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Abstract

We return to a classic problem of structural optimization whose solution requires microstructure. It
is well-known that perimeter penalization assures the existence of an optimal design. We are interested
in the regime where the perimeter penalization is weak, i. e. in the effect of perimeter as a selection
mechanism in structural optimization. To explore this topic in a simple yet challenging example, we focus
on a 2D elastic shape optimization problem involving the optimal removal of material from a rectangular
region loaded in shear. We consider the minimization of a weighted sum of volume, perimeter, and
compliance (i. e. the work done by the load), focusing on the behavior as the weight ε of the perimeter term
tends to zero. Our main result concerns the scaling of the optimal value with respect to ε. Our analysis
combines an upper bound and a lower bound. The upper bound is proved by finding a near-optimal
structure, which resembles a rank-two laminate except that the approximate interfaces are replaced by
branching constructions. The lower bound, which shows that no other microstructure can be much better,
uses arguments based on the Hashin–Shtrikman variational principle. The regime being considered here
is particularly difficult to explore numerically, due to the intrinsic nonconvexity of structural optimization
and the spatial complexity of the optimal structures. While perimeter has been considered as a selection
mechanism in other problems involving microstructure, the example considered here is novel because
optimality seems to require the use of two well-separated length scales.

1 Introduction

It is a classic problem to ask what geometry or shape of an elastic body best supports a load while using
a minimum amount of material [1]. This question has typically been phrased as the variational task of
finding geometries which minimize a weighted sum of volume and compliance (the work done by the load).
It has been known for a long time that this problem in many cases requires microstructure, i. e., there
are no optimal geometries in the classical sense, but instead an infinitely fine microstructure is required to
achieve the optimal behavior. In particular, so-called laminates (infinitely fine alternating layers of material
and void, sometimes arranged in different hierarchies) can always reach that infimum [1]. This situation
is somewhat unsatisfactory since infinitely fine microstructures are rather of a theoretical nature and can
for instance not be manufactured. As a remedy, a regularizing term can be added to the objective. For
strong regularization, there is a broad corresponding literature, which provides the variational analysis as
well as numerical implementations using level set formulations [3], phase field approaches [6, 22, 20], multiple
materials [6, 22], design-dependent loads [3, 6], nonlinear elasticity [20], and topological regularization [7].

∗RVK gratefully acknowledges support from NSF through grants DMS-0807347 and OISE-0967140. BW gratefully acknowl-
edges the support of a Courant Instructorship during which this work was begun.
†Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York 10012, USA,

kohn@cims.nyu.edu
‡Institute for Numerical and Applied Mathematics, University of Münster, Einsteinstraße 62, 48159 Münster, Germany,

Benedikt.Wirth@uni-muenster.de

1



In this article we are instead interested in the case of small regularization, in which very finely structured
geometries are optimal. In essence, we ask which structures are selected when perturbing the non-regularized
problem by a slight regularization involving the perimeter of the geometry. We approach this question by
proving a scaling law for the minimum cost, a nowadays widely used technique in the analysis of variational
pattern formation that has already been successfully employed to better understand finely structured config-
urations in martensitic metals [16, 8], ferromagnets [10], superconductors [9] and other physical situations. In
particular, we will prove that the minimum cost for a 2D geometry supporting a shear load on a rectangular
boundary (Figure 1) scales like

√
ε where ε is the weight of the perimeter regularization.

While regularization involving perimeter has been considered in a number of other problems requiring
microstructure, most such studies have considered microstructures with a single internal length scale. Our
work is different, because the problem we consider requires a microstructure with two well-separated length
scales—a so-called rank-two laminate, whose material strips are aligned with the two principal stress direc-
tions (at 45◦ angles with the Euclidean axes). Allaire and Aubry have already observed that this is the only
optimal microstructure for a shear load [2] (whereas other loads such as hydrostatic pressure allow various
kinds of optimal microstructures). As ε → 0, our construction of a near-optimal geometry will thus have
to approach this microstructure. Our analysis shares some elements with that of [14], which is only natural
since the problem considered there also requires two microstructural length scales.

The rest of this introduction discusses the exact form of our objective functional, which is devised to
optimize a structure under a fixed shear load, then briefly summarizes results from [15] for the simpler case
of compliance optimization under a uniaxial load, and puts forward a brief heuristic argument explaining
the observed energy scaling.

1.1 Problem formulation

We consider the minimization of the objective functional

Jα,β,ε,µ,F,`,L[O] = αCompµ,F,`,L(O) + βVol(O) + εPer(O)

among all geometries O ⊂ Ω = [0, `] × [0, L], where α, β, ε > 0 are positive weights, `, L > 0 are the
geometric parameters, and µ > 0, F represent a shear modulus and a stress value, respectively (Figure 1).
Per(O) denotes the perimeter of the set O, Vol(O) its volume, and the so-called compliance Compµ,F,`,L(O)
stands for the mechanical work done by a shear load of magnitude |F | applied at ∂Ω,

Compµ,F,`,L(O) =
1

2

∫
∂Ω

(σ̂n) · uda with σ̂ = ( 0 F
F 0 ) ,

where n is the unit outward normal and u : O → R2 is the equilibrium displacement of the loaded structure
and thus minimizes the free energy

Eµ,F,`,L[u] =

∫
O
µ|ε(u)|2 dx−

∫
∂Ω

(σ̂n) · uda with ε(u) = 1
2 (∇uT +∇u) .

Note that for simplicity we here assumed the structure O to consist of a homogeneous, isotropic material with
zero Poisson’s ratio so that the elasticity tensor reduces to the single scalar µ. The existence of minimizing
geometries O for ε > 0 is standard (see e. g. [4, 12, 1, 5]).

The compliance is a measure of the inverse structural stiffness with respect to the imposed load, hence
minimization of the compliance yields a structure as rigid as possible. The structure volume and perimeter
can for instance be interpreted as material and production costs, respectively.

As already mentioned previously, we are interested in the limit of small perimeter penalization ε. In
that limit optimal geometries typically exhibit fine-scale structures which cannot be resolved numerically.
Instead we try to provide some understanding by analyzing how the minimum energy scales in ε as ε → 0.
Our analysis involves the construction of a family of near-optimal geometries that give insight into how
optimal geometries probably behave. From the viewpoint of variational pattern analysis this problem is
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Figure 1: Left: Load geometry considered in this article. Right: Sketch of a near-optimal geometry as
constructed in Section 2. The gray structures are only shown in part of the image.

very interesting since unlike most others it requires two different fine length scales. Further motivation
comes from viewing this variational model as a prototype problem to better understand pattern selection in
biological structures, which also often exhibit very fine scales, such as e. g. the spongiosa in bones. Though
for instance bone formation is certainly not governed by the variational principle examined in this article, it
seems not unreasonable to assume an evolutionary pressure towards rigid, but light-weight structures. The
small perimeter penalization here just limits the possible structural complexity.

It is well-known that the compliance can also be expressed in terms of the equilibrium stress σ rather
than the equilibrium displacement u. Testing the Euler–Lagrange equation for minimizing Eµ,F,`,L[u] with
the equilibrium displacement u yields

0 = 2

∫
O
µ|ε(u)|2 dx−

∫
∂Ω

(σ̂n) · uda

and thus, for any symmetric test stress field σ : O → R2×2
sym,

Compµ,F,`,L(O) =

∫
∂Ω

(σ̂n) · uda− 1
2

∫
∂Ω

(σ̂n) · uda

=

∫
∂Ω

(σ̂n) · uda−
∫
O
µ|ε(u)|2 dx

≤
∫
∂Ω

(σ̂n) · uda−
∫
O

tr(ε(u)Tσ)− 1
4µ |σ|

2 dx

=

∫
∂Ω

((σ̂ − σ)n) · uda+

∫
O

divσ · udx+

∫
O

1
4µ |σ|

2 dx

by Legendre–Fenchel duality and an integration by parts, where equality is achieved only for the (divergence-
free) equilibrium stress σ = 2µε(u). Hence we may write

Compµ,F,`,L(O) = min
σ∈ΣOad

∫
O

1
4µ |σ|

2 dx

where the set ΣOad of statically admissible stress fields is given by divergence-free symmetric tensor fields
satisfying the prescribed stress boundary conditions,

ΣOad = {σ : Ω→ R2×2
sym |divσ = 0 in Ω, σ = 0 in Ω \ O, σn = σ̂n on ∂Ω} .

Finally, a non-dimensionalization yields

Jα,β,ε,µ,F,`,L[LO] = βL2J1,1, εβL ,
1
4 ,F
√

α
4µβ ,

`
L ,1[O] (1)

so that it suffices to consider the optimization problem of minimizing

Jε,F,`[O] = CompF,`(O) + Vol(O) + εPer(O) with CompF,`(O) = min
σ∈ΣOad

∫
O
|σ|2 dx . (2)
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Figure 2: The optimal microstructure to support a shear load is a two-rank laminate aligned with the two
orthogonal principal stress directions. The material strips of the finer scale make up a material fraction
θ1 = |F | and bear a longitudinal stress of magnitude 1, while the strips of the coarser scale make up

a material fraction θ2 = |F |
1−|F | and bear a biaxial load of magnitude 1 − |F | in longitudinal and |F | in

transversal direction. The total material fraction is θ = (1− θ2)θ1 + θ2 = 2|F |.

The purpose of this article is to show the following energy scaling law, the upper and lower bound of
which are given in Sections 2 and 3, respectively.

Theorem 1 (Optimal energy scaling for shear load). In the regime ` ≥ 1, ε < |F | < 1
2 , there exist c, C > 0

(depending only on ` and F ) with

cε
1
2 ≤ min

O⊂Ω
Jε,F,`[O]− J∗,F,`0 ≤ Cε 1

2

for J∗,F,`0 = 2`|F |(2− |F |). Here Ω = [0, `]× [0, 1] and Jε,F,` is defined by (??).

