Imaging and Inverse Problems of Partial Differential Equations

Frank Natterer, University of Münster
Mainz, June 17, 2005

X-ray Tomography (CT)
Emission Computed Tomography (SPECT, PET)
Optical Tomography -Near Infrared Imaging (NIR)
Electrical Impedance Tomography (EIT)
Seismic imaging
Synthetic Aperture Radar (SAR)
Ultrasound Tomography

Goal: Unified treatment as inverse problem of partial differential equations

CT(Principle)

Computerized Tomography (CT):

Technique for Imaging a two-dimensional cross section of three-dimensional object

$$
(\text { (ouos }(\text { greek })=\text { slice })
$$

Modern CT Scanners

X-Ray Tomography (CT)

detector
$a=a(x)$ absorption coefficient
$(R a)(\theta, s)=\int_{x \cdot \theta=s} a(x) d x, \theta \in S^{1}, s \in R^{1}$

Radon transform

Radon's 1917 inversion formula:
$f=R^{*} K g, g=R f$
$\left(R^{*} g\right)(x)=\int_{S^{1}} g(\theta, x \cdot \theta) d \theta$
$(K g)(s)=\frac{1}{4 \pi^{2}} \int \frac{g^{\prime}(t)}{s-t} d t$
$R^{*}=$ adjoint of $R=$ backprojection
source

3D cone beam reconstruction in CT

Algorithm based on interpolation

Katsevich algorithm

CT as an inverse problem of the transport equation

Introduce particle density $u(x, \theta)$ at x in direction θ :
$\theta \cdot \nabla u(x, \theta)+a(x) u(x, \theta)=\delta\left(x-x_{0}\right) \delta\left(\theta-\theta_{0}\right)$ $u(x, \theta)=0, x \in \Gamma, \theta \cdot v_{x} \leq 0$

Inverse problem: Determine a from

$$
\begin{aligned}
& u(x, \theta), x, x_{0} \in \Gamma, \theta=\left(x-x_{0}\right) /\left|x-x_{0}\right| \\
& u(x, \theta)=H\left(\left(x-x_{0}\right) \cdot \theta\right) \delta\left(\left(x-x_{0}\right) \cdot \theta^{\perp}\right) \delta\left(\theta-\theta_{0}\right) \exp \left\{-\int_{x_{0}}^{x} a d s\right\}
\end{aligned}
$$

Single Particle Emission Computed Tomography (SPECT)

$\theta \cdot \nabla u(x, \theta)+a(x) u(x, \theta)=f(x)$
$u(x, \theta)=0, x \in \Gamma, \theta \cdot v_{x} \leq 0$

Inverse problem 1:
Find f from $u(x, \theta), x \in \Gamma, \theta \in S^{1}, a$ known! Uniquely solvable by Novikov's inversion formula for the attenuated Radon transform R_{a} $\left(R_{a} f\right)(\theta, s)=\int_{x \cdot \theta=s} f(x) \exp \left\{-\int_{0}^{\infty} a\left(x+s^{\prime} \theta\right) d s^{\prime}\right\} d x$
Inverse problem 2 :
Find f and a from $u(x, \theta), x \in \Gamma, \theta \in S^{1}$
Nonlinear inverse problem, not uniquely solvable

$$
u(x, \theta)=\int_{-\infty}^{0} f(x+s \theta) \exp \left\{-\int_{s}^{0} a\left(x+s^{\prime} \theta\right) d s^{\prime}\right\} d s
$$

Spect Scanner

Positron Emission Tomography (PET)

Detectors x, y work in coincidence mode. Sources emit particles pairwise in oposite directions:

Photon 2

$\theta \cdot \nabla u(x, \theta)+a(x) u(x, \theta)=\int_{S^{1}} k\left(x, \theta, \theta^{\prime}\right) u\left(x, \theta^{\prime}\right) d \theta^{\prime}+f(x)$,
$k\left(x, \theta, \theta^{\prime}\right)=$ probability that a particle arriving at x with direction θ continues its journey in direction θ^{\prime}

Optical Tomography - Near Infraread Imaging (NIR)

laser source, 700-1000 nm

$$
\theta \cdot \nabla u(x, \theta)+\left(\mu_{a}(x)+\mu_{s}(x)\right) u(x, \theta)=\mu_{s}(x) \int_{s^{1}} k\left(x, \theta, \theta^{\prime}\right) d \theta^{\prime}+\delta(x-y)
$$

