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Abstract

A novel numerical method for multilabel segmentation of vector-valued images is presented. The algorithm seeks
minimizers for a generalization of the piecewise-constant Mumford–Shah energy and is particularly appropriate for
energies with a fitting (or fidelity) term that is computationally expensive to evaluate. The framework for the algorithm
is the standard alternating-minimization scheme in which the update of the partition is alternated with the update of
the vector-valued constants associated with each part of the segmentation. The update of the partition is based on the
distance function-based diffusion-generated motion algorithms for mean curvature flow. The update of the vector-
valued constants is based on an Augmented Lagrangian method. The scheme automatically chooses the appropriate
number of segments in the partition. It is initialized with a partition of many more segments than are expected to be
necessary. Adjacent segmentations of the partition are merged when energetically advantageous. The utility of the
algorithm is demonstrated in the context of atomic-resolution polycrystalline image segmentation.

1 Introduction
In this article we consider a generalization of the piecewise-constant Mumford–Shah (PCMS) [25] energy which
seeks a segmentation of a given, potentially vector-valued 2D or 3D image into multiple segments, where the energy
associated with the interface between the segments may depend on the bulk values in the adjacent segments. Our
algorithm employs a version of the distance function-based diffusion-generated motion (DFDGM) algorithms [16,
17, 20]. The bulk energy of the PCMS model is only fully evaluated a few times during the algorithm in order to
obtain a simple quadratic approximation. This makes our method particularly suitable for computationally expensive
bulk energies. We demonstrate the algorithm in the context of polycrystalline image segmentation. In the remainder
of this introduction, we briefly review the extensive literature surrounding the PCMS model and its variants, give a
brief overview of the DFDGM algorithms, and describe the problem of image segmentation in the context of atomic-
resolution polycrystalline images.

1.1 Piecewise constant Mumford–Shah model
Given an input image u on a domain Ω, the well-known Mumford–Shah image segmentation functional [25] searches
for a function q and a discontinuity set Γ such that q agrees well with u, is differentiable and slowly-varying away
from Γ, and such that the discontinuity set Γ remains small. The function q and the discontinuity set Γ are found by
minimizing the functional

E[Γ,q] = µ
2
∫

Ω

(q−u)2 dx+
∫

Ω−Γ

‖∇q‖2 dx+β |Γ|,

with |Γ| denoting the total interfacial area of Γ, and µ and β positive weighting parameters.
Under the assumptions that Γ partitions Ω and that q is constant on each part of the partition, one obtains the basic

PCMS model. Here, let {Ωi}i=1,...,n be a partition of Ω and associate with each part Ωi a constant value qi. The energy
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functional becomes

E[{Ωi,qi}i=1,...,n] = ∑
i=1,...,n

∫
Ωi

(qi−u)2 dx+
β

2 ∑
i=1,...,n

|∂Ωi|, (1)

where the parameter β may be rescaled to account for the discarded parameter µ .
In the simplest case, Γ is assumed to be a simple, closed curve dividing the image into two parts. The active

contour method of Chan and Vese [8] is a level set method that approximates (1) for n = 2 by the energy

E(φ ,q1,q2) =
∫

Ω

(q1−u)2Hε(φ)+(q2−u)2(1−Hε(φ)dx+β

∫
Ω

δε(φ)|∇φ |dx, (2)

where Hε and δε are smoothed Heaviside and delta functions, respectively. Here, the level set function φ determines
the partition by Ω1 = {x : φ(x) > 0}, Ω2 = Ω\Ω1, while Γ is defined by the zero level set, Γ = {x : φ(x) = 0}. The
partition is updated by L2-gradient descent on this energy functional with respect to φ . The scheme calls for alternating
minimization over φ and the values q1 and q2. It is easily seen that for a fixed partition, the optimal values qi are given
by qi =

(∫
Ωi

udx
)
/|Ωi|.

The basic approach of applying L2 gradient descent to (2) given some initial level set function φ 0 will often find a
local, rather than global, minimum. An approach of Chan, Esedoḡlu, and Nikolova [6] reformulates the segmentation
task as a convex optimization problem in a higher-dimensional space. The convex method by Bresson et al. [5]
additionally estimates the values q1,q2. Note, however, that such reformulations as convex minimisation problems
only work for scalar-valued q1,q2 and strongly increase the computational cost due to the additional dimensions, for
which reason we will follow a different approach.

Chan, Sandberg, and Vese extend the two-phase PCMS model to vector-valued images [7]. The resulting model
takes as input a vector-valued image u and searches for a single contour Γ and constant vectors q1 and q2 minimizing
Equation (2), with (qi−u)2 interpreted as ||qi−u||22, the sum of squared differences of the components of the vectors
qi and u at x. This extension allows for the segmentation of RGB images or grayscale images with damage (e.g.
noise, blurring, or occlusion) in multiple channels. In Section 1.3, we will review work which further extends the
PCMS model to more complicated and expensive fidelity terms, i.e. ones allowing the identification of a textured or
periodically patterned region by a (possibly vector-valued) constant.

For many images, the natural segmentation consists of more than two parts. Vese and Chan present a multiphase
level set algorithm for PCMS [34]. Their approach uses p level set functions to segment the image into n = 2p

regions. In their numerical experiments, p = 2 or 3, allowing for up to n = 8 parts in the segmentation. This approach
generates a strong coupling between the p level set functions and is thus difficult to implement in the many-phase case.
Furthermore, the length term is approximated in such a way that some parts of the curve may be counted multiple times,
losing fidelity to the original model. Jeon et al. [22] provide a different extension to multiphase, extend the two phase
level set PCMS algorithm by recursively performing binary segmentation on individual parts of the current partition.

A graph-based approach to image segmentation via the PCMS model was proposed by El–Zehiry, et al. [11] for
the two-phase segmentation. In this case, the minimization of the PCMS energy for fixed constants q1 and q2 can be
recognized as a minimum-cut problem on an associated graph. As such, it can be solved in polynomial time. The
authors propose an iterative scheme, alternating the solution of the minimum-cut problem for fixed q1 and q2 with
the update of these constants until fixed points for the values of q1 and q2 are found. These graph cut methods are
non-local and obtain global minimizers for the separating curve Γ for any fixed values of q1 and q2.

The extension of the graph-based approach to the multiphase problem is non-trivial. It is known that the multi-
commodity minimum graph cut problem is NP-complete in the case that the number of parts is taken to be a variable.
The solution of the multiphase problem is approximated by El–Zehiry, et al. [12] by solving a succession of binary
segmentation problems via graph cuts, similar to the approach of Jeon et al. [22] in the level set framework. More
recently, various groups including [2, 10, 13] have employed graph-based combinatorial optimization techniques to
approximate solutions of the multiphase PCMS segmentation for four or fewer parts. The recent work of El–Zehiry and
Grady [13] provides an extensive review of the literature surrounding algorithms for multiphase PCMS segmentation.

None of the existing level set or graph-based approaches are satisfactory for the many-label PCMS image seg-
mentation problem. In this work, we make use of the distance function-based diffusion-generated motion algorithm
originally proposed by Esedoḡlu, Ruuth, and Tsai [20] which, under the modification of Elsey, Esedoḡlu, and Smereka
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[16], allows for the evolution of many phases (hundreds of thousands) under curvature-based evolutions which arise
as L2 gradient descent for energies involving perimeter penalties of the form (1) and give the correct approximation
for |Γ|. This algorithm is reviewed in Section 1.2. In our approach, many phases are established initially, with the
expectation that many of them will not be needed in the final segmentation. Their presence allows the minimization
procedure to avoid many local minima. We implement a phase-merging technique to allow unneeded phases to be
removed quickly.