Above, J∗,F,`0 is the infimum of the energy for zero perimeter penalization, J∗,F,`0 = infO⊂Ω J0,F,`[O]. The
minimum ceases to exist for ε = 0, and the infimum is realized by a finer and finer sequence of laminates [2].
The infimum value can be obtained as the minimum of the lower semi-continuous envelope of J0,F,`[O] with
respect to weak L1-convergence of the characteristic function of O, which has long been known [17, 18, 19].
Identifying O with the set of points where the equilibrium stress is nonzero, we can write

J∗,F,`0 = inf
σ∈ΣΩ

ad

∫
Ω

g(σ) dx with g(σ) =

{
0 if σ = 0 ,

|σ|2 + 1 else.

Quasiconvexification of g now yields the lower semi-continuous envelope of the integral [17, 18, 19],

J∗,F,`0 = min
σ∈ΣΩ

ad

∫
Ω

g̃(σ) dx with g̃(σ) =

{
2(|σ1|+ |σ2| − |σ1σ2|) if |σ1|+ |σ2| ≤ 1,

1 + σ2
1 + σ2

2 else.

The minimum is achieved by σ = σ̂. The corresponding microstructure is a rank-two laminate [21] as
sketched in Figure 2. In our construction of near-optimal geometries for nonzero ε we also have to use two
different scales, and we will replace the material strips on both scales by branching constructions.

Remark 2. Our proof of the upper bound in fact establishes

min
O⊂Ω

Jε,F,`[O]− J∗,F,`0 ≤ C̃`|F | 12 ε 1
2

for a constant C̃ independent of ` or F under the additional constraint ε ≤ |F |3 (i. e., the dependence of
C from Theorem 1 on ` and F is made explicit). It is not clear, though, whether this scaling in ` and F
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is sharp, since our proof of the lower bound does not provide any information on how ` and F enter the
prefactor in front of ε

1
2 .

Remark 3. Undoing the non-dimensionalization, we obtain a dimensional version of Theorem 1: Consider the
domain Ω = [0, `]×[0, L] and the functional defined in (??), then in the regime ` ≥ L, 2ε < |F |L

√
αβ/µ < βL,

there exist c, C > 0 depending only on `
L and F

√
α
µβ with

c
(
`
L , F

√
α
µβ

)
β

1
2L

3
2 ε

1
2 ≤ min

O⊂Ω
Jα,β,ε,µ,F,`,L[O]− Jα,β,∗,µ,F,`,L0 ≤ C

(
`
L , F

√
α
µβ

)
β

1
2L

3
2 ε

1
2

for Jα,β,∗,µ,F,`,L0 = `L|F |
√

αβ
µ (2 − |F |

√
α

4µβ ). The more precise upper bound from the previous remark

becomes
min
O⊂Ω

Jα,β,ε,µ,F,`,L[O]− Jα,β,∗,µ,F,`,L0 ≤ C`
√
|F |Lε 4

√
αβ/µ

for C independent of the model parameters.

1.2 A simpler case: Compliance minimization for a uniaxial load

A shear load represents a biaxial stress state with a compressive and a tensile principal stress in orthogonal
directions. A simpler compliance optimization problem is obtained if the shear load on ∂Ω is replaced by
the uniaxial load σ̂unin = ( 0 0

0 F )n, i. e.

min
O⊂Ω

Jε,F,`uni [O] with Jε,F,`uni [O] = min
σ∈ΣOad,uni

∫
O
|σ|2 dx+ Vol(O) + εPer(O) ,

where ΣOad,uni = {σ : Ω→ R2×2
sym |divσ = 0 in Ω, σ = 0 in Ω \ O, σn = σ̂unin on ∂Ω}. The energy scaling law

for this functional is determined in [15].

Theorem 4 (Optimal energy scaling for uniaxial normal load). In the regime |F | ≤ 1
2 , ε ≤ min(`3|F |, |F |4),

there exist c, C > 0 (independent of ` and F ) with

c`|F | 13 ε 2
3 ≤ min

O⊂Ω
Jε,F,`uni [O]− J∗,F,`0,uni ≤ C`|F |

1
3 ε

2
3

for J∗,F,`0,uni = 2`|F |.

The successful construction is given by a truss-like structure which refines from the center to the boundary
via branching as illustrated in Figure 3. Each level consists of an array of unit cells with a triangular structure
inside, where the unit cell width w halves from level to level and the unit cell height scales like w3/2. We
will employ such a construction as a structural element in the proof of the upper bound for the shear load
case. We will need a version with L 6= 1, which is given by

c`L
1
3 |F | 13 ε 2

3 ≤ min
O⊂Ω

Jε,F,`,Luni [O]− J∗,F,`,L0,uni ≤ C`L 1
3 |F | 13 ε 2

3

in the regime |F | ≤ 1
2 , ε/L ≤ min(`3|F |/L3, |F |4) and with J∗,F,`,L0,uni = 2`L|F |.

Let us briefly provide the details of the construction for later usage. We have to specify a geometry
together with a stress field and compute its energy. It is convenient to proceed in steps.

Specify unit cell and compute its energy. The employed unit cell of width w and height h is given in
Figure 4. Its excess energy over the infimum energy for ε = 0 can straightforwardly be computed as [15]

∆Jcell,uni = Compcell,uni + Volcell,uni + εPercell,uni − 2|F |wh ∼ |F |w
3

h + ε(h+ w) ,

which becomes ∆Jcell,uni(w) ∼
√
|F |w3ε for the optimal h ∼

√
|F |w3/ε. Here and in the following, ∼

denotes equality up to a constant factor independent of `, L, F , and ε.
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Determine coarsest unit cell width and compute total bulk energy. Let us number the levels from
1 (coarsest) to N (finest). Considering only the upper half of the structure (the bottom half is symmetric),

the total height L
2 has to equal the sum of the heights hi of the levels, L

2 =
∑N
i=1 hi. Using hi =

√
|F |w3

i /ε

and wi = w1/2
i−1, we arrive at L

2 ∼
√
|F |w3

1/ε so that w1 ∼ 3
√
L2ε/|F |. The requirement w1 ≤ ` then

implies the condition L2ε ≤ |F |`3. The total bulk excess energy is

∆Jbulk,uni = 2

N∑
i=1

`

wi
∆Jcell,uni(wi) ∼ `L

1
3 |F | 13 ε 2

3 .

Introduce boundary layer. The layering of finer and finer levels has to stop when the unit cell height
becomes comparable to the unit cell width, i. e. hN ∼ wN or equivalently wN ∼ ε/|F |. Between this finest
level of unit cells and the top and bottom boundary ∂Ω, respectively, a material layer of thickness ε/|F | is
introduced, which can be shown not to impair the total energy scaling [15]. Furthermore, since N ≥ 1 or
equivalently wN ≤ w1, we obtain the condition ε/|F | ≤ w1 or ε/L ≤ |F |.

1.3 A heuristic argument for energy scaling with and without branching

Before proceeding to the details of proving Theorem 1, let us provide a brief heuristic argument for the energy
scaling with and without branching. For simplicity and as in the previous section, let us call the quantity of
interest, Jε,F,`[O]− J∗,F,`0 , the excess energy ∆J of the geometry O.

Without branching, the geometry will look as in Figure 2. Denote by l1 the length scale or periodicity
of the finer struts and by l2 the period between any two of the coarse struts. The excess energy over the
infinitely fine rank-2 laminate has three contributions:

• At ∂Ω, the stresses will deviate from the optimum by an amount of order 1 within a boundary layer
of thickness l2, yielding excess energy ∼ `l2.

• Likewise, there is a boundary layer of width l1 where the fine struts meet the coarse bars. Since there
are ∼ `/l2 such boundary layers, the corresponding excess energy contribution is ∼ ` l1l2 .

• The perimeter contribution comes mostly from the fine struts and thus scales like ε`/l1.

Summarizing, ∆J ∼ `l2 + ` l1l2 + ε`/l1, which is minimized by l1 ∼ ε2/3 and l2 ∼ ε1/3 to yield ∆J ∼ `ε1/3.
Above, the length scales of the fine and the coarse structures stay spatially constant. This is subobtimal

since perimeter energy can be saved by making the length scales coarser away from ∂Ω. This can for instance
be achieved via branching as in Figure 1. Let z = x1+x2√

2
be the coordinate parallel to the coarser layers,

and let l(z) be the local length scale of the coarser structure. There are two dominant contributions to the
excess energy:

• The effect of the finer-scale structures looks to the coarser-scale structure like an effective surface
energy. From the previous section and [15] we know that the corresponding excess energy scales like
ε2/3l(z)1/3|F |1/3 per unit length along z. Since there are ∼ `/l(z) coarse layers, the total contribution
of the finer-scale structures is

∆Jfine-scale ∼
∫ 1

0

ε2/3l(z)1/3|F |1/3 `

l(z)
dz .

• The excess compliance from branching on the coarser scale behaves like

∆Jcoarse-scale ∼ `|F |
∫ 1

2

0

(l′(z))2 dz .

7



Figure 5: Sketch of a near-optimal geometry. It exhibits two scales, a coarse one (black) and a finer one
in between (gray, not shown everywhere). On the coarser scale the construction is based on several levels
that each consist of an array of unit cells (one is framed by a dashed line). The fine scale is based on the
construction for a uniaxial load from Section 1.2.

Both contributions balance when l′(z)2 ∼ ε2/3l(z)−2/3|F |−2/3, i. e. when

l(z) ∼ ε1/4|F |−1/4z3/4 ,

which produces the expected scaling

∆J ∼ ∆Jfine-scale + ∆Jcoarse-scale ∼ `|F |1/2ε1/2 .

2 Upper bound by two-level branching construction

In this section we will provide a construction which satisfies the upper bound from Theorem 1. As mentioned
in the introduction, an optimal microstructure for ε = 0 is a rank-two laminate with coarse material strips
along one principal stress direction (at a 45◦ angle with the Euclidean axes) and fine material strips connecting
the coarse strips in the orthogonal direction (Figure 2). Up to the symmetry of swapping the roles of the
two diagonal directions, this rank-two laminate is known to be the unique optimal microstructure for a shear
load (as proven in a periodic setting in [2]), and our construction of a near-optimal geometry will thus have
to approach this microstructure as ε → 0. Hence, we will also need two different length scales in the two
principal stress directions that both become finer and finer as ε→ 0, but whose scale difference also becomes
larger and larger. Also, in order to save perimeter, we will replace the simple material strips by branching
constructions similar to the uniaxial case in Section 1.2.

