pose two
inverse problems:

Inverse problem 1: Assume a to be known. Find f from u(x, θ),
x ∈ ∂Ω, θ ∈ S1.

Inverse problem 2: Find a and f from u(x, θ), x ∈ ∂Ω, θ ∈ S1.

Figure 5: Novel SPECT scanner (Solstice of Philips Medical Systems) (left)
and state-of-the-art reconstructions (right) of thorax.
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Inverse problem 1 (a so-called inverse source problem) is linear. It corre-
sponds to the case in which the attenuation a of the body is known. Inverse
problem 1 reduces to the attenuated Radon transform

(Raf)(θ, s) =
∫

x·θ=s
f(x)e−

∫∞
a

a(x+s′θ)ds′dx (4.3)

since the solution of (4.1), (4.2) is

u(x, θ) =
∫ 0

−∞
f(x+ sθ)e

∫∞
a

a(x+s′θ)ds′ds

which is just a reparameterization of (4.3). Ra admits an explicit inversion
formula very similar to Radon’s inversion formula: It g = Raf , then

f =
1

4π
Re divR∗−a(θe

−hHehg) (4.4)

where H is the Hilbert transform, h = 1/2(I+iH)Ra andR∗a is the (weighted)
backprojection

(R∗ag)(x) =
∫
S1 e−(Da)(x,θ⊥)g(θ, x · θ)dθ

(Da)(x, θ) =
∫∞
0 a(x+ sθ)ds.

This formula was obtained by Novikov [32] in 2000. In our context it is
interesting to note that Novikov received his result by working directly on
(4.1), (4.2) (by the ∂-method), rather than dealing with the integral geomet-
ric counterpart Ra. Later simpler derivations of (4.4) (most notably in [33]
were found. However it is very unlikely that (4.4) would have been found
without the differential equation viewpoint.

Inverse problem 2 is non linear. It is not uniquely solvable. However if
a is modelled by a few parameters, these parameters can be determined in
favourable circumstances. This is possible since consistency conditions in the
range of Ra are known; see [40].

5 Positron emission tomography (PET)

In PET we also determine the density f of a radiopharmaceutical inside the
body. The underlying physics is different from SPECT in that the sources
eject the particles pairwise in opposite directions, and the detectors work in
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coincidence mode, i.e. particles are counted only if they arrive at the same
time. Often the particles are scattered before they arrive at the detector.
For accurate modelling of the scatter the simple transport equations of the
previous sections have to be complemented by a scattering integral:

θ · ∇u(x, θ) + a(x)u(x, θ) =
∫

S2

k(x, θ, θ′)u(x, θ′)dθ′ + f(x)

where k(x, θ, θ′) is the provability that a particle arriving at x with direction
θ′ continues its trip in direction θ. For simplicity we ignore the change of
energy in the scattering process. Assuming a, k known we again want to find
f from measurements of u(x, θ) at the boundary of the reconstruction region
Ω. For a probabilistic derivation of the measurement operator see [27].

6 Near infrared imaging (NIR)

So far we discussed established imaging techniques that are available in major
hospitals. Now we come to techniques that are still under development.
Human tissue is opaque for visible light, but becomes transparent in the
NIR regime. The differential equation is again a transport equation:

θ ·∇u(x, θ) + (µs(x) +µa(x))u(x, θ) = µs(x)
∫

S2

k(x, θ, θ′)u(x, θ′)dθ′+ δ(x− y)

Here y ∈ ∂Ω is the position of a laser source (700 - 1000 nm), k a known
scattering kernel, and µs, µa the scattering and attenuation coefficients, re-
spectively. Again the problem is to recover µs, µa from measurements of
u(x, θ) for x, y ∈ ∂Ω.

In NIR, the scattering phenomena by far exceed the effects of transport:
The mean free path is smaller than 0.01 mm. Thus the transport equation
can be replaced by the diffusion approximation: Putting

u(x) =
∫
u(x, θ)dθ

and using time harmonic illumination with frequency ω we obtain to good
accuracy

−∇ · (D(x)∇u(x)) + (µa(x) + i
ω

c
)u(x) = 0, D =

1

3(µa + µ′s)
(6.1)
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where c is the speed of light and µ′s the reduced scattering coefficient. The
boundary conditions become

u(x) + 2D(x)
∂u

∂v
(x) = g−(x) (source) (6.2)

∂u

∂v
(x) = g(x) (measurement) (6.3)

The inverse problem consists in finding µa and D from the measurements at
the boundary.