1.2 DFDGM algorithms
The class of diffusion-generated motion schemes dates back to the work of Merriman, et al. [23, 24], which intro-
duces the threshold dynamics scheme. The threshold dynamics schemes generate a discrete-in-time approximation
of multiphase curvature flow by alternating two basic steps: convolution of the characteristic function of a set with a
spherically symmetric kernel and thresholding the resulting convolution output to generate an updated characteristic
function. Ruuth [31] extends the threshold dynamics approach to allow for L2 gradient descent of the energy

E[{Ωi}i=1,...,n] =
n

∑
i=1

ei|Ωi|+
β

2

n

∑
i, j=1

σi j|Γi j|,

for arbitrary weights ei and positive β , σi j, with Γi j denoting the interface separating Ωi and Ω j. This descent gives
the normal velocity

vn(Γi j) = µi j (ei− e j +βσi jκi j) ,

where κi j denotes the mean curvature of Γi j.
Ruuth’s approach requires a nontrivial modification of the thresholding step, which requires the numerical approxi-

mation to resolve a nonlinear projection of convolution values in the three-phase case. When many phases are present,
a weighted average of these projections is used. In the absence of the bulk terms, Esedoḡlu and Otto [19] present
a different threshold dynamics-based scheme for the unequal surface energy motion. Their scheme relies on a new
energetic interpretation of the basic threshold dynamics scheme, allows for the extension to arbitrary isotropic surface
energies and mobilities. The new scheme is unconditionally gradient stable for a variety of surface energies, including
the class of surface energies employed in this work. However, it does not consider the bulk energy-type terms which
are crucial for the present work, and has not yet been implemented in the many-phase case.

The threshold dynamics scheme suffers from low accuracy on uniform grids, because characteristic functions do
not naturally give subgrid resolution on uniform grids. Ruuth [?] implements an adaptive mesh refinement version
of threshold dynamics. Another approach is to replace the characteristic function with a smoother function. This
approach is exemplified by the DFDGM scheme, proposed by Esedoḡlu, Ruuth, and Tsai [20]. This scheme replaces
the characteristic function by the signed distance function, and the thresholding step of threshold dynamics with a
pointwise redistribution step and a “redistancing” step, which updates an arbitrary level set function to be the signed
distance function to the zero level set of the input. Order N logN schemes (for N grid points) such as Sethian’s
Fast Marching Method [32] (equivalently, Tsitsiklis’s algorithm [33]) and higher order versions [15] ensure that the
computational complexity of the DFDGM algorithms is the same as the original threshold dynamics schemes, while
significantly greater accuracy is achieved at a given resolution.

Elsey, Esedoḡlu, and Smereka extend the DFDGM scheme to allow for the evolution of many (hundreds of thou-
sands) of phases by tracking many spatially separated phases within each signed distance function, and adding a step
to the algorithm which detects and rectifies situations in which two phases contained within a single signed distance
function begin to grow too close together [16]. They further achieve unequal surface energies (unequal weights wi j)
in the many-phase case [17]. Here we will propose a version of the PCMS scheme which assigns different surface
energies to the interface between various parts in a principled way, and utilizes the DFDGM algorithm as part of the
minimization scheme for this extended PCMS energy.

1.3 Polycrystalline image segmentation
Polycrystalline materials are characterized by the presence of large regions, called grains or crystals, consisting of
atoms arranged in a perfect or nearly-perfect lattice structure. Suppose that a deformation map ψ transforms locations
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in the given image u to locations in a perfect reference crystal. Then the deformation gradient G = Dψ ∈ R2×2 is
simply a rotation matrix in the absence of crystal strain. G is constant, or at least slowly varying, within each grain.
One approach to analyzing an atomic-resolution polycrystalline image u is to attempt to construct the deformation
map or deformation gradient. This approach is taken by Berkels, et al. [3] and by the present authors [18]. One
advantage of this approach is that isolated defects are captured and their associated Burgers vectors can be determined
by integrating curlG. The drawback is in the computational cost. The deformation map or gradient must be computed
everywhere in the computational domain.

For some applications, it is sufficient to know an image segmentation. Each part of the segmentation is associated
with a constant deformation gradient. The foregoing discussion suggests a PCMS-type model, where a penalty is paid
for the discrepancy between the atomic lattice in the image and the atomic lattice predicted by the deformation gradient
associated with the proper part of the image domain. Berkels, et al. advocate for this approach, using the Chan–Vese
level sets approach for segmentation into a few crystalline regions. We will use the fidelity or fitting term from that
work to penalize for the discrepancy between the observed lattice and the lattice defined by the segmentation task for
each region. Boerdgen et al. [4] demonstrate a convex lifting approach which allows one to find global minimizers of
this PCMS energy in the multiphase case. However, the approach used there is very computationally expensive from
a memory standpoint and may not be able to be extended into three dimensions.

In the present work, we apply the DFDGM algorithm to a variant of the PCMS energy considered by Berkels et al.
and Boerdgen et al. The DFDGM approach allows us to use many labels in our segmentation — indeed, our approach
is to initialize our computations with a regular grid of many labels. The labeling is then updated by the alternation of
DFDGM iterations which help to place the interfaces Γi j along grain boundaries in the image and by an orientation
update and part merging scheme which ensure that appropriate orientations are associated with each region, and that
adjacent regions of similar orientation are merged when energetically favorable.

A further advantage of the DFDGM algorithms is the ability to associate different weights with the different
interfaces. This is in accordance with the understanding that the interfacial energy in a polycrystal depends on the
relative orientations of the two adjoining grains. When the misorientation between grains is small, defects are spaced
less tightly along the grain boundary, and interface energy is lower; high misorientation corresponds to high defect
density and higher interface energy. For this work, we use a variation of the Read–Shockley surface energy [29], which
gives surface energy as an increasing, concave function of misorientation angle. The model used is described fully in
Section 2.

The key elements of this work are summarized as follows:

• Our implementation allows for the presence of very many segments in the partition. We initialize with many
more segments than needed to provide robustness against local minima found due to a poor choice of initializa-
tion.

• In order to perform the minimization quickly, we implement a segment merging step to allow unneeded segments
to be removed.

• We allow for different weights, depending on the vector-valued constants associated with neighboring regions,
to be associated with each interface. The DFDGM algorithm allows us to evolve the system properly for these
non-uniform energies.

• The fitting term we employ is both noisy and expensive to evaluate. We smooth the fitting energy density
to allow large time steps in the evolution, and avoid updating the fitting energy density any more often than
necessary.

• We utilize the split Augmented Lagrange Method to update the vector-valued constants (rotations) describing
each segment. This update is significantly more difficult than that of standard PCMS models due to the non-
constant interfacial energy. Furthermore, the number of expensive fitting term evaluations during the update is
strongly reduced by the use of quadratic approximations.
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2 Grain identification viewed as multilabel segmentation
In this section we more formally introduce the general multilabel segmentation problem and then present the specific
version used here for crystal grain segmentation.