Inverse problem: Find μ_{a}, μ_{s} from measurements of $\mathrm{u}(\mathrm{x}, \theta), \mathrm{x}, \mathrm{y} \in \Gamma$

Optical Tomography in Diffusion Approximation

Put $u(x)=\frac{1}{\left|S^{1}\right|} \int_{S^{1}} u(x, \theta) d \theta$

$$
\begin{array}{rl}
-\nabla \cdot(D(x) \nabla u(x))+\left(\mu_{a}(x)+i \frac{\omega}{c}\right) u(x)=0 & D=1 / 3\left(\mu_{a}+\mu_{s}^{\prime}\right) \\
u(x)+2 D(x) \frac{\partial u(x)}{\partial v}=g^{-}(x)=\text { source } & \frac{\partial u(x)}{\partial v}=g^{+}(x)=\text { measurement }
\end{array}
$$

Numerically this problem is of the following form:

Suppose we have p sources, $j=1, \ldots, p$. Put

$$
R_{j}(f)=\frac{\partial u_{j}}{\partial v}, f=\left(D, \mu_{s}^{\prime}\right) .
$$

Then we have to solve the nonlinear system

$$
R_{j}(f)=g_{j}^{+}, j=1, \ldots, p .
$$

Kaczmarz‘ Method (Nonlinear)

$$
R_{j}(f)=g_{j}, j=1, \ldots p
$$

We compute approximations $f_{j}, j=1,2, \ldots$ to f according to

Compute the operator $\left(R_{j}^{\prime}(f)\right)^{*}$ by adjoint differentiation:

$$
\begin{aligned}
& R_{j}^{\prime}(f)^{*} r=\left(-\nabla u_{j} \cdot \nabla \bar{z},-u_{j} \bar{z}\right)^{T} \\
& -\nabla \cdot(D \nabla z)+\left(\mu_{a}+i \frac{\omega}{c}\right) z=0 \text { in } \Omega, z=\bar{r} \text { on } \Gamma
\end{aligned}
$$

The Monstir Optical Imaging System (Neonatal Head)

Optical Mamography

Small Animal Imaginc

Electrical Impedance Tomography (EIT)

$$
\begin{aligned}
& \nabla \cdot(\sigma \nabla u)=0 \text { in } \Omega \\
& \frac{\partial u}{\partial v}=f \text { prescribed on } \partial \Omega \\
& u=g \text { measured on } \partial \Omega \\
& \sigma=\sigma(x) \text { conductivity }
\end{aligned}
$$

Inverse problem: Find σ from many pairs f, g.

EIT Image Lungs and Hearł

Seismic Imaging

$\frac{\partial^{2} u}{\partial t^{2}}=c^{2}(x)(\Delta u+q(t) \delta(x-s))$
$u=0, t<0$
c speed of sound, s source q source wavelet
(common source gather)

Inverse problem: Find c from the seismograms $g_{s}=R_{s}(c)$
$R_{s}(c)\left(x_{1}, t\right)=u\left(x_{1}, 0, t\right)$,
$x_{1} \in R^{1}, 0<t<T$

High Frequency Imaging

$c=c_{0}+c_{1}$

$$
\begin{aligned}
& \text { Linearization: } R_{s}\left(c_{0}+c_{1}\right) \approx R_{s}\left(c_{0}\right)+R_{s}^{\prime}\left(c_{0}\right) c_{1} \\
& g_{s}-R_{s}\left(c_{0}\right) \approx R_{s}^{\prime}\left(c_{0}\right) c_{1} \\
& R_{s}^{\prime}\left(c_{0}\right)^{*}\left(g_{s}-R_{s}\left(c_{0}\right)\right) \approx R_{s}^{\prime}\left(\mathrm{c}_{0}\right)^{*} R_{s}^{\prime}\left(c_{0}\right) c_{1} \\
& \sum_{s} R_{s}^{\prime}\left(c_{0}\right)^{*}\left(g_{s}-R_{s}\left(c_{0}\right)\right) \approx \sum_{s} R_{s}^{\prime}\left(\mathrm{c}_{0}\right)^{*} R_{s}^{\prime}\left(c_{0}\right) c_{1} \\
& \text { reconstruction }
\end{aligned}
$$

The reconstruction has the same singular support as the correct velocity!