Numerically the inverse problem is of the following form: Suppose we
have p sources g−j , j = 1, . . . , p. Let uj be the corresponding solution of
(6.1), (6.2), and put

Rj(f) =
∂uj
∂v

, f =

(
D
µa

)
.

Then we have to solve the nonlinear system

Rj(f) = gj, j = 1, . . . , p. (6.4)

An approximate solution of (6.4) can be found by an immediate extension of
(2.2):

f ← f − α(R′j(f))∗(Rj(f)− gj) (6.5)

where R′j is the derivative of Rj. The operator (R′j(f))∗ can be computed by
adjoint differentiation:

(R′j(f))∗r =

(
−∇uj · ∇z
−ujz

)
(6.6)

where z is the solution of

−∇ · (D∇z) + (µa + i
ω

c
)z = 0 in Ω, z = r on ∂Ω. (6.7)

The reconstruction process (6.5) - (6.7) reveals the following scheme:
Phase conjugate and backpropagate the residual r = Rj(f)− gj, phase con-
jugate the backpropagated field z and correlate it with the true field uj to
produce the update for f . The phase conjugations are nothing but time
reversal in frequency domain.
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7 Electrical impedance tomography (EIT)

Another example of an imaging technique that is based on an elliptic equation
is EIT. Here the differential equation is

∇ · (σ∇u) = 0 in Ω (7.1)

with σ = σ(x) the conductivity. On the boundary ∂ Omega we have

∂u

∂v
= f, u = g. (7.2)

One of these quantities is prescribed, the other one is measured. The inverse
problem calls for determining σ from many pairs f, g.

EIT has found much interest in mathematical circles. Calderon [6] proved
uniqueness for the linearized problem, introducing the by now famous method
of exponentially growing solutions. This method was extended by Nachmann
[21], Sylvester-Uhlmann [37] to various cases of the fully nonlinear problem
and even lead to numerical methods [20].

Being based on an elliptic equation, EIT suffers from the same shortcom-
ings as NIR imaging. For what can be achieved see [7].

8 Seismic imaging

In the rest of the paper we deal with imaging techniques that are based on
the wave equation. In a common source gather the acoustic pressure u(x, t)
is measured at each point x on the surface xn = 0 for each source s on the
surface. u satisfies

∂2u
∂t2

= c2(x)(∆u+ q(t)δ(x− s)) in xn > 0,
u = 0 for t < 0.

(8.1)

Here, c(x) is the speed of sound in the subsurface x3 > 0 and q the source
wavelet. The inverse problem consists in computing c from the seismograms
u(x, t), x3 = 0, t ≥ 0.

Most imaging in seismics and is done as high frequency imaging. By this
we mean that c is decomposed as c = c0 + c1 where c0 is a smooth, i.e.
slowly varying background that is known , and c1 is a small highly oscillating
function, representing the sought for fine structure of the subsurface.
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High frequency imaging is based on linearization: We approximately have

Rs(c) ≈ Rs(c0) +R′s(c0)c1.

Using the data gs = Rs(c), applying the adjoint of the derivative R′s(c0) and
integrating over the sources we obtain

∫
(R′s(c0))∗(gs − Rs(c0))ds = Fc1, F =

∫
(R′s(c0))∗R′s(c0)ds. (8.2)

The important fact is that F is an elliptic pseudo differential operator [2].
Such operators preserve the singular support of a function. Thus the left
hand side of (8.2) which can be computed from the data (if c0 is known) has
precisely the same discontinuities as c1. Hence it provides a true picture of
the fine structure of the subsurface.

High frequency imaging as described above works well in practice - pro-
vided a good estimate for c0 is available. Finding good estimates for c0 is
known as the velocity estimation problem is seismic imaging.

For the evaluation of (8.2) we have to compute (R′s(c0))∗r for r a seismo-
gram. One can show that

(R′s(c0))∗r =
2

c0

∫ T

0

∂2u

∂t2
zdt (8.3)

where u is the pressure field for c0 (i.e. the solution of (8.1) for c = c0) and
z is the solution of

∂2z
∂t2

= c2
0∆z in x3 > 0,

z = 0, ∂z
∂x3

= − r
c20

on x3 = 0,

z = 0 for t > T.

(8.4)

Note that (8.4) is a final value problem. In the light of (8.3), (8.4), the recon-
struction formula (8.2) can be viewed as time reversal [12]: Backpropagate
the residual r = gs − Rs(c0) through the medium and correlate it with the
pressure field.