2.1 Multilabel segmentation
The classical multilabel segmentation problem reads as follows: Given an image u : Ω→ Rm on a bounded open
Lipschitz domain Ω⊂ Rd (or a flat torus in case of periodic boundary conditions), partition Ω into multiple segments
Ω1, . . . ,Ωn based on information from the image (e. g. such that the Ωi represent different objects visible in u). Here,
a valid partition of Ω is a collection of measurable subsets Ω1, . . . ,Ωn ⊂ Ω which are pairwise disjoint and whose
union equals Ω. In addition to this partition one typically tries to simultaneously identify a (potentially vector-valued)
constant qi ∈M associated with Ωi (e. g. the average color on Ωi), where M is some finite-dimensional Euclidean space
such as R or Rd×d . Mathematically, the sought partitioning {Ωi,qi}i=1,...,n is defined as the minimizer of an energy
composed of a bulk term ∑

n
i=1 Efit[Ωi,qi] and an interface energy 1

2 ∑
n
i, j=1 σ(qi,q j)H d−1(∂ ∗Ωi∩∂ ∗Ω j),

E[{Ωi,qi}i=1,...,n] =



n

∑
i=1

Efit[Ωi,qi]

+
β

2

n

∑
i, j=1

σ(qi,q j)H
d−1(∂ ∗Ωi∩∂

∗
Ω j) if {Ωi}i=1,...,n is a partition of Ω ,

∞ else.

(3)

The bulk term assesses how well the {Ωi,qi} fit to the image u and is of the form

Efit[Ωi,qi] =
∫

Ωi

ffit(x,qi)dx (4)

with some energy density ffit ≥ 0, while the interface energy with weight β > 0 acts as a regularization of the partition
by penalizing the (d−1)-dimensional Hausdorff measure H d−1(∂ ∗Ωi∩∂ ∗Ω j) of the interface between segments Ωi
and Ω j, weighted by some constant σ(qi,q j)≥ 0. Here ∂ ∗ denotes the essential boundary of a measurable set [1].

The variational problem (3) is well-posed in the following weak sense. Let S denote the set of measurable subsets
of Ω with finite perimeter, i. e. H d−1(∂ ∗O)< ∞ for all O ∈S . We can identify any {Ωi,qi}i=1,...,n ∈ (S ×M)n with
a piecewise constant function

q ∈ SBV(Ω;M) , q =
n

∑
i=1

qiχΩi ,

where χΩi denotes the characteristic function of Ωi. SBV(Ω;M) is the Banach space of special functions of bounded
variation, i. e. Lebesgue-integrable functions q : Ω→M whose distributional derivative can be represented as the sum

Dq = ∇qL +(q+−q−)⊗nqH
d−1

Γq

of a gradient ∇q continuous with respect to the Lebesgue measure L and a jump part concentrated on a (d− 1)-
dimensional jump set Γq with generalized normal nq and jump size (q+−q−) [1]. The energy (3) can be expressed in
terms of q as

E[q] =

{∫
Ω

ffit(x,q(x))dx+β
∫

Γq
σ(q+(x),q−(x))dH d−1(x) if q ∈ SBV(Ω;M) with ∇q = 0,

∞ else.
(5)

Theorem 1. If σ : M×M → [0,∞) is symmetric, subadditive, and lower semi-continuous with σ(q,q) = 0 for all
q ∈ M and lim|q1−q2|→0

σ(q1,q2)
|q1−q2|

= ∞ and if ffit(x, ·) is non-negative and lower semi-continuous, then (5) admits a
minimizer on {q ∈ SBV(Ω;M) |‖q‖L∞ ≤C} for any C > 0.
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Proof. Consider a minimizing sequence qk, k∈N, along which the energy is uniformly bounded by Ē. By a slight gen-
eralization of the compactness and lower semi-continuity Theorems 4.7 and 4.8 in [1], ∇qk = 0 and

∫
Γqk

σ(q+k (x),q
−
k (x))dH d−1(x)<

Ē/β for all k together with ‖qk‖L∞ ≤C imply the weak-* convergence in BV(Ω;M) of a subsequence, again denoted
qk, against a q ∈ SBV(Ω;M) with ∇q = 0 and∫

Γq

σ(q+(x),q−(x))dH d−1(x)≤ liminf
k→∞

∫
Γqk

σ(q+k (x),q
−
k (x))dH d−1(x) .

Upon choosing another subsequence we even have pointwise convergence almost everywhere so that∫
Ω

ffit(x,q(x))dx≤ liminf
k→∞

∫
Ω

ffit(x,qk(x))dx

follows from Fatou’s lemma and the lower semi-continuity of ffit, which shows that q must be a minimizer.

Remark 1. Except for the positive definiteness, σ satisfies the axioms of a metric, so it can be interpreted as a metric
on the quotient space of M modulo identification of elements r,q with σ(r,q) = 0.

In applications such as grain segmentation in polycrystal images, each detected region Ωi should reasonably have
a minimum size, e. g. the size of a crystal unit cell. Since the measure of the domain Ω is finite, this implies that the
number n of segments in the partition should be bounded by a constant N ∈ N. In that case one has the following
strong well-posedness result.

Theorem 2. Under the conditions of the previous theorem, energy (3) admits a minimizer among all partitions
{Ωi,qi}i=1,...,n ∈

⋃N
n=1(S ×M)n with |qi| ≤C for i = 1, . . . ,n.

Proof. Consider a minimizing sequence {Ωk
i ,q

k
i }i=1,...,nk , k∈N, and identify each element of the minimizing sequence

with the corresponding SBV function qk. As in the proof of the previous theorem, upon taking a subsequence the qk

converge weakly-* and pointwise almost everywhere against a q∗ ∈ SBV(Ω;M). Since the qk all have at most N
values, so does q∗. Denoting the values by q∗1, . . . ,q

∗
n we may thus set Ωi = {x ∈Ω |q∗(x) = q∗i }, i = 1, . . . ,n. Now

E[{Ωi,q∗i }i=1,...,n] = E[q∗]≤ liminf
k→∞

E[qk] = liminf
k→∞

E[{Ωk
i ,q

k
i }i=1,...,nk ]

so that {Ωi,q∗i }i=1,...,n must be a minimizer.

Remark 2. The necessary L∞ bound can in most applications be obtained variationally from the energy. For instance,
if the bulk and interfacial energy density satisfy

• there exist q̄ ∈M, f̄ > 0, and ϕ : [0,∞)→ [0,∞) with limρ→∞ ϕ(ρ) = ∞ such that ffit(x, q̄) ≤ f̄ and ffit(x, ·) ≥
ϕ(| · |) for all x ∈Ω,

• for any compact M0⊂M there is a compact superset M1⊂M with sup{σ(q1,q2) |q1,q2 ∈M0}≤ inf{σ(q1,q2) |q1 ∈
M0,q2 ∈M \M1} (i. e. the diameter of M0 is smaller than the distance from M \M1 to M0),

then a truncation argument leads to a minimizing sequence uniformly bounded in L∞: Upon taking a subsequence we
may assume each sequence element to have the same number n of segments. Furthermore, by applying a diagonal
argument, |qk

i |may be assumed to be monotone. Denote by I the set of indices i belonging to unbounded sequences qk
i ,

and set J = {1, . . . ,n}\ I. Now set M0 = {q∈M | |q| ≤max(|q̄|,supi∈J,k |qk
i |)} and let M1 ⊂M be the corresponding set

from the condition on σ . It is sufficient to consider the minimizing subsequence along which qk
i ∈ {q ∈M |ϕ(|q|) >

f̄} \M1 for all i ∈ I. However, replacing the qk
i , i ∈ I, all by q̄, the energy decreases along the sequence, and at the

same time all qk
i lie in the compact set M0.
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Figure 1: Left: Two-dimensional polycrystal image (for a hexagonal crystal lattice) with grains, i. e., the regions
of constant lattice orientation indicated by black lines. Right: Automatically segmented grains with color-coding
according to lattice orientation.

2.2 Grain segmentation in polycrystal images
In this work we are concerned with a particular multilabel segmentation, the segmentation of a polycrystal image into
the different crystal grains.