The basic idea of the construction is sketched in Figure 5. As a preparation, we first introduce a variation
of the construction from Section 1.2 for the uniaxial load case (Section 2.1) as well as an alternative construc-
tion for small domain heights (Section 2.2). Those structures will then finally be used inside the construction
of near-optimal geometries for the shear load case (Section 2.3). Note that during our construction we will
also track the dependence of the resulting upper energy bound on the parameters ` and F , which allows to
derive how the constant C in Theorem 1 scales in those parameters.

2.1 Construction for a uniaxial load in a non-rectangular domain

Here we consider a variation of the geometry from Section 1.2 in which the upper and lower boundary are
not straight, but given as the graph of two Lipschitz-continuous functions q1, q2 : [0, `] → R with Lipschitz

8



constants Lq1 , Lq2 ≤ 1 (see Figure 6, left). We will use the same notation as in Section 1.2, only keeping in
mind that this time Ω is no longer rectangular. We show the following:

Proposition 5 (Upper bound for uniaxial load in non-rectangular domain). Let L+ and L− denote the
maximum and minimum of q1−q2, respectively. In the regime |F | ≤ 1

2 , ε ≤ min(`3|F |/L2
−, L+|F |4, 1

16 |F |L−)
there exists C > 0 with

min
O⊂Ω

Jε,F,`,q1,q2uni [O]− J∗,F,`,q1,q20,uni ≤ C`L
1
3
+|F |

1
3 ε

2
3

for J∗,F,`,q1,q20,uni = 2|F |
∫ `

0
q1(x1)− q2(x1) dx1.

Proof. We have to provide a geometry and corresponding stress field satisfying the upper bound. We shall
use a variation of the construction from Section 1.2. For a better overview, we proceed in steps.

1. Segment domain into vertical slabs. We recursively define the position xn1 and height Hn of the
nth slab’s left side as well as the slab width Wn by

x1
1 = 0 , Hn = q1(xn1 )− q2(xn1 ) , Wn = 3

√
H2
nε/4|F | xn+1

1 = xn1 +Wn ,

where the width of last slab may be chosen slightly larger so as to fully segment the domain (Figure 6,
middle). Note that Wn is chosen as the coarsest unit cell width obtained in Section 1.2 for a domain
height of Hn/2. The reason is that each slab will contain exactly one single tree of a branching
construction similar to that of Section 1.2.

2. Adapt old branching construction. Due to the constraints we have Wn ≤ 1
4Hn so that the domain

height q1(x1)− q2(x1) in the nth slab lies uniformly between Hn− 2Wn ≥ 1
2Hn and Hn + 2Wn ≤ 3

2Hn.
In this slab we now insert one tree of height 1

2Hn and width Wn from Section 1.2 (Figure 6, right).
The tree does not yet reach the upper or lower boundary. This is remedied by introducing additional
vertical struts as indicated in Figure 6, right. These struts are introduced at the root of each unit cell,
first at the coarsest level and successively at the finer levels. Each strut is made long enough so that
at least one of its subtrees reaches the domain boundary at some point.

3. Compute excess energy in the bulk. Each slab is now tiled by rectangular unit cells (each
containing a triangle truss) and rectangles containing only a vertical truss. Here, the vertical truss
width is chosen as w|F | so as to achieve a uniform longitudinal stress of magnitude 1 inside. The excess
energy ∆Jcell,uni of the unit cells is identical to the excess energy computed in Section 1.2, while the
excess energy of a vertical truss cell C of width w and height h is given by

∆JC,uni = CompC,uni + VolC,uni + εPerC,uni − 2|F |wh = 2εh

and thus is of at most the same order as the excess energy of the attached unit cell (note that the
height always satisfies h ≤ w and the width w ≥ ε

|F | , cf. Section 1.2). Hence, the total bulk excess

energy in the nth slab is of the same order as the excess energy of the construction from Section 1.2 in
a rectangular domain of width Wn and height Hn/2, and the accumulated bulk excess energy is given
by

∆Jbulk,uni ∼
#slabs∑
n=1

WnH
1
3
n |F |

1
3 ε

2
3 . `L

1
3
+|F |

1
3 ε

2
3 .

4. Add a boundary layer. From Section 1.2 we know that the finest unit cells at the top and bottom
boundary have width ∼ ε/|F |. At the top and bottom boundary, we now introduce a material layer
of thickness ε/|F | as shown in Figure 6, right. Its volume scales like ` ε

|F | , its perimeter like `ε, and its

compliance is smaller than the volume since the stress never exceeds magnitude 1. The overall energy
scaling thus is not impaired.
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Figure 6: Left: Load geometry considered in Section 2.1. Middle: Domain decomposition into vertical slabs.
Right: Optimal geometry: Each slab is replaced by a truss structure of triangular unit cells; a vertical strut
is introduced in between some cells (e. g. in the gray box). Furthermore, a thick material layer is added at
the boundary.

L

`

Ω

σ̂unin

σ̂unin

Figure 7: Left: Load geometry considered in Section 2.2. Right: The proposed geometry consists of vertical
struts and a thick material layer at the boundary.

2.2 Construction for a uniaxial load in a wedge

This time consider a wedge-shaped domain as in Figure 7, left. Again using the same notation as in Sec-
tion 1.2, only exchanging the domain Ω by a wedge, we show the following.

Proposition 6 (Upper bound for uniaxial load in wedge domain). For `2 ≥ εL there exists C > 0 with

min
O⊂Ω

Jε,F,`,Luni [O]− J∗,F,`,L0,uni ≤ C`
√
εL

for J∗,F,`,L0,uni = 2`L2 |F |.

Proof. We take the following ansatz: We traverse the region between the two load boundaries by N equi-
spaced strips of width F`/N and add a boundary layer of thickness `

N at the load boundaries (Figure 7,

right). The volume and compliance of the boundary layer behave like ` `N , the volume and compliance of the

strips accumulate to J∗,F,`,L0,uni , and the total perimeter behaves like NL. Altogether, the excess energy over

J∗,F,`,L0,uni scales like ` `N + εNL, which is minimized by N ∼ `√
εL
≥ 1, yielding the desired bound.
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Figure 8: Sketch of the unit cell for the upper bound in Theorem 1. The left sketch indicates the geometric
parameters, the right sketch the regions of constant stress. The white regions are full material, the gray
regions represent a fine scale branching construction according to Section 2.1 (A) or Section 2.2 (B,C), all
rotated counter-clockwise by π

4 . The size of the wedges (B,C) is chosen such that their side parallel to
(−1

1

)
has length ∼ ε

|F |4 .

2.3 A two-scale, unit cell based construction for a shear load

Now we return to the construction of a geometry satisfying the upper bound in Theorem 1. The construction
is based on the unit cell of width w and height h sketched in Figure 8. Ignoring the left and right boundary
of Ω for the time being, the construction uses multiple levels, each of which consists of an array of unit cells
whose width halves from level to level (Figure 5).

As in the construction from Section 1.2, we shall proceed in steps. Without loss of generality let us
assume F > 0 (changing the sign of F only implies a sign change of the equilibrium stress and thus has no
influence on the compliance or the energy scaling).

Specify unit cell and compute its energy. The unit cell is given in Figure 8. The white material
strips correspond to the coarse strips in the rank-two laminate from Figure 2, hence we choose the geometric
parameters

d = F
1−F

w√
2
, α = tan−1( 3w

8h ) , a = d
2 tanα , b = d

2 cosα .

Abbreviating v1 = 1√
2

( 1
1 ), v2 = 1√

2

(−1
1

)
, and σ̃ = −Fv2 ⊗ v2 (a uniform compressive stress of magnitude

F in direction v2), the stresses in regions 1 to 5 are then given by

σ1 = (1− F )
(

cos(π4−α)

sin(π4−α)

)
⊗
(

cos(π4−α)

sin(π4−α)

)
+ σ̃ , σ2 = −(1− F )v2 ⊗ v2 + σ̃ ,

σ3 = (1− F )v1 ⊗ v1 + σ̃ , σ4 = (1− F )id + σ̃ , σ5 = (1− F ) cosα
(

sinα cosα
cosα − sinα

)
+ σ̃ .

The gray regions in Figure 8 all exhibit a uniaxial boundary stress of σ̃n on all of their boundaries so that
the constructions from Sections 1.2 to 2.2 can be applied after a rotation by π

4 . Note that while the wedges
of type B always have a fixed aspect ratio, the wedges of type C may be very elongated.

A lengthy but straightforward calculation, using Propositions 3 and 4, now yields the excess energy

∆Jcell = Compcell + Volcell + εPercell − wh2F (2− F ) ∼ hw 1
3F

1
3 ε

2
3 + ε2

F 6 + hε2

wF 6 + (F w3

h + ε(w + h)) ,

where the summands correspond to the contributions from the regions A, B, C, and the white region,

respectively. Assuming w & ε
F 19/4 (which we will later ensure), the dominant terms are hw

1
3F

1
3 ε

2
3 + F w3

h .
Minimizing in h now yields the optimal unit cell height and excess energy,

h(w) ∼ 3
√
Fw4/ε , ∆Jcell(w) ∼ 3

√
F 2w5ε .
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Determine coarsest unit cell width and compute total bulk energy. Numbering the refinement
levels from 1 (coarsest) to N (finest), the sum of all level heights must equal the total domain height 1, thus

1 ∼
N∑
i=1

h(wi) =

N∑
i=1

h(w1/2
i−1) ∼ 3

√
Fw4

1/ε .

From this we obtain that the coarsest unit cell width scales like

w1 ∼ 4
√
ε/F .

Finally, the total bulk excess energy is given by

∆Jbulk ∼
N∑
i=1

`
wi

∆Jcell(wi) ∼ `
w1

∆Jcell(w1) ∼ `
√
Fε .