The left hand side of (8.2) is clearly reminiscent of the update in the
iterative methods (2.2) and (6.5). It is tempting to use iterative approach
also for the seismic problem, iterating according to

c← c− α(R′s(c))
∗(Rs(c)− gs). (8.5)

Such methods have been widely used [39], [5], with very limited success. In
order to understand what’s going on we employ Fourier analysis, under the
simplifying assumptions
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(i) c2(x) = c2
0/(1 + f(x)), f small, c0 constant.

(ii) The sources s are fired simultaneously (so as to produce a plane wave
travelling in the x3 direction).

Then one can show [23] that the data determine the function

q̂(ω)f̂(ξ′,−k −
√
k2 − |ξ′|2), k =

ω

c0
(8.6)

where q̂, f̂ are the 1D and 3D Fouriertransforms of q, f , respectively. Now
assume that the source wavelet q has frequencies in [ω0, ω1], i.e. q̂(ω) in
[ω0, ω1] and put k0 = ω0/c0, k1 = ω1/c0. Then the domain where f̂ is
determined is sketched in Fig.7.

The range (k0, k1) of available wave numbers depends entirely on the
source wavelet q. For q = δ, the Dirac δ-function, k0 = 0 and k1 = ∞. In
this case we conclude from Fig. 7 that a layered medium with dip angle
< π/4 can be well reconstructed by a single downgoing plane wave, and that
an arbitrary medium can be reconstructed from two plane waves making an
angle of π/2. In view of [36] this is not surprising. Unfortunately such a
wavelet is not supported by the earth. For real wavelets, such as the Ricker
wavelet, the range of usable wave numbers is restricted to a finite interval
[k0, k1]. Typically, k0 = k1/10. In that case the part |ξ| < k0 of f̂(ξ) can not
be recovered, not even from plane waves of arbitrary directions.
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Figure 7: Region in Fourier domain where f̂ is determined by the data gen-
erated by a plane wave falling in from top.

Thus we see that the low frequency parts of f (and hence of c) are not
determined by the data. A method such as (8.5) which by its very nature
tries to determine these low frequency parts is bound to fail. This failure is
entirely due to the missing low frequencies in the source wavelet q.

Estimating the low frequency part of the velocity can be viewed as the
most important problem in seismic imaging. A promising technique is to
exploit the overposedness of seismic data [38].

Imaging with the wave equation has recently found an extension to ran-
dom media [35]. Even though the theoretical background is quite different
from the deterministic setting above, backpropagation and time reversal still
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play an important role.

9 Synthetic aperture radar (SAR)

SAR is another instance of imaging with the wave equation where high fre-
quency methods play a dominant role. the geometry of SAR is explained in
Figure 6: A plane is flying over a terrain that is described by the ground
reflectivity function f(x1, x2). An antenna on the plane sends out a radar
signal and measures the returned impulse. From these measurements along
the flight track f has to be reconstructed.

Figure 6: SAR geometry. Data are collected along the flight path.

In the most simple case f is reconstructed from its averages over circles
whose midpoints are on the flight track [1], [17]. In a more refined model the
propagation of the signal is described by the wave equation

∂2u

∂t2
= c2(∆u+ q(t)δ(x− y))

where y is a point on the flight track, q(t) = eiωt the time harmonic excitation
of the antenna, and

1

c2
=

1

c2
0

+ f(x1, x2)δ(x3)

with c0 the speed of light. The inverse problem consists in finding f from
u(y, t) for y on the flight track and t > 0.
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By linearising around f = 0 (Born approximation) and the far field ap-
proximation (y is far away from the support of f) one can show that approx-
imately [8]

u(y, t) = u0(y, t) +
ω2ei(ωt+2k|y|)

16π2|y|2
∫
f(x)e−2ik y

|y| ·xdx

where k = ω/c0 is the wave number and u0 is the (known) field for f = 0. k
is restricted to an interval [k1, k2] much shorter than the central wave number
(k1 + k2)/2.

Thus the problem amounts to determining f from its Fourier transform
f̂(2ky/|y|). Since k is very large and y/|y| is restricted to a small angular
range (typically a few degrees) we only obtain f̂ in a small truncated sector
far away from the origin.

It is clear that from so little information f can not be reconstructed
uniquely. However, microlocal analysis [30] shows that essential features of
f such as corners can be recovered. Another difficulty is computational: In
order to find f from f̂ one has to perform a fast Fourier transform (FFT).
The usual FFT algorithm require f̂ to be known on a cartesian grid, what
is clearly not the case here. Thus non-equidistant FFT’s [13] or gridding
techniques [4] have to be used.