A polycrystal is the typical state of crystalline materials. In such materials the constituents (e. g. the atoms) are
locally arranged in a regular Bravais lattice {n1v1+n2v2+n3v3 |n1,n2,n3 ∈Z} with lattice vectors v1,v2,v3 ∈R3. The
orientation of this lattice is usually only constant on subsets of the material domain Ω⊂R3, which form a partition of
Ω and are called crystal grains (see Fig. 1 for a two-dimensional version). Within each grain Ωi ⊂Ω, the crystal lattice
is (almost) a perfect Bravais lattice with lattice vectors Riv1,Riv2,Riv3 for some rotation Ri ∈ SO(3), where SO(3)
denotes the special orthogonal group in R3. The interfaces where two grains of different orientation meet are called
grain boundaries. Here the preferred lattice structure of the atoms is disturbed, which causes the grain boundary to be
associated with a physical energy. This energy depends mainly on the difference between the orientations R ∈ SO(3)
and Q ∈ SO(3) of the two adjacent grains. For R and Q sufficiently close the grain boundary typically shows up as a
string of equispaced point defects in the crystal (so-called dislocations) from which an expression for the interfacial
energy density σ can be derived, the so-called the Read–Shockley law [29]

σ(R,Q) = γRS(θR,Q) with γRS(θ) = θ(A− logθ) .

A represents a material constant and θR,Q the misorientation angle, i. e. the smallest angle by which one grain needs to
be rotated to have the same orientation as the other. If P⊂ SO(3) denotes the point group of the crystal, i. e. the set of
rotations which leave the crystal lattice invariant, then this misorientation angle can be computed as

θR,Q = min
P∈P
|arg(λRPQ−1)| ,

where λRPQ−1 denotes one of the two complex eigenvalues of RPQ−1 ∈ SO(3) and arg≡−i log denotes the complex
angle of a complex number with absolute value one, argeiθ = θmod2π , so that arg(λRPQ−1) has the interpretation of
the rotation angle of RPQ−1.
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Our aim is to automatically identify the grains Ωi ⊂ Ω and their lattice orientations Ri ∈ SO(3) from a three-
dimensional gray scale image u : Ω→ R of the crystalline material as in Fig. 1 left. To this end we view the task as a
vector-valued multilabel segmentation problem and borrow the fidelity term

Efit[Ωi,Ri] =
∫

Ωi

K

∑
k=1

(u(x)−u(x+Rixk))
2 dx (6)

from [3]. Here, x1, . . . ,xK ∈ R3 represent a fixed stencil of vectors describing the unrotated lattice, for instance the
lattice vectors or the position vectors of all nearest neighbors of a central atom. If Ri correctly describes the orientation
of grain Ωi, then the image u locally is periodic with respect to translation by Rixk, k = 1, . . . ,K, so that the integrand
is zero (up to image noise or illumination changes); else the integral will be strictly positive. For the regularization of
the detected grain boundaries we will here choose a surface tension σ imitating the actual physical surface tension,

σ(R,Q) = γ(θR,Q) , (7)

where γ : [0,π]→R is concave with γ(0) = 0. For algorithmic reasons we will not exactly choose γ = γRS but instead

γ(θ) =


0 if θ = 0 ,

γmax

[
1− (1− γmin)(sin( θ

2 )/sin( θmax
2 )−1)2

]
if 0 < θ < θmax ,

1 else

(8)

(where we choose constants γmax = 1, γmin =
1
10 , θmax =

π

3 ). In more detail, we will exploit that γ is piecewise quadratic
in sin θ

2 in order to obtain an explicit formula for a particular step of the algorithm, however, γ = γRS could also be
implemented with only slightly more computational effort. Our motivation for imitating the physical interface energy
is twofold:

• The physical interfacial energy density σ determines the angles at which crystal grains meet at triple or higher
order junctions. The same holds true for the relation between the σ used in our segmentation energy and the
triple junctions of the detected grains Ω1, . . . ,Ωn. To better capture the correct angles our choice of σ should be
close to the physically correct one.

• In our algorithm, a grain will sometimes become visible as a collection of multiple adjacent regions Ωi with
almost the same orientations (these grains will then be merged together at a later stage during the algorithm).
If two such regions form a triple junction with a region of different orientation, the configuration of this triple
junction should be as if the two similar grains actually were just one grain, i. e. one should see an almost smooth
grain boundary. This can only be achieved if regions with similar orientations have small interfacial energy.

Since the interfacial energy density (7) can readily be extended from SO(3) to a metric on the quotient space of R3×3

modulo the crystal point group P, and since ffit can be extended from SO(3) to R3×3 by ∞, as a corollary of Theorem 2
we immediately obtain the following.

Corollary 3. Let u : Ω→ R be continuous and γ : [0,π]→ [0,∞) be concave with γ(0) = 0. The energy (3) with
fidelity term (6) and interfacial energy density (7) admits a minimizer in

⋃N
n=1(S ×SO(3))n.

Of course, the model can also be adapted to images of two-dimensional polycrystals. In that case, Ω⊂R2 and the
crystal orientations Ri are in SO(2). We will deal with the two-dimensional case alongside the more general 3D case.

2.3 Minimization procedure
We seek a configuration {Ωi,Ri}i=1,...,n minimizing (3) with (6) and (7). This energy depends on both the partition
{Ωi}i=1,...,n and the rotations {Ri}i=1,...,n in a complicated way in both the fitting term Efit and the surface energy
term. In particular for large images u, the evaluation of the fitting term Efit is very costly, since it interpolates the
(discrete) image u at x+Rxk for all pixels x and stencil vectors xk. Furthermore, the representation and update of
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the grain boundaries should be done very efficiently. As we are interested only in minimizers of (3) and not in the
dynamics of an associated flow, we proceed via an alternating minimization scheme consisting of two pieces: (1)
L2 gradient descent of (3) with respect to the partition {Ωi}i=1,...,n and with {Ri}i=1,...,n held fixed and (2) update of
the grain orientations {Ri}i=1,...,n with the partition {Ωi}i=1,...,n fixed. During the latter orientation update, any two
adjacent grains Ωi, Ω j are interpreted as one if their orientations Ri, R j coincide, and before the next gradient flow
of the interfaces, such grains are merged into a new grain covering the region Ωi j = (Ωi ∪Ω j). These minimization
procedures are described completely in Sections 3.1 and 3.2.

3 Minimization via alternating redistancing dynamics and Augmented La-
grangian method

This section describes the algorithm used to perform the multilabel segmentation of the crystal grains. As previously
mentioned, we alternate between updating the partition, as detailed in Section 3.1, and updating the orientations, which
will be explained in Section 3.2. The connection of both parts is described in Section 3.3.

3.1 Redistancing dynamics for unequal energy curvature flow with external potential field
This part of the minimization procedure seeks to decrease the energy (3) via a local update of the partition {Ωi}i=1,...,n,
with the orientations {Ri}i=1,...,n held fixed. In this case, (3) simplifies to

E[{Ωi}i=1,...,n] =


n

∑
i=1

∫
Ωi

fi(x)dx+
β

2

n

∑
i, j=1

σi jH
2(∂ ∗Ωi∩∂

∗
Ω j) if {Ωi}i=1,...,n is a partition of Ω ,

∞ else,

where fi(x) = ffit(x,Ri) are known functions defined on all of Ω and the σi j = σ ji = σ(Ri,R j) are constants. L2

gradient descent on this energy gives rise to the interface normal velocities

vni j(x) =
(
( fi(x)− f j(x))+βσi jκi j

)
, (9)

for x ∈ (∂ ∗Ωi ∩ ∂ ∗Ω j), where ni j is the unit normal vector pointing outwards from Ωi into Ω j and κi j is the signed
mean curvature of (∂ ∗Ωi∩∂ ∗Ω j) at x.

