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X-ray Tomography (CT)

Emission Computed Tomography (SPECT, PET)

Optical Tomography -Near Infrared Imaging (NIR)

Electrical Impedance Tomography (EIT)

Seismic  imaging

Synthetic Aperture Radar (SAR)

Ultrasound Tomography

Goal: Unified treatment as inverse problem of partial differential equations



CT(Principle)



Modern CT Scanners



X-Ray Tomography (CT) detector

source� 

a = a(x) absorption coefficient

(Ra)(θ,s) = a(x)dx, θ ∈S1, s ∈R1

x⋅θ =s∫
Radon transform

� 

a

� 

Radon's 1917 inversion formula:
f = R∗Kg, g = Rf

(R∗g)(x) = g(θ,x ⋅θ)dθ
S1∫

(Kg)(s) = 1
4π 2

′ g (t)
s − t∫ dt

� 

x

� 

R∗ =  adjoint of R =  backprojection



Data (Sinogram) Tomogram



3D cone beam reconstruction in CT

Algorithm based on 
interpolation

Katsevich algorithm



� 

u(x,θ) = H ((x − x0 ) ⋅θ)δ ((x − x0 ) ⋅θ ⊥ )δ (θ −θ0 )exp{− ads
x0

x

∫ }

detector

source

CT as an inverse problem of the transport equation

� 

Introduce particle density u(x,θ) at x 
in direction θ:

θ ⋅∇u(x,θ) + a(x)u(x,θ) = δ (x − x0 )δ (θ −θ0 )
u(x,θ) = 0, x ∈Γ, θ ⋅ν x ≤ 0

� 

Γ

� 

a

� 

Inverse problem: Determine a from
u(x,θ), x,x0 ∈Γ, θ = (x − x0 ) / x − x0 � 

θ0

� 

x0



Single Particle Emission Computed Tomography (SPECT)

� 

f

Detector

� 

u(x,θ) = f (x + sθ)exp{− a(x + ′ s θ)d ′ s 
s

0

∫
−∞

0

∫ }ds
� 

θ ⋅∇u(x,θ) + a(x)u(x,θ) = f (x)
u(x,θ) = 0, x ∈Γ, θ ⋅ν x ≤ 0

Inverse problem 1:
Find f from u(x,θ), x ∈Γ, θ ∈S1, a known!
Uniquely solvable by Novikov's inversion
formula for the attenuated Radon transform Ra

(Ra f )(θ,s) = f (x)exp{− a(x + ′ s θ)d ′ s }dx
0

∞

∫
x⋅θ =s
∫

Inverse problem 2:
Find f and a from u(x,θ), x ∈Γ, θ ∈S1

Nonlinear inverse problem, not uniquely solvable

� 

a
� 

Γ

� 

θ



SPECT Images

Spect Scanner



Positron Emission Tomography (PET)

� 

f

� 

x

� 

yPositron Photon 1

Photon 2

� 

Detectors x,y work in coincidence mode.
Sources emit particles pairwise in 
oposite directions:

� 

y

� 

x

� 

a,k

� 

f

� 

θ ⋅∇u(x,θ) + a(x)u(x,θ) = k(x,θ, ′ θ )u(x, ′ θ )d ′ θ + f (x), 
S1∫

k(x,θ, ′ θ ) = probability that a particle arriving at x with direction θ
continues its journey in direction ′ θ 

detector

detector



Optical Tomography - Near Infraread Imaging (NIR)

laser source, 700-1000 nm

detectors

Scattering by far exceeds transport, mean free path < 0.01 mm! - Switch to diffusion approximation!

� 

µa , µs

� 

y

� 

θ ⋅∇u(x,θ) + (µa (x) + µs(x))u(x,θ) = µs(x) k(x,θ, ′ θ )d ′ θ + δ (x − y)
S1∫

� 

Inverse problem: Find µa ,µs from measurements of u(x,θ), x,y ∈Γ

� 

Γ



Numerically this problem is of the following form:

Optical Tomography in Diffusion Approximation

� 

D = 1/ 3(µa + ′ µ s )

� 

−∇⋅ D(x)∇u(x)( ) + (µa (x) + iω
c

)u(x) = 0
� 

Put u(x) = 1
S1 u(x,θ)dθ

S1∫

� 

u(x) + 2D(x)∂u(x)
∂ν

= g−(x) = source

� 

∂u(x)
∂ν

= g+ (x) = measurement

� 

Suppose we have p sources, j = 1,..., p. Put

                Rj ( f ) =
∂u j

∂ν
, f = (D, ′ µ s ).

Then we have to solve the nonlinear system
                Rj ( f ) = gj

+ , j = 1,..., p.



take this subscripts mod p

 Kaczmarz‘ Method (Nonlinear)

� 

Rj ( f ) = gj , j = 1,...p.

� 

We compute approximations f j , j = 1,2,... to f according to

f j = f j−1 +α(Rj
′( f j−1))∗(gj − Rj ( f j−1))

� 

Compute the operator (Rj
′( f ))∗  by adjoint differentiation:

� 

f0

� 

f1

� 

f2

� 

f3

� 

Rj
′( f )∗r = (−∇u j ⋅∇z , − u j z )T

� 

−∇⋅(D∇z) + (µa + iω
c

)z = 0 in Ω, z = r  on Γ

� 

f



The Monstir Optical Imaging System (Neonatal Head)



Optical Mamography

Small Animal Imaging



Electrical Impedance Tomography (EIT)

� 

∇⋅(σ∇u) = 0 in Ω
∂u
∂ν

= f prescribed on ∂Ω

u = g measured on ∂Ω
σ = σ (x) conductivity

� 

Inverse problem: Find σ from many pairs f ,g.