Introduce boundary layer. The branching has to stop before the unit cell height becomes comparable
to the unit cell width. We shall stop a little earlier, as soon as wN ∼ ε

F 19/4 . The final branching level is
connected to ∂Ω via a material layer of thickness ε

F 19/4 , introducing an additional volume, compliance, and

perimeter term of ∼ ` ε
F 19/4 . If ε . F 21/2, this is smaller than the bulk energy and thus does not interfere

with the overall energy scaling.

Treat left and right end domain ends. At the left and right end of Ω, the coarse level branching trees
no longer reach the same height as at the center, since they hit the left or right side of ∂Ω. Using an approach
analogous to Section 2.1, in which the left and right end are divided into diagonal slabs, each containing one
coarse level branching tree, it is straightforward to show that the scaling is not impaired.

Remark 7. In the previous calculation we have shown

min
O⊂Ω

Jε,F,`[O]− J∗,F,`0 . `
√
|F |ε ,

where the feasibility constraints for the construction are ε . |F |21/2 (so that the boundary layer contribution
scales like the bulk energy), ε . |F |`4 (so that w1 ≤ `), and ε . |F |6 (so that there is at least one layer of
unit cells, i. e. w1 ≥ wN ). Of course, if F and ` are taken as constants which are fixed a priori, this result
immediately implies the upper bound in Theorem 1.

Remark 8. The previous construction is relatively simple to describe, but imposes relatively strong con-
straints on the relation between ε and F , if one does not consider F as fixed. One can weaken those
feasibility constraints by slightly improving the construction in a way that is no longer based on true unit
cells, but looks more like actually shown in Figure 5. In detail, the changes are the following.

1. The coarse-scale branching construction (black in Figure 5) stays the same as above, but the fine-scale
construction (gray) in between no longer respects the unit cell boundaries. Instead, the gray branching
construction extends from one black material strip to the next so that wedges of type B are no longer
needed.

2. In the construction based on Figure 8 the gray branching construction of type A refines towards the unit
cell boundary as well as towards the white regions, and it is coated on either side with a thin material
layer of thickness ε

F which serves to evenly distribute the stress. In the new refined construction,
these material layers are removed so that the finest layer of the branching construction in the gray
regions directly touches the white region (in which the stress then distributes evenly over a length
scale of ε

|F | ). In effect, this changes the constraints of Proposition 3, since in its proof the boundary

layer contribution to the excess energy no longer scales like ` εF , but instead (due to Corollary 19 in

the appendix) like `ε|F | log 1
|F | so that the bulk energy scaling is not impaired even for ε ≤ L+

F 2| log |F ||3

(instead of ε ≤ L+|F |4).
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3. As a result of the previous step, the base length of the wedges of type C can now be chosen as ε
F instead

of ε
|F |4 . Furthermore, also in those wedges the thin boundary material layer from the construction in

Proposition 4 is removed (so that the material strips across the wedge directly touch the white region
in Figure 8). This changes the energy scaling in Proposition 4: The perimeter term is still εNL, but

the excess energy contribution from the boundary layer becomes `2

N |F |
2 log 1

|F | (due to Corollary 19)

so that the optimal N now is given by `F
√
− log |F |
εL and the excess energy of a wedge scales like

`F
√
εL| log |F ||.

Summarizing, in essence, the new construction has the same effect as if we had changed the excess energy
per unit cell from Figure 8 to

∆Jcell ∼ h
wε

2
√
| log |F ||

F + hw
1
3F

1
3 ε

2
3 + (F w3

h + εw + εh) ,

where the summands correspond to the contributions from region C, all other gray regions, and the white
region, respectively. This time, the condition w ≥ ε

F suffices to achieve ∆Jcell(w) ∼ 3
√
w5F 2ε. Hence, the

branching can now be stopped at wN ∼ ε
F with a boundary material layer of width ε

F and energy contribution
∼ ` εF , which does not impair the overall scaling as long as ε ≤ F 3. The other two constraints (w1 ≤ ` and
w1 ≥ wN ) turn into ε . F`4 and ε . F .

3 Lower bound by refinement of Hashin–Shtrikman bounds

The Hashin–Shtrikman bounds are bounds on effective elastic moduli of composite materials [13]. In par-
ticular they can also be used to bound the compliance of a mixture of void and material under a given
macroscopic stress field. A derivation in Fourier space is nicely presented in [2], where the authors show
that a rank-two laminate is the only optimal microstructure supporting a shear load. We will refine that
caclulation to obtain quantitative estimates of

• the cost associated with a misalignment of the geometry with the two principal stress directions
(Lemma 7),

• the cost associated with a non-optimal material fraction (Lemma 7),

• the cost associated with a non-equal distribution of material between the structural parts supporting
either of the two principal stresses (Lemma 8), and

• the cost associated with an unbalanced spatial distribution of the structural parts supporting either of
the two principal stresses (Lemma 9).

These estimates will be complemented with

• a Fourier estimate of the geometry perimeter (Lemma 11) and

• a Fourier estimate that accounts for the finite size of the geometry and the fact that a uniform shear
load has to be fully supported at the domain boundary (Lemma 10).

Finally, the non-convexity of the space of possible geometries enters via the simple fact χ · χ = χ for the
characteristic function of the optimal geometry. The preceding points will be combined into a proof of the
lower bound using an argument by contradiction.

Note that the lower bound for the uniaxial load case from Section 1.2 can be performed in a similar way
[15]. However, that case is much simpler since there is only one principal stress direction instead of two so
that the estimates concerning the balance between both principal directions are not needed.
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3.1 Fourier estimates on compliance, volume, and perimeter

We shall first collect the basic estimates and then combine them into the desired proof. Let χ : Ω→ {0, 1}
denote the characteristic function of the optimal geometry O, and let θ = −

∫
Ω
χdx denote the corresponding

material fraction. We adapt the derivation of the Hashin–Shtrikman bounds from [2] for our purposes.
Since we have Neumann rather than periodic boundary conditions for the equilibrium displacement, we will
perform the calculation in continuous rather than discrete Fourier space, for which purpose we also require
the function

γ = χ− θ ,

extended to R2 \ Ω by zero. Note that the L2-norms of χ and γ can be explicitly computed,

‖χ‖2L2(Ω) = `θ , ‖γ‖2L2(R2) = `θ(1− θ) .

For a function f : R2 → R denote by

f̂(k) =

∫
R2

f(x)e−2πik·x dx

its Fourier transform (the inverse transform is given by ǧ(k) =
∫
R2 g(x)e2πik·x dx). Finally, for k ∈ R2

abbreviate k̂ = k
|k| and introduce the set B = {v1,−v1, v2,−v2} for the two principal directions v1 = 1√

2
( 1

1 ),

v2 = 1√
2

(−1
1

)
of the imposed shear stress. k̂⊥ shall stand for the counter-clockwise rotation of k̂ by π

2 .

We decompose the stress field into the constant σ̂ and a perturbation η which has zero normal component
on ∂Ω (and which for convenience we extend by zero outside Ω). Introducing

Σ0
ad = {η : R2 → R2×2

sym |divη = 0 in R2, η = 0 in R2 \ Ω} ,

we can thus rewrite the structure compliance and volume as follows,

CompF,`(O) + Vol(O)

= min
η∈Σ0

ad

(σ̂+η)(1−χ)=0 on Ω

∫
Ω

|σ̂ + η|2 + χdx

≥ lim sup
K→0

min
η∈Σ0

ad

∫
Ω

|σ̂ + η|2 + χ+ (1− χ)K−1|σ̂ + η|2 dx

= lim sup
K→0

min
η∈Σ0

ad

∫
Ω

|σ̂ + η|2 + χ+ (1− χ) max
τ∈R2×2

sym

[
2(σ̂ + η) : τ −K|τ |2

]
dx

≥ Vol(Ω)(|σ̂|2 + θ) + min
η∈Σ0

ad

∫
Ω

|η|2 + (1− χ)
[
2(σ̂ + η) : τ

]
dx (3)

using Fenchel duality in the second last step and restricting to a fixed, bounded test field τ in the last step.
Note that we have also exploited the fact∫

Ω

η dx = 0 for all η ∈ Σ0
ad . (4)

All estimates for the elastic compliance and material volume are now derived by testing (1) with different
choices of τ . Note that the test field τ plays a role dual to the stress field, similarly to a strain. However, we
are not restricted to choosing τ as the strain of a deformation, and we will later make use of this freedom.
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Estimates for material fraction and structure orientation. The simplest choice of τ is a constant.
In that case (1) can be further simplified to

CompF,`(O) + Vol(O)

≥Vol(Ω)(|σ̂|2 + 2(1− θ)σ̂ : τ + θ) + min
η∈Σ0

ad

∫
R2

|η|2 − 2γη : τ dx

≥`(|σ̂|2 + 2(1− θ)σ̂ : τ + θ) + min
η̂(k)∈R2×2

sym and η̂(k)k=0 for all k∈R2

∫
R2

|η̂|2 − 2γ̂η̂ : τ dk

=`(|σ̂|2 + 2(1− θ)σ̂ : τ + θ)−
∫
R2

|γ̂|2|k̂⊥ · τ k̂⊥|2 dk

=`(|σ̂|2 + 2(1− θ)σ̂ : τ + θ − θ(1− θ) max(τ2
1 , τ

2
2 )) + max(τ2

1 , τ
2
2 )

∫
R2

|γ̂|2
[
1− |k̂⊥·τk̂⊥|2

max(τ2
1 ,τ

2
2 )

]
dk , (5)

where in the second step we used Parseval’s identity and in the third step we chose the minimizing η̂ =
γ̂(k̂⊥ · τ k̂⊥)k̂⊥ ⊗ k̂⊥. Here, τ1 and τ2 are the eigenvalues of τ . To obtain a tight bound, one can maximize
in τ (ignoring the non-negative integral), which leads to an estimate for the elastic excess energy

∆JF,`elast(O) = Comp(O) + Vol(O)− J∗,F,`0

with J∗,F,`0 = 2`|F |(2− |F |).

Lemma 9 (Material volume and orientation). For B = {v1,−v1, v2,−v2} with v1 = 1√
2

( 1
1 ), v2 = 1√

2

(−1
1

)
we have

∆JF,`elast(O) ≥ ` (2|F |−θ)2

θ + 4F 2

θ2

∫
R2

|γ̂|2dist2(k̂, B) dk .