The algorithm we employ builds on the signed distance function-based diffusion-generated motion algorithm [20].
The key pieces behind this algorithm are (1) the implicit representation of the sets Ωi as the zero super level set of the
signed distance function

di(x) =

{
infy∈∂ ∗Ωi |x− y|, x ∈Ωi,

− infy∈∂ ∗Ωi |x− y|, x /∈Ωi,

and (2) the observation that convolution of the signed distance function with a spherically-symmetric kernel moves
the zero level set of di(x) a distance proportional to the mean curvature of the interface at x. This observation was first
made for the characteristic function of sets, giving rise to the well-known Merriman–Bence–Osher threshold dynamics
scheme [23].

Combining Algorithm 1 and Algorithm 6 of Esedoḡlu et. al’s work [20], one obtains our Algorithm 1 for the
evolution described by (9) in the case that σi j ≡ 1.

Two further extensions to Algorithm 1 are needed. The algorithm presented is useful for only a limited number of
grains (small n), as each grain is represented by a signed distance function on all of Ω. The storage and computational
requirements are then proportional to n, which rapidly becomes infeasible for systems with many grains. This difficulty
can be alleviated by maintaining many spatially-separated grains with the same signed distance function [16]. A
swapping procedure which prevents two (initially spatially-separated) grains from coalescing during the evolution is
detailed there.

The other element missing from Algorithm 1 is the allowance for unequal surface energies σi j as specified by (9).
This extension is already known for the signed distance function-based diffusion-generated motion algorithm [17].
For the convenience of the reader, a complete description of the algorithm we employ is given in Algorithm 2.
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Algorithm 1 Basic algorithm for vni j(x) = ( fi(x)− f j(x))+βκi j.

Given initial sets {Ω0
i }i=1,...,n through their signed distance functions {d0

i (x)}i=1,...,n, fixed external fields
{ fi(x)}i=1,...,n, and a time step τ > 0, generate the sets {Ωs

i}i=1,...,n at discrete times t = sτ by repeating steps 1–3
for i = 1, . . . ,n.

1. CONVOLVE: Compute Ai(x) =
(
Gβτ ∗ds−1

i

)
(x)−2τ fi(x), where Gβτ(x) =

1
(4πβτ)d/2 e−|x|

2/(4βτ).

2. REDISTRIBUTE: Bi(x) = 1
2

(
Ai(x)−maxk 6=i Ak(x)

)
.

3. REDISTANCE: Compute the signed distance function ds
i (x) as the zero super level set of Bi.

In practice, the fitting energy densities ffit defined by (4) and (6) vary quite rapidly, as errors in fitting are penalized
more strongly on atoms than in the spaces between atoms. This occurs because a randomly-selected orientation
asks the fitting term to compare gray values at x to randomly-selected nearby image locations. The atomic gray
intensities occur with less frequency than the gray intensities corresponding to non-atomic positions, so a poorly
chosen orientation will feel a greater penalty at atoms. In order to promote smoothness of interfaces and to allow the
evolution to take larger time steps, we redefine

fi(x) =

(
K

∑
k=1

(u(x)−u(x+Rixk))
2 dx

)
∗Gρ ,

with ρ ∝ ||xk||2 chosen to smooth ffit over the predicted atomic spacing, ||xk||.
In order to perform the convolution steps efficiently, we enforce periodic boundary conditions and utilize the fast

Fourier transform. The locality of the energy ensures that this choice of boundary condition only affects the numerical
results near the boundary of the image domain Ω. Other choices of boundary condition would require an appropriate
modification of the fitting term to prevent evaluations of u(y) for y /∈Ω.

3.2 Updating the orientations
Here, we minimize the energy with respect to the orientations {Ri}i=1,...,n for a fixed partition {Ωi}i=1,...,n. In that
case, the energy reduces to

E[{Ri}i=1,...,n] =
n

∑
i=1

Efit[Ωi,Ri]+
β

2

n

∑
i, j=1

σ(Ri,R j)H
2(Γi j) ,

where we abbreviated Γi j = ∂ ∗Ωi∩∂ ∗Ω j. Note that the energy is only defined on SO(3)n, a lower-dimensional subset
of (R3×3)n. Furthermore, it is non-smooth whenever two neighboring grains Ωi and Ω j have the same orientation and
thus σ(Ri,R j) = 0. Finally, the fitting term is very costly to evaluate for large images. In particular, the image u has
to be interpolated at all points x+Rixk, k = 1, . . . ,K, for all pixels x. For an efficient minimization, we employ several
instruments:

• Instead of performing a minimization on SO(3)n or even (R3×3)n we will rephrase and minimize the energy in
terms of unit quaternions, which allow a more efficient and much less redundant description of lattice orienta-
tions.

• We will employ a split Augmented Lagrangian method which allows to separate the smooth fitting term from the
non-smooth interfacial energy, each of which can then be minimized using separate, adapted and thus efficient
procedures.

• The smooth energy terms will be minimized by a higher order, quickly converging Riemannian optimization
method, while the non-smooth terms can be explicitly minimized.
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Algorithm 2 Complete algorithm for vni j(x) = ( fi(x)− f j(x))+βσi jκi j.

Given: Initial sets {Ω0
i }i=1,...,n, surface energies {σi j}i, j=1,...,n, external fields { fi(x)}i=1,...,n, a time step τ > 0, and

positive constants ε and H.
Let Gα(x) = 1

(4πα)d/2 e−|x|
2/(4α), define φi; jk = σi j +σik−σ jk, φ ? = maxi, j,k φi; jk and

ψ(x,ds
j,φ j(x)) =

(
φ j(x)

φ ∗
(
Gβφ∗τ ∗ds

j
)
(x)+

(
1−

φ j(x)
φ ∗

)
ds

j(x)
)
−2τ f j(x).

Form a partition {Ξ0
j} j=1,...,n̄ such that each part Ξ0

j is the union of a subset of (spatially separated) parts {Ω0
i }i=1,...,n.

Set d0
j to be the signed distance function to the collection Ξ0

j .
Given j ∈ {1, . . . , n̄}, we use the notation ĵ = ĵ(x) to indicate the index ĵ ∈ {1, . . . ,n} such that Ωs

ĵ
⊆ Ξs

j and
dist(x,Ωs

ĵ
)≤ dist(x,Ωs

i ) for all i with Ωs
i ⊆ Ξs

j.
Update the collections (Ξs

j) j=1,...,m at discrete times t = sτ by repeating steps 1–4.

1. UPDATE: For each grid location x, define R(x) = {i : ds
i (x)>−ε}, and let r(x) = #R(x).

For i /∈ R(x), set Ai(x) =−∞.

(a) If R(x) = {i}, set Ai(x) = ds
i (x).

(b) If R(x) = {i, j}, set Ai(x) = ψ(x;ds
i ,σî ĵ), and A j(x) = ψ(x;ds

j,σî ĵ).

(c) If R(x) = {i, j,k}, set Ai(x) = ψ(x;ds
i ,φî; ĵk̂), A j(x) = ψ(x;ds

j,φ ĵ;îk̂), and Ak(x) = ψ(x;ds
k,φk̂;î ĵ).

(d) If r(x)> 3,
• For each i ∈ R, compute

Ti(x) =
1(r(x)−1
2

) ∑
j,k∈R\{i}

j<k

ψ(x;ds
i ,φî; ĵk̂).

• Next compute

wi(x) =


ε, Ti(x)<−H

ε +(1− ε)
(

1
2 +

Ti(x)
2H

)
, |Ti(x)|< H

1, Ti(x)> H.