10 Ultrasound transmission tomography

In the two preceding sections we have seen that wave equation imaging using
only reflected signals suffers from a serious drawback: It is difficult to recover
low frequency features. Thus most of the work in seismic and radar imaging is
high frequency. Present day’s medical ultrasound is also based on reflections.

The situation changes completely if transmitted signals are available.
This is the case in novel medical ultrasound scanners; see Figure 8. We
analyze the impact of transmission measurements again in Fourier domain;
see Figure 9. To fix ideas we take n = 2. The combined reflection and trans-
mission signals determine f̂ in the disc around (0, k1) of radius k1, minus the
disk around (0, k0) with radius k0. This is the picture for one downgoing
plane wave.
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Figure 8: Ultrasound scanner developed by TechniScan, Salt Lake City (left),
scanning geometry (top right) and reconstruction of speed of sound and at-
tenuation (bottom right).

Figure 9: Regions in Fourier span where f̂ is determined by reflection (left)
and transmission (middle) from a single plane wave. Combined region is also
shown (right).

Figure 10: Regions in Fourier domain in which f̂ is determined by one (left),
two (middle) and four (right) plane waves.

Now let k1 →∞ and use two plane waves making an angle of 90◦ and four
plane waves making angles of 45◦. Then we get the pictures in Figure 10.
We see that for a modest number of plane waves we get on almost complete
coverage in Fourier space. Of course this is a classical result [3]. As in the
previous sections this rigoursly holds only in the Born approximation, i.e. if
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the scattering is weak. However practical experience suggests that it is also
true for fairly strong scattering.

As image reconstruction algorithm for ultrasound transmission tomogra-
phy one can use the algorithm (8.5). Since the number of sources is large a
preprocessing step (plane wave stacking [23]) is necessary to keep the com-
putation time low. Alternatively one can work in frequency domain. This
leads to the following inverse problem for the Helmholtz equation:

Let u be the solution of

∆u+ k2(1 + f(x))u = 0 in IR2,
u = eikx·θ + us

(10.1)

where θ ∈ S1 and us satisfies the Sommerfeld radiation condition. f is the
complexe valued function

f =
c2

0

c2
− 1− i

k

2αc0

c
(10.2)

where c(x) is the local speed of sound, c0 the speed of sound in the ambient
medium, and α is the attenuation coefficient. f is supported in |x| ≤ r. Find
f from the values of us(x) for |x| = r, k fixed, and θ ∈ S1.

Again the problem is easily solved in the Born approximation, and there
even exists an explicit error estimate [24]. In the Born approximation f̂ is
stably determined by the data in a circle of radius 2k. According to the
Shannon sampling theorem this means that f can be stably determined with
spatial resolution π/k. As has been shown recently [34] this is true also for
the fully nonlinear problem.

Unfortunately the Born approximation is not applicable to medical imag-
ing, since f is far too big. Even though explicit methods based on the ∂
technique exist [31] the methods of choice seem to be iterative, patterned
after (2.2), (6.5), (8.5). These methods require the repeated solution of the
boundary value problem (10.1) and its time-reversed analogue. Since k is
large this is a challenge in itself, quite independently of the inversion pro-
cess.

A way out is the reformulation of the boundary value problem (10.1) as an
initial value problem. This sounds like heresy, since initial value problems for
elliptic equations are notoriously unstable. However a closer analysis shows
that this instability is a pure high frequency phenomenon that concerns only
spatial frequencies beyond k. These are irrelevant if we restrict the spatial
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resolution of the reconstructed image to π/k, i. e. one half of the wavelength
of the irradiating plane wave. For the stability of the initial value problem
for the Helmholtz equation see [28], [18]. Highly efficient marching schemes
for the initial value problem for the Helmholtz equation are described in [29].

Figure 11: Top: Real (left) and imaginary (right) part of breast phantom.
Middle: Reconstructions. Bottom: Cross section through phantom and re-
construction along the horizontal line displayed above.

What can be achieved by these techniques is shown in Figure 11. The
computations are done on a 256 × 256 grid and require about 1 minute on a
3 GHz double processor PC.

For k small, the resolution is poor. However one can still detect suffi-
ciently large objects. This can be done by various methods of inverse obstacle
scattering [9], [16]. This works with methods that are completely different
from those discussed in this paper.
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