Proof. Upon inserting τ = 2σ̂
θ into (3) and subtracting J∗,F,`0 on both sides, we obtain

∆JF,`elast(O) ≥ ` (2|F |−θ)2

θ + 4F 2

θ2

∫
R2

|γ̂|2
[
1− |k̂⊥ · ( 0 1

1 0 ) k̂⊥|2
]

dk .

Now 1− |k̂⊥ · ( 0 1
1 0 ) k̂⊥|2 ≥ dist2(k̂, B), from which the result follows.

This estimate expresses how much excess energy is paid if the volume fraction θ deviates from θ = 2|F |
or if the Fourier transform of the characteristic function has support away from the preferred directions
±v1,±v2.

Separating the two principal directions. Next let us separate the structural components which mainly
support stress in direction v1 or v2. Let s : S1 → {0, 1} be the characteristic function on the unit circle of
the upper right and lower left quadrant. We define

f̂1(k) = s(k̂)γ̂(k) , f̂2(k) = (1− s(k̂))γ̂(k)

and take the inverse Fourier transform to obtain f1, f2 : R2 → R. We would like to show that f1 and f2

approximately have the same L2-mass. To this end, we test (3) with a constant τ that slightly prefers one
direction, i. e., we will perturb τ from Lemma 7 by a strain that cannot be supported by the struts encoded
in f2 or f1, respectively.

Lemma 10 (Material distribution between orientations). For i = 1, 2 we have

∆JF,`elast(O) ≥ 4F 2

θ2 max(‖f1‖2
L2 ,‖f2‖2

L2 )

(
‖fi‖2L2 − `θ(1−θ)

2

)2

.
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Proof. Assume first ‖f1‖2L2 ≥ `θ(1−θ)
2 . This time we use (3) with

τ =
2σ̂

θ
+

4αF

θ
v2 ⊗ v2

for some α ∈ [0, 1
3 ]. We obtain

∆JF,`elast(O) ≥ ` 4F 2−4|F |θ+θ2−8α(1−θ)F 2

θ + 4F 2

θ2

∫
R2

|γ̂|2
[
1− |k̂⊥ ·

(
α 1−α

1−α α

)
k̂⊥|2

]
dk

≥ ` (2|F |−θ)2−8α(1−θ)F 2

θ + 4F 2

θ2

∫
R2

|f̂1|2
[
1− |k̂⊥ ·

(
α 1−α

1−α α

)
k̂⊥|2

]
dk

≥ −` 8α(1−θ)F 2

θ + 16F 2

θ2 ‖f̂1‖2L2(α− α2) .

Picking the maximizing α = 1
2 −

`θ(1−θ)
4‖f̂1‖2

L2

(which satisfies 0 ≤ α ≤ 1
3 ), we obtain

∆JF,`elast(O) ≥ 4F 2

θ2‖f1‖2
L2

(
‖f1‖2L2 − `θ(1−θ)

2

)2

.

In the alternative case ‖f1‖2L2 <
`θ(1−θ)

2 , the relation

‖f1‖2L2 + ‖f2‖2L2 = ‖f̂1‖2L2 + ‖f̂2‖2L2 = ‖γ̂‖2L2 = ‖γ‖2L2 = `θ(1− θ)

implies ‖f2‖2L2 ≥ `θ(1−θ)
2 . We repeat the above calculation with τ = 2σ̂

θ −
4αF
θ v1 ⊗ v1 and in the end arrive

at ∆JF,`elast(O) ≥ 4F 2

θ2‖f2‖2
L2

(
‖f2‖2L2 − `θ(1−θ)

2

)2
. Combining both cases yields the desired result.

So far we have estimates expressing that the structure should be composed of struts aligned with the
preferred directions v1 and v2, that the struts in both directions should have equal material fraction, and
that the total material fraction should be 2|F |. This does not yet rule out a structure in which the domain
Ω is e. g. split into a left and a right half and all the struts in the left are aligned with v1 while all struts in
the right are aligned with v2. An estimate about the spatial distribution of the struts in the two directions
can be obtained by taking τ piecewise constant. In particular, we will partition Ω into two regions and take
the first and second test field from Lemma 8 in the first and second region, respectively.

Lemma 11 (Spatial distribution of orientations). Let χ1, χ2 be the characteristic functions of Ω1,Ω2 with
Ω1 ∩ Ω2 = ∅, Ω1 ∪ Ω2 = Ω, and let γi = (χ − 1)χi − −

∫
Ω

(χ − 1)χi dx, extended outside Ω by zero. For any
α ∈ R we have

∆JF,`elast(O) ≥ `4F 2( 1
θ − 1)(1− 2α)

− 4F 2

θ2

∫
R2

∣∣∣(γ̂1 + γ̂2)(1− α)k̂⊥ · ( 0 1
1 0 ) k̂⊥ + (γ̂1 − γ̂2)α

∣∣∣2 dk .

Proof. This time we test (1) with

τ = 2σ̂
θ −

4αF
θ (χ1τ1 + χ2τ2) with τ1 = −v2 ⊗ v2 , τ2 = v1 ⊗ v1 and some α ∈ R .

16



Subtracting J∗,F,`0 = 2`|F |(2− |F |) on both sides of (1), we arrive at

∆JF,`elast(O) ≥ Vol(Ω)(4F 2 − 4|F |+ θ) + min
η∈Σ0

ad

∫
Ω

|η|2 + (1− χ)
[
2(σ̂ + η) : τ

]
dx

≥ `4F 2(1− 1
θ ) + min

η∈Σ0
ad

∫
Ω

|η|2+2(1−χ)σ̂ :τ + 2
[
(1−χ)χ1( 2σ̂−4αFτ1

θ )+(1−χ)χ2( 2σ̂−4αFτ2
θ )

]
:η dx

= `4F 2(1− 1
θ ) + `8F 2( 1

θ − 1)− 4αF
θ

∫
Ω

(1− χ)
[
χ2 ( 0 F

F 0 ) : ( 1 1
1 1 )− χ1 ( 0 F

F 0 ) :
(

1 −1
−1 1

)]
dx

+ min
η∈Σ0

ad

∫
Ω

|η|2 + 2
[
(1−χ)χ1( 2σ̂−4αFτ1

θ )+(1−χ)χ2( 2σ̂−4αFτ2
θ )

]
:η dx

= `4F 2( 1
θ − 1)(1− 2α) + min

η∈Σ0
ad

∫
Ω

|η|2 − 2[γ1( 2σ̂−4αFτ1
θ ) + γ2( 2σ̂−4αFτ2

θ )] : η dx .

Passing to Fourier space we obtain

∆JF,`elast(O) ≥ `4F 2( 1
θ − 1)(1− 2α)

+ min
η̂(k)∈R2×2

sym and η̂(k)k=0 for all k∈R2

∫
R2

|η̂|2 − 2[γ̂1( 2σ̂−4αFτ1
θ ) + γ̂2( 2σ̂−4αFτ2

θ )] : η̂ dk

= `4F 2( 1
θ − 1)(1− 2α)−

∫
R2

∣∣∣γ̂1k̂
⊥ · ( 2σ̂−4αFτ1

θ )k̂⊥ + γ̂2k̂
⊥ · ( 2σ̂−4αFτ2

θ )k̂⊥
∣∣∣2 dk ,

where we chose the minimizing η̂(k) = k̂⊥ ·
[
γ̂1

2σ̂−4αFτ1
θ + γ̂2

2σ̂−4αFτ2
θ

]
k̂⊥ k̂⊥⊗ k̂⊥. Reordering the different

terms we arrive at the desired result.

We will later employ this result for a very particular partition of the domain. In essence, we will use
f1 and f2 to identify regions Ω1 and Ω2 in which mainly structures along the first and along the second
principal direction occur, respectively; Ω1 and Ω2 will then serve as the domain partition.

Accounting for compactness of O. Next we employ a continuous Fourier version of a lemma from [10],
which captures the fact that the geometry is confined to Ω. For g : R→ R with support in the unit interval
and a monotonically increasing function ρ : [0,∞)→ [0,∞), [10] observes that∫

R
ρ(|k|)|ĝ(k)|2 dk ≥

∫
|k|> 1

4

|ĝ(k)|2ρ(|k|) dk ≥ ρ( 1
4 )

(∫
R
|ĝ|2 dk −

∫
|k|≤ 1

4

|ĝ|2 dk

)

≥ ρ( 1
4 )

(∫
R
|ĝ|2 dk − 1

2 sup
k
|ĝ(k)|2

)
≥ 1

2ρ( 1
4 )

∫
R
|ĝ|2 dk ,

where in the last step we have used |ĝ|2 ≤ ‖g‖2L2([0,1]) = ‖ĝ‖2L2(R) by Hölder’s inequality. Essentially, this

estimate shows that the Fourier transform of a function with bounded support has a major part of its L2-mass
beyond a frequency k of order 1. In our adapted version, the rôle of g is played by

F1γ(k1, ·) =

∫
R
γ(x1, ·)e−2πix1k1 dx1 ,

the Fourier transform of γ in the x1-direction (whose support lies in x2 ∈ [0, 1]), and the function ρ is

replaced by an approximation of dist2(k̂, B). Our result is the following:

Lemma 12 (Compact domain estimate). For any b > 0 and i = 1, 2 we have

∆JF,`elast(O) ≥ 2F 2

θ2

∫
{k : |k·vi|≤ 1

b }
|f̂i|2 dk

1 + 32‖γ‖4L2/(b
∫
{k : |k·vi|≤ 1

b }
|f̂i|2 dk)2

.
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Proof. For any a, b > 0 we have

∆JF,`elast(O) ≥ 4F 2

θ2

∫
R2

dist2(k̂, B)|γ̂|2 dk ≥ 4F 2

θ2

∫
R2

(k·v2)2

(k·v2)2+(k·v1)2 |f̂1|2 dk

≥ 4F 2

θ2
1

1+a2/b2

∫
R

∫
{k2 : |k·v2|≥ 1

a ,|k·v1|≤ 1
b }
|f̂1|2 dk2 dk1

≥ 4F 2

θ2
1

1+a2/b2

∫
R

[∫
{k2 : |k·v1|≤ 1

b }
|f̂1|2 dk2 − 2

√
2

a sup
k2

|f̂1(k1, k2)|2
]

dk1 .