• Set

Ai(x) =

∑
j,k∈R\{i}

j<k

wiw jwk ψ(x;di,φî; ĵk̂)

∑
j,k∈R\{i}

j<k

wiw jwk
.

2. REDISTRIBUTE: For i = 1, . . . ,m, construct

Bi(x) =
1
2

(
Ai(x)−max

j 6=i
A j(x)

)
to remove overlaps and vacuums from the previous step.

3. REDISTANCE: For i = 1, . . . ,m, set Ci(x) to be the signed distance function to the zero-level set of Bi(x).

4. SWAP: As necessary, swap appropriate grains between signed distance functions Ci to ensure a minimum sep-
aration between grains associated with the same signed distance function. Redistance around swapped grains
and denote the resulting signed distance functions as ds+1

i (x).
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• For the higher order optimization, the Hessian will partly be approximated by a quasi-Newton update, which in
turn only requires a (fast) piecewise linear interpolation of the crystal image u.

• The quadratic approximation to the smooth energy terms is only updated when necessary, thereby saving many
fitting term evaluations.

The below paragraphs provide the details of the above-mentioned tools.

Representing orientations in the Lie group of unit quaternions. Unit quaternions have long been established as an
efficient representation of rotations or orientations (see e. g. [28] and references therein). For the reader’s convenience
we briefly summarize all relevant properties. A quaternion can be defined as a four-dimensional vector,

q = (q0,~q) ∈ R×R3 .

We shall denote the set of quaternions by H. Together with the usual vector addition, the product

pq = (p0,~p)(q0,~q) = (p0q0−~p ·~q, p0~q+q0~p+~p×~q)

turns H into an algebra. The conjugate of a quaternion q is defined as q̄ = (q0,−~q) and its norm as ‖q‖ =
√

q̄q =√
q2

0 + |~q|2. Taking (1,~0) as the unit element, the multiplicative inverse of q is given by q−1 = q̄
‖q‖2 so that H forms

a multiplicative group. The norm satisfies the property ‖pq‖ = ‖p‖‖q‖ so that the set of unit quaternions, U = {q ∈
H |‖q‖ = 1}, represents a subgroup. Every rotation R ∈ SO(3) can be described by a rotation axis nR ∈ R3 and a
rotation angle ωR, and the mapping

(ωR,nR) 7→ (cos ωR
2 ,nR sin ωR

2 )

thus provides an identification of a unit quaternion with a rotation (since q ∈U and −q describe the same rotation, the
unit quaternions U represent a two-fold covering of SO(3)). This identification is consistent with the composition of
rotations, i. e. R(p)R(q) = R(pq), where R(q) ∈ SO(3) denotes the rotation associated with q ∈U. Vectors v ∈R3 can
be identified with the quaternions (0,v) ∈H, and the rotation of v by R(q) can be expressed via the relation

(0,R(q)v) = q(0,v) q̄ .

The advantage of parameterizing rotations via unit quaternions instead of rotation matrices lies in the fewer redundant
degrees of freedom. Furthermore, compared to other representations of rotations such as axis-angle pairs, the unit
quaternion description contains no singular points where the parameterization degenerates. For these reasons our
algorithm will work on the set of unit quaternions so that we reformulate our energy as E : Un→ R,

E[{qi}i=1,...,n] =
n

∑
i=1

Efit[Ωi,qi]+
β

2

n

∑
i, j=1

σ(qi,q j)H
2(Γi j)

with

Efit[Ωi,qi] =
∫

Ωi

K

∑
k=1

(u(x)−u(x+qixkq̄i))
2 dx ,

σ(o,q) = γ
(

min
p∈P

2arccos |(opq̄)0|
)
= γ
(

min
p∈P

2arcsin
∣∣−−−→(opq̄)

∣∣) ,
where we used the implicit identification v≡ (0,v) for all v∈R3 and the arrow indicates the vector part of a quaternion.
This time, P is the set of all unit quaternions representing a rotation from the crystal point group.

The set of unit quaternions is not a vector space. The optimization for the orientations q1, . . . ,qn can either be done
in Hn, using standard constrained optimization techniques with the additional constraints ‖qi‖ = 1, i = 1, . . . ,n, or it
can be performed directly in the nonlinear space U so that the constraints are intrinsically satisfied. We will choose
the latter approach since it reduces the dimensionality of the problem and therefore is more efficient. To this end we
will exploit the Lie group structure of U. Interpreting U to be embedded in H ≡ R×R3 one can identify the tangent
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space to U at (1,~0) with three-dimensional vectors, T(1,~0)U = {(0,v) |v ∈ R3}. The tangent space at q ∈ U is given
by TqU = qT(1,~0)U. All tangent spaces can be equipped with the (bi-invariant) inner product induced from R×R3,
turning U into a Riemannian manifold. The exponential map expq : TqU→ U and logarithm logq : U→ TqU on U can
then be epressed as

expq(v) = qexp(1,~0)(q̄v) , logq(p) = q log(1,~0)(q̄p) ,

where the exponential map and logarithm with respect to the base point (1,~0) are given by

exp(1,~0)(0,v) = (cos |v|, v
|v| sin |v|) , log(1,~0)(q0,~q) = (0, ~q

|~q| arccosq0) .

Parallel transport of a tangent vector v ∈ TqU to TpU can be performed as pq̄v. These operations will later be used
within a Riemannian optimization method.

Updating orientations by the split Augmented Lagrange Method. While the energy Efit is smooth in the ori-
entations qi (assuming a smooth input image u), the surface tension σ has a singularity on {(q,q) |q ∈ U} so that
derivative-based minimization methods are inappropriate. For such combinations of smooth and non-smooth terms,
splitting type methods in which both terms are treated separately are typically very efficient [21]. We will choose
a split Augmented Lagrangian method. The classical Augmented Lagrange method for a constrained minimization
problem

minimize f (x) subject to g(x) = 0

augments the Lagrangian L(x,λ ) = f (x)+λ ·g(x) with Lagrange multiplier λ by a penalty term of the form µ

2 |g(x)|
2

with µ > 0 large enough, LA(x,λ ) = L(x,λ )+ µ

2 |g(x)|
2. The central observation now is that the first order optimality

conditions of the constrained optimization problem are equivalent to g(x) = 0 and x = argminx LA(x,λ ), which leads
to the following fixed point iteration for x and λ ,

xk+1 = argmin
x

LA(x,λ k) ,

λ
k+1 = λ

k +µg(xk+1) ,

where the optimization for x does not have to be exact. If f is convex and g linear, then the reformulation bk = λk/µ

turns this method into the Bregman iteration which is widely used in the image processing community [27],

xk+1 = argmin
x

f (x)+ µ

2 |g(x)+bk|2 ,

bk+1 = bk +g(xk+1) .

Now any minimization problem of the form minz f1(z) + f2(Ψ(z)) with f1 and Ψ smooth but f2 nonsmooth can
be reformulated as the constrained problem of minimizing f (x) := f1(z)+ f2(ψ) for x ≡ (z,ψ) subject to g(x) :=
Ψ(z)−ψ = 0. If the Augmented Lagrange method is applied to this constrained problem, the update of xk+1 can
be split in the sense of an alternating minimization into an update for z and a separate update for ψ , resulting in a
split Augmented Lagrangian scheme. The advantage is that the update for z only involves smooth terms amenable to
gradient-based techniques, while the update of ψ typically is a very simple and fast operation. For one-homogeneous
f2, the split Augmented Lagrange method often seems to yield sufficient energy decrease already after a few iterations.