Wave Equation Migration

Kaczmarz‘ Method in Seismic Imaging

$$
R_{s}(c)=u_{x_{2}=0}=g_{s}=\text { seismogram for source } s
$$

For each source s
$c \leftarrow c+\alpha\left(R_{s}^{\prime}(c)\right)^{*}\left(g_{s}-R_{s}(c)\right)$

Compute the adjoint by time reversal:

$$
\begin{aligned}
& \left.\left(R_{s}^{\prime}(c)\right)^{*} r\right)(x)=\int_{0}^{T} z(x, t) \frac{\partial^{2} u(x, t)}{\partial t^{2}} d t \\
& \frac{\partial^{2} z}{\partial t}=c^{2}(x) \Delta z \text { for } x_{2}>0 \\
& \frac{\partial z}{\partial x_{2}}=r \text { on } x_{2}=0 \\
& z=0, t>T
\end{aligned}
$$

Kaczmarz‘ method for the Marmousi Velocity Model

Works only for wavelets q that contain frequencies near zero unless we have transmission measurements.

Synthetic Aperture Radar (SAR)

Inverse problem: Find f from $\left(R_{y}(f)\right)(t)=u(y, t), y$ on the flight track, $t>0$

SAR Image of Elbe River Valley (ESA ASAR)

Fourier Analysis of Reflection/Transmission Imaging

Reflection

Transmission

Combined

Fourier Coverage for several incoming waves

1 wave

2 waves

4 waves

Ultrasound Tomography

Ultrasound Tomography

$\Delta u(x)+k^{2}(1+f(x)) u(x)=0$, $u(x)=\exp (i k x \cdot \theta)+u_{s}(x)$.
θ

Inverse problem: Find f from $u(x)$ for $\Gamma_{\theta}, \theta \in S^{1}$
$f(x)=\frac{c_{0}^{2}}{c^{2}}-1-\frac{i}{k} \frac{2 \alpha c_{0}}{c}$,
$c=c(x)$ local speed of sound
c_{0} speed of sound in ambient medium
$\alpha=\alpha(x)$ attenuation
$\mathrm{k}=\omega / \mathrm{c}_{0}$ wavenumber

\Re
$\mathfrak{I} f$

Role of Parameter k

1. k controls spatial resolution. \hat{f} is STABLY determined in the ball of radius $2 k$ around origin. Spatial resolution $\pi / k=0.75 \mathrm{~mm}$ for 1 MHz .
2. k large makes it difficult to solve the boundary value problem for the Helmholtz equation numerically.

Solve the Helmholtz equation by initial value techniques!

Initial Value Problem for the Helmholtz Equation

$$
\frac{\partial^{2} u}{\partial x_{1}^{2}}+\frac{\partial^{2} u}{\partial x_{2}^{2}}+k^{2} u=0 \quad u\left(x_{1}, 0\right)=u_{0}\left(x_{1}\right), \frac{\partial u}{\partial x_{2}}\left(x_{1}, 0\right)=u_{1}\left(x_{1}\right)
$$

Fourier transform with respect to x_{1} :
$\hat{u}\left(\xi_{1}, x_{2}\right)=(2 \pi)^{-1 / 2} \int \exp \left(-i x_{1} \xi_{1}\right) u\left(x_{1}, x_{2}\right) d x_{1}$
Ordinary differential equation in x_{2} :

$$
\frac{d^{2} \hat{u}\left(\xi_{1}, x_{2}\right)}{d x_{2}^{2}}+\left(k^{2}-\xi_{1}^{2}\right) \hat{u}\left(\xi_{1}, x_{2}\right)=0
$$

Solution:
$\hat{u}\left(\xi_{1}, x_{2}\right)=\hat{u}_{0}\left(\xi_{1}\right) \cos \left(\kappa\left(\xi_{1}\right) x_{2}\right)+\frac{\hat{u}_{1}\left(\xi_{1}\right)}{\kappa\left(\xi_{1}\right)} \sin \left(\kappa\left(\xi_{1}\right) x_{2}\right), \kappa\left(\xi_{1}\right)=\sqrt{k^{2}-\xi_{1}^{2}}$
Stable as long as $\xi_{1}^{2} \leq k^{2}$

Exact (finite difference time domain, followed by Fourier transform

LUNEBERG LENSE

Initial value technique

Concluding Remarks

Behind each imaging technology a differential equation is lurking

Image quality depends on the type of the differential equation

Kaczmarz' method intuitive paradigm for reconstruction algorithms