Now we would like to estimate the square-bracketed term by
∫
R |f̂1|2 dk2 in a similar manner as in the

previous estimate from [10]. However, unlike γ, the support of f1 is not necessarily bounded so that the
supremum in the square-bracketed term cannot be bounded above by the L2-type term. Hence, let us divide
the above inequality by

Cb =

∫
{k : |k·v1|≤ 1

b }
|f̂1|2 dk

/
‖γ‖2L2

to obtain
∆JF,`elast(O)

Cb
≥ 4F 2

θ2
1

1+a2/b2

∫
R

[∫
R
|γ̂|2 dk2 − 2

√
2

Cba
sup
k2

|f̂1(k1, k2)|2
]

dk1 .

Choosing a = supk1

4
√

2
Cb

supk2
|f̂1(k1,k2)|2∫

R |γ̂|2 dk2
≤ 4

√
2

Cb
supk1

supk2
|γ̂(k1,k2)|2∫

R |γ̂|2 dk2
≤ 4

√
2

Cb
supk1

‖F1γ(k1,·)‖2L1

‖F1γ(k1,·)‖2
L2
≤ 4

√
2

Cb
, where

the last step follows from the bounded support of F1γ(k1, ·), we finally arrive at

∆JF,`elast(O) ≥ 2F 2

θ2

Cb‖γ‖2L2

1 + 32/(bCb)2
,

which after inserting Cb yields the desired inequality for f1. The analogous calculation can be performed for
f2.

Intuitively, if b is chosen small, the above estimate basically turns into a bound on
∫
{k : |k·vi|≤ 1

b }
|f̂i|2 dk

of the form
∫
{k : |k·vi|≤ 1

b }
|f̂i|2 dk . 3

√
∆JF,`elast(O)/b2.

Perimeter estimate. The perimeter can be estimated in Fourier space as in [14, Lemma 3]. We reproduce
the brief argument for the sake of completeness.

Lemma 13 (Perimeter estimate). For any L > 0 we have

Per(O) ≥ 1

L

∫
{L|k|≥1}

|γ̂|2 dk .

Proof. For any L > 0,

Per(O) ≥ 1

2πL

∫
∂BL(0)

1

|c|
‖γ − γ(·+ c)‖2L2 dc

=
1

2πL2

∫
∂BL(0)

∫
R2

|γ̂(k)(1− e2πic·k)|2 dk dc

≥ 1

2πL2

∫
{L|k|≥1}

|γ̂(k)|2
∫
∂BL(0)

|1− e2πic·k|2 dcdk ,

where the integral
∫
∂BL(0)

|1− e2πic·k|2 dc is greater than L due to L|k| ≥ 1 [14].
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Figure 9: Left: Zoom into the optimal geometry from Figure 5. Right: Corresponding idealized sketch of
the optimal geometry in Fourier space; the black dots are where we expect the major mass to be. The gray
trapezoids indicate the regions outside which the support is shown to be negligible.

3.2 Proof of lower bound by contradiction

As a guidance, we may think of the construction from the previous section. Figure 9 shows a sketch of its
major features and of what this implies for the Fourier transform of γ.

Before proceeding to the details, let us introduce some notation. Throughout this section, O denotes the
optimal geometry and is understood to depend on ε without explicitly indicating this dependence. Likewise,
the characteristic function χ of O and its variants such as γ, f1, f2 also depend on ε. We will use the small

O notation f(ε) = o(g(ε)) to indicate f(ε)
g(ε) →ε→0 0. Furthermore, ∼ shall denote equality up to a constant

factor independent of ε (but potentially depending on ` and F ), and similarly, ., & shall denote less than
or greater than up to a constant factor.

We shall prove the lower bound by contradiction; assume the excess energy to be o(
√
ε),

Jε,F,`[O]− J∗,F,`0 = ∆JF,`elast(O) + εPer(O) = o(
√
ε) . (6)

A short sketch of the argument is as follows. Using the estimates from the previous section, we will first
show that f̂i, i = 1, 2, essentially lie within the wedges of Figure 9 (Proposition 13). From this and the fact

χ̂ = χ̂∗ χ̂ (which roughly means that (f̂1 + f̂2) approximately equals (f̂1 + f̂2)∗ (f̂1 + f̂2)) we infer that f̂1 ∗ f̂2

or equivalently f1f2 has negligible L2-norm (Lemma 15; for technical reasons, f1 and f2 are replaced here by
approximations g1 and g2). Finally, based on f1 and f2 we decompose the domain Ω into the region where
material struts are more or less aligned with v1 and the region where struts are aligned with v2. Using these
domains in Lemma 9 and also the estimate that f1f2 ≈ 0 then finally yields a contradiction.

Specifying all volume fractions. Lemmas 7 and 8 now provide the L2-mass of χ, f1, and f2.

Proposition 14 (Volume fractions). Under assumption (4) and for i = 1, 2 we have

θ = 2|F |+ o( 4
√
ε) ,

‖γ‖2L2 = `2|F |(1− 2|F |) + o( 4
√
ε) ,

‖fi‖2L2 = `|F |(1− 2|F |) + o( 4
√
ε) .

Proof. Lemma 7 yields the estimate

∆JF,`elast(O) ≥ ` (2|F |−θ)2

θ = `2|F |( 2|F |
θ − 1)(1− θ

2|F | ) ,

19



which can be solved for 2|F |
θ to yield 2|F |

θ = 1 + o( 4
√
ε) and thus the desired estimate for θ. The second

estimate now is a direct consequence of ‖γ‖2L2 = `θ(1− θ).
Likewise, the estimate from Lemma 8,

∆JF,`elast(O) ≥ 4F 2

θ2 max(‖f1‖2
L2 ,‖f2‖2

L2 )

(
‖fi‖2L2 − `θ(1−θ)

2

)2

together with max(‖f1‖2L2 , ‖f2‖2L2) ≤ ‖γ‖2L2 = `θ(1− θ) ∼ 1 and θ ∼ 2|F | implies

‖fi‖2L2

` = θ(1−θ)
2 + o( 4

√
ε) ,

which produces the final estimate.

Localizing the Fourier support of γ. We now use Lemmas 7, 10, and 11 to show that the Fourier
support of f1 and f2 (and thus of γ) is restricted to the wedges shown in Figure 9 (right).

Proposition 15 (Fourier support of γ). Under assumption (4) and for i = 1, 2 we have∫
R2\Wi

|f̂i|2 dk = o(1)

for the wedge

Wi =
{
k ∈ R2 : dist(k̂, {±vi}) < 4

√
ε, |k| < 1√

ε
, |k · vi| > 4

4
√
ε

}
.

Proof. The estimate from Lemma 7 together with Proposition 12 implies

∆JF,`elast(O) ≥ 4F 2

θ2

∫
R2

|γ̂|2dist2(k̂, B) dk &
∑
i=1,2

∫
{dist(k̂,{±vi})≥ 4

√
ε}

√
ε|f̂i|2 dk

so that the L2-mass of f̂1 and f̂2 outside a wedge of angle 4
√
ε around the preferred directions must be

negligible. Also, Lemma 11 for the choice L =
√
ε implies that the L2-mass of γ̂ and thus f̂1 and f̂2

beyond the frequency 1/
√
ε is negligible. Finally, γ̂, f̂1, and f̂2 have negligible L2-mass at frequencies with

|k|1 = |k1|+ |k2| < 4/ 4
√
ε. Indeed, assume the opposite, i. e.

∫
{|k|1≤ 4

4√ε
} |f̂1|2 dk & 1, then the choice b = 4

√
ε/4

in Lemma 10 yields ∆JF,`elast(O) & 2F 2

θ2 1/[1 + 32‖γ‖4L2/b2] ∼
√
ε, a contradiction. The analogous result holds

for f2.

Note that each bound in the definition of Wi may actually be multiplied by an arbitrary constant, since
only the asymptotic behavior for ε→ 0 is considered. The above choice, in particular the factor 4 in the last
bound, will become clear in the proof of Lemma 15, where it leads to a disjoint Fourier support of a number
of functions.

For later purposes it is convenient to replace f̂1 and f̂2 by approximations ĝ1 and ĝ2 whose support
completely lies in W1 and W2, respectively. If chosen properly, these functions enjoy useful boundedness
properties as summarized in the subsequent proposition. For a compact notation, we also introduce the
characteristic function of Ω,

X(x) =

{
1 if x ∈ Ω ,

0 else,

with X̂(k) = `e−2πi 1
2k·( `1 )sinc(k1`)sinc(k2).

Proposition 16 (Decomposition of γ). Under assumption (4), there exist functions g1, g2, and g satisfying,
for any p ∈ (1,∞) and a constant C > 0,

χ = θX + g1 + g2 + g ,

supp ĝi ⊂Wi , i = 1, 2 ,

‖f1 − g1‖L2 , ‖f2 − g2‖L2 , ‖g‖L2 = o(1) ,

‖g1‖Lp , ‖g2‖Lp , ‖g‖Lp ≤ C .
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Proof. It is easy to see that the proof of Proposition 13 can be modified to show that f̂1 and f̂2 have negligible
L2-mass outside the wedges

W̃i =
{
k ∈ R2 : dist(k̂, {±vi}) < 1

4
4
√
ε, |k| < 1

2
√
ε
, |k · vi| > 8

4
√
ε

}
.

We will define ĝ1 and ĝ2 by restricting f̂1 and f̂2 to subsets of W1 and W2. In order to still have boundedness
of the gi in Lp, we will thus have to apply a multiplier theorem. To this end, for i = 1, 2 and m,n ∈ Z
consider the sets

Qm,n =
(
(−2m+1,−2m] ∪ [2m, 2m+1)

)
×
(
(−2n+1,−2n] ∪ [2n, 2n+1)

)
,

Q̃m,n = 1√
2

(
1 1
−1 1

)
Qm,n ,

Vi =
⋃

Q̃m,n∩W̃i 6=0

Q̃m,n .