Let us introduce the set I = {(i, j) | i > j, H 2(Γi j) 6= 0} of index pairs belonging to grain interfaces. For the
purpose of applying the split Augmented Lagrange method we rewrite our objective energy as

E[{qi}i=1,...,n,{ψi j}(i, j)∈I ] =
n

∑
i=1

Efit[Ωi,qi]+β ∑
(i, j)∈I

σ̃(ψi j)H
2(Γi j) with σ̃ = γ(2arcsin | · |) ,

which is to be minimized under the constraints

ψi j−
−−−−−→
(qi pi jq̄ j) = 0
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for (i, j) ∈I . Here, pi j ∈ P shall denote the point group element minimizing
∣∣−−−−−→(qi pi jq̄ j)

∣∣, which we assume fixed for
the moment. The corresponding split Augmented Lagrange or Bregman method then reads

{qk+1
i }i = argmin

{qi}i

n

∑
i=1

Efit[Ωi,qi]+
µ

2 β ∑
(i, j)∈I

H 2(Γi j)
∣∣ψk

i j−
−−−−−→
(qi pi jq̄ j)+bk

i j
∣∣2 ,

ψ
k+1
i j = argmin

ψi j

σ̃(ψi j)+
µ

2

∣∣ψi j−
−−−−−−−−−→
(qk+1

i pi jq̄k+1
j )+bk

i j
∣∣2 ∀(i, j) ∈I ,

bk+1
i j = bk

i j +ψ
k+1
i j −

−−−−−−−−−→
(qk+1

i pi jq̄k+1
j ) ∀(i, j) ∈I .

For the first line we will use a combined Riemannian Newton and BFGS trust region method, while the other two
updates will be performed explicitly. Furthermore, at the end of each iteration we update

pi j = argmin
p∈P

∣∣−−−−→(qi pq̄ j)
∣∣ .

Since the energy is not convex we may only expect convergence against a local minimizer {qi}i=1,...,n, however, grains
with suboptimal orientation qi will quickly be shrunk away by the mean curvature motion part of the algorithm so that
only grains with the correct orientations survive.

The iteration is stopped if the supremum norm of the constraint decreases below a fixed threshold ϑ (set to 10−1

in our experiments),

max
(i, j)∈I

‖ψk+1
i j −

−−−−−−−−−→
(qk+1

i pi jq̄k+1
j )‖∞ ≤ ϑ ,

which indicates that the Lagrange multiplier has well converged and thus that the optimality conditions are sufficiently
achieved.

Combined Riemannian Newton and BFGS trust region method for smooth terms. Within the split Augmented
Lagrangian method, the smooth minimization of

F [{qi}i] :=
n

∑
i=1

Efit[Ωi,qi]+
µ

2 β ∑
(i, j)∈I

H 2(Γi j)
∣∣ψi j−

−−−−−→
(qi pi jq̄ j)+bi j

∣∣2
for given fixed ψi j, pi j,bi j will be performed by a trust region method with a quadratic model of the objective. In detail,
our implementation uses the very robust algorithm [9, Alg. 7.3.1-4]. The quadratic approximation of the objective
function ensures a fast, superlinear convergence and furthermore is used to identify the decreasing directions at saddle
points (of which the energy possesses several ones).

As previously mentioned, the trust region method is applied on the Riemannian manifold Un, turning it into a
Riemannian optimization method [30]. For the reader’s convenience and to show how the Riemannian structure is
exploited, we briefly state the trust region iteration. In each step we minimize a quadratic approximation mk({si}i) to
F [{expqk

i
(si)}i] within a spherical trust region of radius ∆. If the step decreases the energy sufficiently, it is accepted,

and the validity radius ∆ of the model is increased, else it is decreased. In detail, fixing parameters ϑ1 < 1 < ϑ2,
η1 < η2 < 1, the iteration reads
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for k = 1,2, . . .
define the quadratic model mk({si}i) = F [{qk

i }i]+DF [{qk
i }i]{si}i +

1
2 Bk({si}i,{si}i)

define the minimization step as {si}i = argmin
si∈T

qk
i
U,∑n

i=1 |si|2≤∆2
mk({si}i)

define the ratio ρ =
F [{exp

qk
i
(si)}i]−F [{qk

i }i]

mk({si}i) between energy and model decrease

if ρ < η1 (unsuccessful step)
decrease ∆ by factor ϑ1

else (successful step)
qk+1

i = expqk
i
(si) for i = 1, . . . ,n

if ρ ≥ η2 (very successful step)
increase ∆ by factor ϑ2

endif
endif

endfor

Here, DF [{qk
i }i]{si}i =

d
dt F [{expqk

i
tsi}i]|t=0 denotes the directional derivative of F along the tangent direction {si}i,

and Bk : (TqiU)n × (TqiU)n → R is an approximation to the Hessian of F [{expqk
i
(si)}i] with respect to {si}i. The

update qk+1
i = expqk

i
(si) ensures that all iterates {qk

i }i automatically lie on the manifold Un, greatly simplifying the
energy landscape. The minimization of the quadratic model mk within the trust region is implemented according to [9,
Alg. 7.3.4-5].

Interpreting F as a function from Hn ≡ R4n to R, the Hessian D2F can be expressed as an n×n block matrix with
block (i, j) given by ∂qi∂q j F ∈R4×4. This matrix can be decomposed into the sum of a diagonal block matrix B1 with
blocks B1

ii = ∂ 2
qi

Efit[Ωi,qi] and a sparse block matrix B2 with blocks defined by

vT B2
i jw = µβ


H 2(Γi j)

[−−−−−→
(vpi jq̄ j) ·

−−−−−→
(qi pi jw̄)−

(
ψi j−

−−−−−→
(qi pi jq̄ j)+bi j

)
·
−−−−→
(vpi jw̄)

]
if (i, j) ∈I ,

H 2(Γi j)
[−−−−−→
(wp jiq̄i) ·

−−−−−→
(q j p jiv̄)−

(
ψ ji−

−−−−−→
(q j p jiq̄i)+b ji

)
·
−−−−→
(wp jiv̄)

]
if ( j, i) ∈I ,

∑(k,i)∈I H 2(Γi j)
−−−−−→
(qk pkiv̄) ·

−−−−−→
(qk pkiw̄)+∑(i,k)∈I H 2(Γi j)

−−−−−→
(vpikq̄k) ·

−−−−−→
(wpikq̄k) if i = j .

B2 is readily computed, however, the computation of B1 poses the following difficulties:

• The Hessian of u has to be computed at all stencil points around each voxel, i. e. at all points x+xk, k = 1, . . . ,K,
with x running over all voxels. The interpolation of u and its derivatives at those points will be the bottleneck
of the whole algorithm, hence we would like to avoid the computation of higher order derivatives, even more so
since higher order derivatives require smoother and thus more expensive interpolation routines.

• For efficiency reasons we would like to interpolate u trilinearly on each voxel, which only allows for one (weak)
first derivative; more generally the image u might contain noise leading to spurious high second derivatives and
thus less numerical robustness.

For the above reasons we will instead approximate B1
ii, i = 1, . . . ,n, solely based on the derivatives ∂qiEfit[Ωi,qi],

using a BFGS update. Denoting by B1,k the kth approximation of B1 and choosing B1,0 = I, the BFGS update in our
Riemannian setting is defined by [26, 30]

(T v)T B1,k+1
ii Tw = vT B1,k

ii w−
(vT B1,k

ii sk
i )(w

T B1,k
ii sk

i )

(sk
i )

T B1,k
ii sk

i

+
(vT yk

i )(w
T yk

i )

(yk
i )

T sk
i

with sk
i = logqk

i
qk+1

i , yk
i = ∂sEfit[Ωi,expqk

i
s]|s=sk

i
− ∂sEfit[Ωi,expqk

i
s]|s=0, and T the parallel transport from the last

iterate qk
i to the current one, qk+1

i . Since each block is four by four (i. e. a sum of at most four rank-one matrices), the
BFGS approximation is expected to be very good already after very few iterations (in fact we only need to approximate
the Hessian on the three-dimensional tangent space to U so that only three good rank-one updates are required).
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The bilinear operator Bk in the trust region method represents the Hessian of F [{expqk
i
si}i], which is obtained by

projection onto the tangent space Tqk
1
U× . . .×Tqk

n
U,

Bk =

 I−qk
1⊗qk

1
. . .