� 

Ω

� 

σ

� 

f
� 

g



EIT Image Lungs and Heart



Seismic Imaging

 

� 

x1

� 

x2

� 

∂2u
∂t 2 = c2(x)(Δu + q(t)δ (x − s))

u = 0, t < 0
c speed of sound, s source
q source wavelet
(common source gather)

Inverse problem: Find c from
the seismograms gs = Rs(c)

Rs(c)(x1,t) = u(x1,0,t),
x1 ∈R1, 0 < t < T



High Frequency Imaging

� 

c =  c0 +  c1

smooth known background small high frequency perturbation

� 

Linearization:  Rs(c0 + c1) ≈ Rs(c0 ) + ′ R s(c0 ) c1

� 

gs − Rs(c0 ) ≈ ′ R s(c0 ) c1

� 

′ R s(c0 )∗(gs − Rs(c0 )) ≈ ′ R s(c0 )∗ ′ R s(c0 ) c1

� 

′ R s(c0 )∗(gs − Rs(c0 ))
s
∑ ≈ ′ R s(c0 )∗ ′ R s(c0 ) c1

s
∑

elliptic pseudodifferential operator,
preserves singular support

reconstruction

� 

The reconstruction has the same singular support as the correct velocity!



seismogram    reconstructed velocity
= migrated seismogram

Wave Equation Migration



Kaczmarz‘ Method in Seismic Imaging

� 

Rs(c) = u x2 =0 = gs =  seismogram for source s

� 

For each source s

c ← c +α(Rs
′(c))∗(gs − Rs(c))

� 

Compute the adjoint by time reversal:

(Rs
′(c))∗r)(x) = z(x,t)∂

2u(x,t)
∂t 2 dt

0

T

∫

� 

∂2z
∂t

= c2(x)Δz for x2 > 0

∂z
∂x2

= r on x2 = 0

z = 0, t > T



Kaczmarz‘ method for the Marmousi Velocity Model

Original

Reconstruction

Works only for wavelets q that contain frequencies near zero -
unless we have transmission measurements.



Synthetic Aperture Radar (SAR)

� 

∂2u
∂t 2 = c2(Δu + q(t)δ (x − y))

� 

x1

� 

x2

� 

x3

� 

f (x1,x2 )� 

1
c2(x)

= 1
c0

2 + f (x1,x2 )δ (x3)

� 

q(t) = Q(t)exp(iωt)

� 

f ground reflectivity function

� 

Inverse problem: Find f from (Ry ( f ))(t) = u(y,t), y on the flight track, t > 0



SAR Image of Elbe River Valley (ESA ASAR) 



Fourier Analysis of Reflection/Transmission Imaging

Reflection Transmission Combined



Fourier Coverage for several incoming waves

1 wave 2 waves 4 waves



Ultrasound Tomography



Ultrasound Tomography

� 

θ

� 

f

� 

Δu(x) + k 2(1 + f (x))u(x) = 0,
u(x) = exp(ikx ⋅θ) + us(x).

� 

Inverse problem: Find f from
u(x) for Γθ , θ ∈S1

� 

ℜf

� 

ℑf

� 

Γθ

� 

f (x) = c0
2

c2 −1− i
k

2αc0

c
,

c = c(x) local speed of sound
c0 speed of sound in ambient medium
α = α(x) attenuation
k =ω / c0 wavenumber



Role of Parameter k

1. 

� 

k  controls spatial resolution. 

� 

ˆ f  is STABLY determined
in the ball  of radius  

� 

2k   around origin. Spatial resolution 

� 

π / k = 0.75 mm for 1MHz.

2. 

� 

k  large makes it difficult to solve the  boundary value 
problem for the Helmholtz equation numerically.

Solve the Helmholtz equation by initial value techniques!



Initial Value Problem for the Helmholtz Equation

� 

∂2u
∂x1

2 +
∂2u
∂x2

2 + k 2u = 0

� 

u(x1,0) = u0(x1), ∂u
∂x2

(x1,0) = u1(x1)

� 

Fourier transform with respect to x1:

ˆ u (ξ1,x2 ) = 2π( )−1/2 exp(−ix1ξ1 )u(x1∫ ,x2 )dx1

� 

Ordinary differential equation in x2:
d 2 ˆ u (ξ1,x2 )

dx2
2 + (k 2 −ξ1

2 ) ˆ u (ξ1,x2 ) = 0

� 

Solution:

ˆ u (ξ1,x2 ) = ˆ u 0(ξ1)cos(κ (ξ1)x2 ) +
ˆ u 1(ξ1)
κ (ξ1)

sin(κ (ξ1)x2 ), κ (ξ1) = k 2 −ξ1
2

Stable as long as ξ1
2 ≤ k 2



Exact (finite 
difference time
domain, followed
by Fourier
transform

Initial value
technique

LUNEBERG
LENSE



Kaczmarz‘ Method for Ultrasound Tomography

object

scattered field

data
time reversed
backpropagated
field

16 
superimposed
backpropagated
fields

32
superimposed
backpropagated
fields

� 

ℜ

� 

ℑ

� 

ℜ

� 

ℑ



Original

Reconstruction

Cross section



Concluding Remarks

Behind each imaging technology a differential equation is lurking

Image quality depends on the type of the differential equation

Kaczmarz‘ method intuitive paradigm for reconstruction algorithms