We have Vi ⊂Wi. Let us now define g1, g2, and g via

ĝi(k) =

{
f̂i(k) if k ∈ Vi
0 else

and γ = χ − θX = g1 + g2 + g. By the Marcinkiewicz Multiplier Theorem [11, Theorem 5.2.4], for any
p ∈ (1,∞) we have

‖g1‖Lp , ‖g2‖Lp , ‖g‖Lp ≤ C max(p, 1
p−1 )12‖γ‖Lp = C max(p, 1

p−1 )12 p
√

(1− θ)θp + θ(1− θ)p

for a fixed C > 0 (note that the coordinate system has to be rotated by π
4 to apply [11, Theorem 5.2.4]).

Furthermore, by definition, the L2-norms of f1 − g1, f2 − g2, and g or equivalently the L2-norms of their
Fourier transforms are bounded above by ‖γ̂‖L2(R2\(W̃1∪W̃2)) = o(1).

In the next paragraph we will try to obtain a more explicit characterization of the functions g1 and g2,
using the fact that they essentially represent a decomposition of the characteristic function χ (or rather of
γ).

Exploiting the properties of characteristic functions to characterize the decomposition of γ.
Now we will exploit the fact that χ is a characteristic function, i. e. χ = χ·χ. By inserting χ = θX+g1+g2+g
and comparing the supports of the different terms on either side of χ̂ = χ̂∗χ̂, we will see that g1g2 is negligible,
a fact which should be wrong intuitively: it is easily conceivable that non-negligible ĝ1 and ĝ2 with support
as in Figure 9 will not produce negligible ĝ1 ∗ ĝ2. This will ultimately lead to the desired contradiction.

Lemma 17 (Characterization of Fourier decomposition). Under assumption (4) and for g1, g2 from Propo-
sition 14 we have

‖g1g2‖L2 = o(1) ,

g2
1 = (1− 2θ)g1 +

‖g1‖2L2

` X + ξ1 ,

g2
2 = (1− 2θ)g2 +

‖g2‖2L2

` X + ξ2

for two functions ξ1 and ξ2 satisfying, with i = 1, 2,

‖ξ1 + ξ2‖L2 = o(1) ,∫
R2

ξi dx = 0 ,∫
{k : max(|k·v1|,|k·v2|)≥ 1

4√ε
}
|ξ̂i|2 dx = o(1) .
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Proof. The relation χ̂ = χ̂ ∗ χ̂ implies

χ̂ = χ̂ ∗ χ̂ = 2ĝ ∗ χ̂− ĝ ∗ ĝ + 2θX̂ ∗ χ̂− θ2X̂ ∗ X̂ − 2θX̂ ∗ ĝ + (ĝ1 + ĝ2) ∗ (ĝ1 + ĝ2) .

Using X̂ ∗ X̂ = X̂, X̂ ∗ χ̂ = χ̂, ‖ĝ ∗ χ̂‖L2 = ‖gχ‖L2 ≤ ‖g‖L2 , ‖ĝ ∗ X̂‖L2 = ‖gX‖L2 ≤ ‖g‖L2 , and ‖ĝ ∗ ĝ‖L2 =

‖g2‖L2 ≤
√
‖g‖L2‖g‖3L6 .

√
‖g‖L2 , we arrive at

(1− 2θ)χ̂+ θ2X̂ = ĝ1 ∗ ĝ1 + ĝ2 ∗ ĝ2 + 2ĝ1 ∗ ĝ2 + r̂

or equivalently
θ(1− θ)X̂ + (1− 2θ)(ĝ1 + ĝ2 + ĝ) = ĝ1 ∗ ĝ1 + ĝ2 ∗ ĝ2 + 2ĝ1 ∗ ĝ2 + r̂ ,

where the remainder r̂ is o(1) in L2. The basic idea now is the following: All terms involving g or r can be
neglected. Among the remaining terms in the equation, none intersects the support of ĝ1 ∗ ĝ2, hence no term
balances ĝ1 ∗ ĝ2. This implies that ĝ1 ∗ ĝ2 must also be negligible. Let us proceed to the details:

The supports of ĝi, ĝj ∗ ĝj , and ĝ1 ∗ ĝ2 do not intersect for i 6= j. In particular, supp(ĝ1 ∗ ĝ2) ⊂ {k :

|k · v1|, |k · v2| ≥ 2
4
√
ε
} only intersects the support of r̂, ĝ, and X̂ so that the above equality implies

‖ĝ1 ∗ ĝ2‖2L2 ≤ 1
2

∫
{k : |k·v1|,|k·v2|≥ 2

4√ε
}
|(1− 2θ)ĝ + θ(1− θ)X̂ − r̂|2 dk = o(1) .

To better characterize ĝ1 ∗ ĝ1 and ĝ2 ∗ ĝ2, define the two residual functions ξ1, ξ2 via

ĝ1 ∗ ĝ1 = (1− 2θ)ĝ1 +
‖g1‖2L2

` X̂ + ξ̂1 ,

ĝ2 ∗ ĝ2 = (1− 2θ)ĝ2 +
‖g2‖2L2

` X̂ + ξ̂2 .

The residuals ξ1, ξ2 satisfy∫
R2

ξi dx =

∫
R2

g2
i − (1− 2θ)gi −

‖gi‖2L2

` X dx = −(1− 2θ)

∫
R2

gi dx = −(1− 2θ)ĝi(0) = 0 ,

‖ξ̂1 + ξ̂2‖L2 = ‖ĝ1 ∗ ĝ1 + ĝ2 ∗ ĝ2 − (1− 2θ)(ĝ1 + ĝ2)− ‖g1‖2L2+‖g2‖2L2

` X̂‖L2

= ‖(1− 2θ)ĝ − r̂ − 2ĝ1 ∗ ĝ2 + (θ(1− θ)− ‖γ−g‖
2
L2

` )X̂‖L2 = o(1)

as well as ∫
{k : max(|k·v1|,|k·v2|)≥ 1

4√ε
}
|ξ̂i|2 dx = o(1) ,

since in the region max(|k · v1|, |k · v2|) ≥ 1
4
√
ε
, the only terms with non-negligible L2-mass are ĝi ∗ ĝi and

(1− 2θ)ĝi, i = 1, 2, so that in this region ĝi ∗ ĝi − (1− 2θ)ĝi = 0 up to an L2 negligible error.

Remark 18. Note that the above information can be used to see that the L4- and L2-mass of g1 and g2

outside Ω are negligible. Indeed, for i = 1, 2 we have

o(1) = ‖g1g2‖2L2(R2) ≥
∫
R2\Ω

g2
1g

2
2 dx =

∫
R2\Ω

g2
i (g2

i + 2gig + g2) dx

= ‖gi‖4L4(R2\Ω) +

∫
R2\Ω

g2
i (2gig + g2) dx ≥ ‖gi‖4L4(R2\Ω) + 2

∫
R2\Ω

g3
i g dx ,

where the integral is bounded in absolute value via Hölder’s inequality by 2‖g‖L2‖gi‖3L6 ≤ C‖g‖L2 = o(1),
using Proposition 14. Also,

‖gi‖2L2(R2\Ω) ≤ ‖gi‖L4(R2\Ω)‖gi‖L 4
3 (R2\Ω)

= o(1) ,

again using Proposition 14 for the L
4
3 -norm.
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Deriving a contradicting spatial separation of g1 and g2. We would like to better understand ξ1
and ξ2. We first change g1 and g2 slightly to make ‖ĝ1 ∗ ĝ2‖L2 exactly zero. To this end, introduce the
characteristic functions

χg1
(x) =

{
1 if x ∈ Ω and |g2(x)| < |g1(x)| ,
0 else,

χg2
= X − χg1

.

Intuitively, χg1
indicates the region in which the struts are roughly aligned with v2 and χg2

the region in
which the struts are aligned with v1. Now we can define

G1 = γχg1 , G2 = γχg2 , Ξ1 = ξ1 + g1 −G1 , Ξ2 = ξ2 + g2 −G2 ,

and we obtain the following characterizations.

Lemma 19 (Characterization of domain decomposition). Under assumption (4), letting ≈ denote equality
up to a remainder with L2-norm of o(1) we have, for i = 1, 2,

Gi ≈ giχgi ≈ gi ≈ giX ≈ fi

as well as

χ = G1 +G2 + θX ,

G1G2 = 0 ,

Ξi ≈ ξi ,
Ξ1 + Ξ2 ≈ 0 ,

χgi ≈ 1
2X −

1
θ(1−θ)Ξi .

Proof. gi ≈ giX follows from Remark 16. Note that for i = 1, 2 and j 6= i we have

‖giχgj‖2L2 ≤
∫
{x∈Ω : |gi(x)|≤|gj(x)|}

|gi(x)|2 dx ≤
∫

Ω

|g1g2|dx ≤
√

Vol(Ω)‖g1g2‖L2 = o(1)

from Lemma 15. This directly implies

‖gi − giχgi‖L2 ≤ ‖gi −Xgi‖L2 + ‖Xgi − giχgi‖L2 = ‖gi −Xgi‖L2 + ‖giχgj‖L2 = o(1) ,

from which we finally obtain

‖gi −Gi‖L2 ≤ ‖gi − giχgi‖L2 + ‖gjχgi‖L2 + ‖gχgi‖L2 = o(1)

and thus Ξi ≈ ξi as well as Ξ1 + Ξ2 ≈ ξ1 + ξ2 ≈ 0 via Lemma 15.
The relations χ = G1 +G2 + θX and G1G2 = 0 follow directly from the definition of the Gi. This now

implies Gi(x) ∈ {−θ, 0, 1− θ} for almost all x as well as {x ∈ R2 : χgi(x) = 0} = {x ∈ R2 : Gi(x) = 0} or
equivalently (Gi + θX)(x) ∈ {0, θ, 1} with {x ∈ R2 : χgi(x) = 0} = {x ∈ R2 : (Gi + θX)(x) = θ}. Thus, for
j 6= i,

χgj = (Gi+θX)−(Gi+θX)2

θ(1−θ) = X +
Gi−G2

i−2θGi
θ(1−θ)

= X +
gi+ξi−Ξi−G2

i−2θGi
θ(1−θ) = X +

g2
i+2θgi−‖gi‖2L2X/`−Ξi−G2

i−2θGi
θ(1−θ)

= (1− ‖gi‖2L2

`θ(1−θ) )X − Ξi
θ(1−θ) +

2θ(gi−Gi)+g2
i−G

2
i

θ(1−θ) ≈ 1
2X −

Ξi
θ(1−θ) ,

using ‖Gi − gi‖L2 = o(1), ‖gi‖2L2 = ‖fi‖2L2 + o(1) = `θ(1−θ)
2 + o(1), and ‖G2

i − g2
i ‖2L2 =

∫
R2 |Gi − gi|2|Gi +

gi|2 dx ≤ ‖Gi−gi‖L2‖Gi−gi‖L6‖Gi+gi‖2L6 (where Gi is bounded and gi is bounded in L6 by Proposition 14).
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The previous lemma shows that Ξ1 and Ξ2 or equivalently ξ1 and ξ2 are intimately connected with the
characteristic functions χg1 and χg2 . Recall that ξ̂1 and ξ̂2 are supported at frequencies smaller than 1/ 4

√
ε.

In other words, the predominant length scales of ξ1 and ξ2 and thus of χg1
and χg2

are larger than 4
√
ε,

which itself is the largest significant length scale occuring in χ. This would mean that the regions with
struts supporting stress in direction v1 and struts supporting stress in direction v2 are spatially separated,
which cannot be optimal. To quantify the suboptimality, we now finally apply Lemma 9 for the two regions
indicated by χg1 and χg2 . To this end, let γi = γ̃i −X −

∫
Ω
γ̃i dx for γ̃i = (χ− 1)χgi = Gi − (1− θ)χgi (recall

χ(x) = 0 and χgi(x) = 1⇔ Gi(x) = −θ) and observe

γi = Gi − (1− θ)χgi −
∫
Ω
Gi−(1−θ)χgi dx

Vol(Ω) X ≈ gi − (1− θ)χgi −
∫
Ω
gi−(1−θ)(X2 −

Ξi
θ(1−θ) ) dx

Vol(Ω) X

= gi − (1− θ)(χgi − X
2 )−

∫
Ω

ξi+(gi−Gi)
θ dx

Vol(Ω) X ≈ gi + (1− θ)(X2 − χgi) ≈ gi + Ξi
θ ,

where ≈ stands for equality up to a function with L2-norm of o(1). Inserting this relation in Lemma 9 now
yields

∆JF,`elast(O) ≥ `4F 2( 1
θ − 1)(1− 2α)

− 4F 2

θ2

∫
R2

∣∣∣ĝ1k̂
⊥ ·
(

α 1−α
1−α α

)
k̂⊥ + ĝ2k̂

⊥ ·
( −α 1−α

1−α −α
)
k̂⊥ + (1− θ)α(χ̂g2

− χ̂g1
)
∣∣∣2 dk + o(1) .

Note that ‖χ̂g1
− χ̂g2

‖2L2 = ‖χg1
− χg2

‖2L2 = ` and furthermore that ĝ1, ĝ2, and

χ̂g2
− χ̂g1

≈ Ξ1 − Ξ2

θ(1− θ)
≈ ξ1 − ξ2
θ(1− θ)

all have different support (up to an L2-negligible overlap, see the definition of gi and Lemma 15). Hence,
assuming 0 ≤ α ≤ 1

3 , we obtain

∆JF,`elast(O) ≥ `4F 2( 1
θ − 1)(1− 2α)

− 4F 2

θ2

∫
R2

|ĝ1|2(k̂⊥ ·
(

α 1−α
1−α α

)
k̂⊥)2 + |ĝ2|2(k̂⊥ ·

( −α 1−α
1−α −α

)
k̂⊥)2 dk

− 4F 2

θ2 (1− θ)2α2‖χ̂g2 − χ̂g1‖2L2 + o(1)

≥ `4F 2( 1
θ − 1)(1− 2α)− 4F 2

θ2

∫
R2

|f̂1|2(1− 2α)2 + |f̂2|2(1− 2α)2 dk

− 4F 2

θ2 `(1− θ)2α2 + o(1)

= `
4F 2

θ2

[
θ(1− θ)[(1− 2α)− (1− 2α)2]− (1− θ)2α2

]
+ o(1)

∼ `F 2(1− 2|F |)

after maximizing over 0 ≤ α ≤ 1
3 (note that for α = 0 the square bracket is zero with positive derivative of

order one). This yields the desired contradiction so that we must have Jε,F,`[O]− J∗,F,`0 &
√
ε as ε→ 0.

So far we have shown that for fixed F and ` there are an ε0 > 0 and a constant C > 0 such that
minO⊂Ω Jε,F,`[O]−J∗,F,`0 ≥ C

√
ε for all ε < ε0. However, minO⊂Ω Jε,F,`[O]−J∗,F,`0 is monotonously increasing

in ε so that minO⊂Ω Jε,F,`[O] − J∗,F,`0 ≥ C
√
ε0 for all ε ≥ ε0. Combining both inequalities we arrive at

minO⊂Ω Jε,F,`[O]− J∗,F,`0 ≥ C
√
ε0/|F |

√
ε for all ε ≤ |F |, the desired result.

4 Appendix

4.1 Compliance associated with diffusing a uniaxial stress

Consider a rectangular piece of material with side lengths w and w
2 , respectively, loaded as shown in Figure 10,

left. This load geometry can be interpreted as a segment of a larger rectangular domain at both sides of
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F w
d

Ω Ω

Figure 10: The load geometry considered in Proposition 18 (left) can be interpreted as a segment of a larger
rectangular geometry over which the tensile stress diffuses (center left). The same holds for the load geometry
from Corollary 19 (center right and right).

which a tensile stress is applied in a small region of width d (Figure 10, center left). The tensile stress then
diffuses over the whole width of the rectangle. Let Σad denote the set of admissible stresses, i. e. those
symmetric tensor fields which are divergence-free and satisfy the given boundary conditions.

Proposition 20 (Compliance of stress diffusion). The compliance minσ∈Σad

∫
Ω
|σ|2 dx of the configuration

in Figure 10, left, is bounded above by w2F 2

2 (1 + π
2 ln w

d ).

Proof. It suffices to provide an admissible stress field σ or, via the identification σ =
(

∂22φ −∂12φ
−∂21φ ∂11φ

)
, a

corresponding Airy stress function φ. Note that for d = w, the equilibrium stress is described by the Airy
stress function

φw(x1, x2) = F
x2

1

2 .

Similarly, an Airy stress function describing a uniform tensile stress within a vertical strip of width d < w is
given by

φ̃(x1, x2) =

{
F w
d
x2

1

2 if |x1| ≤ d
2 ,

Fw
2 (|x1| − d

4 ) else.

Now an Airy stress function admissible for the load configuration in Figure 10 left can be constructed (ab-
breviating r =

√
x2

1 + x2
2) as

φd(x1, x2) = φw(x1, x2) +

{
φ̃(r, 0)− φw(r, 0) if r ≤ w

2 ,

φ̃(w2 , 0)− φw(w2 , 0) else.

This yields the stress field

σd(x1, x2) = ( 0 0
0 F ) +


F (wd − 1)I if r ≤ d

2 ,

−FI + Fw
2r (I − e⊥r ⊗ e⊥r ) if d

2 ≤ r ≤
w
2 ,

0 else,
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with e⊥r = (− sinϕ, cosϕ), where (x1, x2) = (r cosϕ, r sinϕ). We can thus bound the compliance above by∫ w
2

x1=−w2

∫ w
2

x2=0

|σd|2 dx2dx1 =π
2 (d2 )2F 2

(
(wd − 1)2 + (wd )2

)
+
(
w2

2 −
π
2 (w2 )2

)
F 2

+

∫ w
2

r= d
2

∫ π

ϕ=0

∣∣∣(−F+Fw
2r (1−sin2 ϕ) Fw

2r sinϕ cosϕ
Fw
2r sinϕ cosϕ Fw

2r (1−cos2 ϕ)

)∣∣∣2 r dϕdr

=π
2 (d2 )2F 2

(
(wd − 1)2 + (wd )2

)
+
(
w2

2 −
π
2 (w2 )2

)
F 2

+

∫ w/2

r=d/2

∫ π

ϕ=0

[
(Fw2r )2 + F 2 − F 2w

r cos2 ϕ
]
r dϕdr

=w2F 2

2 (1 + π
2 ln w

d ) .

The previous proposition says that if the load at the bottom is concentrated in a region of width d,
then the excess compliance over the situation of a uniform stress distribution (i. e. d = w) is bounded by
π
4w

2F 2 ln w
d . This stays true even if an additional horizontal load is applied on the left and right boundary

as in Figure 10 right.

Corollary 21. The compliance minσ∈Σad

∫
Ω
|σ|2 dx of the configuration in Figure 10, right, is bounded above

by w2

2 (F̃ 2 + F 2 + F 2 π
2 ln w

d ).

Proof. We decompose the equilibrium stress field according to σ̃ + σ with σ̃ =
(
F̃ 0
0 0

)
so that σ must be the

equilibrium stress field for the configuration from Proposition 18. Now the compliance is given by∫
Ω

|σ̃ + σ|2 dx =

∫
Ω

|σ̃|2 dx+

∫
Ω

|σ|2 dx+ 2

∫
Ω

tr(σT σ̃) dx .

The first term is w2

2 F̃
2, the second is bounded by Proposition 18, and the third is zero since σ satisfies∫ w/2
−w/2 σ(x1, x2) ( 0

1 ) dx1 = ( 0
Fw ) ∀x2 ∈ [0, w2 ] ,∫ w/2

0
σ(x1, x2) ( 1

0 ) dx2 = ( 0
0 ) ∀x1 ∈ [−w2 ,

w
2 ]

so that
∫

Ω
σ dx = Vol(Ω) ( 0 0

0 F ).
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