I−qk
n⊗qk

n

(B1,k +B2)

 I−qk
1⊗qk

1
. . .

I−qk
n⊗qk

n

 .

This does not affect the Hessian sparsity. Since the employed algorithm [9, Alg. 7.3.4-5] for the minimization of mk
performs a Cholesky factorization of the Hessian, we finally add a term qk

i ⊗qk
i on the ith diagonal block, which makes

the matrix definite also in the direction normal to Un. This does not affect the result since the normal direction is
ignored in the trust region minimization anyway.

Explicit update of constraint variable. The update of ψi j in the split Augmented Lagrange method represents the
minimization of

Gk(ψi j) = σ̃(ψi j)+
µ

2

∣∣ψi j−
−−−−−−−−−→
(qk+1

i pi jq̄k+1
j )+bk

i j
∣∣2

with σ̃ = γ(2arcsin | · |). Recall that γ : [0,∞)→ [0,∞) is concave with γ(0) = 0 and jumps at 0. Thus Gk is not convex,
not even continuous. Nevertheless, since G only involves a single variable ψi j, the minimization can be done globally.
Furthermore, the particular form (8) of the interface energy density was chosen in order to obtain a simple update
formula for ψi j. Writing ψmax = sin( θmax

2 ), we have

σ̃(ψi j) = γmax ·


0 if ψi j = 0 ,
1− (1− γmin)(|ψi j|/ψmax−1)2 if |ψi j|< ψmax ,

1 else.

If the penalty parameter µ is chosen large enough to make Gk convex away from 0 (which we shall ensure in the code
via µ > 2γmax(1− γmin)/ψ2

max), the minimizing ψi j is given by ψi j = ψ if Gk(ψ)< Gk(0) and ψi j = 0 else, where

ψ = wmin

(
1,

1−κ
ψmax
|w|

1−κ

)

with the abbreviations w =
−−−−−−−−−→
(qk+1

i pi jq̄k+1
j )− bk

i j and κ = 2γmax
µ

1−γmin
ψ2

max
. Note that a different choice of γ could be used

as well, only then the global optimum would not be given explicitly but would have to be found by e. g. a Newton
iteration.

Decreasing computation time by infrequent fitting energy evaluations. The split Augmented Lagrange method
is a very easy technique to deal with smooth and non-smooth energy components, but it only yields (slow) linear
convergence. Unfortunately, though, it has to be iterated until convergence. Indeed, after the update of all orientations
we will have to determine whether any two adjacent grains should be merged into one (see Section 3.3), which is
only the case if the two grains have the same orientation (up to a small numerical threshold difference). Now the
interface energy with its special feature of zero energy for zero orientation mismatch is only involved in the update of
the auxiliary constraint variables ψi j. Only if the constraint is sufficiently satisfied this shows an effect on the grain
orientations, thus requiring many split Augmented Lagrange iterations and involving many evaluations of the costly
fidelity term and its derivative.

To reduce the associated computation time we exploit that orientations do not drastically change during these
iterations. Hence, after a few of the previously described BFGS updates the fitting energy Efit[Ωi,qi] can be replaced
by the obtained quadratic approximation. Each evaluation of this quadratic model now has a computational complexity
of the order of the number of grains instead of the number of pixels, which reduces the computational effort by several
orders of magnitude. Whenever the split Augmented Lagrange method converges (with respect to the above introduced
stopping criterion), the quadratic model is updated via a few additional split Augmented Lagrange iterations using the
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true fitting energy and thus producing a new quadratic BFGS approximation. This update of the quadratic model
initially leads to a stronger constraint violation so that the split Augmented Lagrange method needs several further
iterations to converge. This procedure is repeated until the stopping criterion of the Augmented Lagrange method
stays satisfied even after the update.

A simplified version for 2D. The segmentation of 2D images is a special case of the 3D version. Here, all orien-
tations lie in a one-dimensional subgroup of U, the set of unit complex numbers, which in the above notation can be
expressed as q = (cosα,(sinα,0,0)) for an orientation angle α . In essence, we simply apply the above-described
procedure restricting to unit complex numbers, however, by expressing all energies and iterations in terms of the ori-
entation angles αi instead of the corresponding complex number, many steps simplify and become more efficient. In
particular, in 2D the objective of the Augmented Lagrange method turns into

E[{αi}i=1,...,n,{ψi j}(i, j)∈I ] =
n

∑
i=1

Efit[Ωi,αi]+ ∑
(i, j)∈I

σ̂(ψi j)H
2(Γi j) with σ̂ = γ(| · |)

and with the constraints
ψi j− (αi−α j +αpi j) = 0

for (i, j) ∈I , where αpi j represents a rotation angle from the point group. To obtain a simple update formula for the
constraint variables ψi j we again choose

σ̂(ψi j) = γmax ·


0 if ψi j = 0 ,
1− (1− γmin)(|ψi j|/ψmax−1)2 if |ψi j|< ψmax ,

1 else.

Also the joint Newton- and quasi-Newton method can now be performed in Euclidean instead of curved Riemannian
space.

3.3 Initialization, grain merging, and termination
Our strategy to combine the interface and the orientation update can be summarized in the following algorithmic steps.

1. Initialization with a large number of small grains. Initially we partition the domain into little cubes, each of
which represents a segment Ωi, and we assign them with random orientations (see 1© in Fig. 2). This procedure
has several advantages: Tiling the domain into small cubes has the effect that all interfaces already lie close to
their final position so that only little interface motion has to occur in order to capture the correct grain interfaces.
Furthermore, by initializing the orientations randomly it is likely that during the following orientation update
at least one little cube per grain arrives at the correct globally minimizing orientation. During the subsequent
interface motion, these cubes will grow at the expense of those cubes with less optimal orientations, which will
finally shrink away.

2. Initial orientation update neglecting interface energies. The algorithm is started by updating all orientations
qi, however, for the interface energy weight β set to zero ( 2© in Fig. 2). In that case the split Augmented
Lagrange method just reduces to the combined Riemannian Newton and quasi-Newton method for the fitting
energy. The reason for setting β = 0 is that many interfaces are not yet correctly positioned so that a large number
of the Ωi intersect with two or more grains. Those cubes will be rather indifferent to different orientations
and would for β > 0 thus simply acquire the orientation of one of the neighboring grains, which is often too
premature.

3. Alternating interface flow, orientation update, and grain merges. The core of the algorithm consists of
repeating the following three steps.
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Figure 2: Illustration of the algorithmic steps as described in the text: Initialization 1©, initial orientation update 2©,
first gradient flow for the interfaces 3©, first orientation update with grain merge 4©, further alternating interface and
orientation updates with grain merges 5©- 7©. Colors indicate grain orientation.

(a) L2 gradient flow for interfaces. Perform the algorithm described in Section 3.1 until the energy decrease
during the past 10 steps falls below a threshold value (in our experiments chosen as 10 % of the absolute
energy). The first such interface update is visualized in Figure 2 as step 3©.

(b) Orientation update. Perform the algorithm described in Section 3.2

(c) Merging adjacent grains with matching orientations. The interface between any two adjacent grains
Ωi, Ω j with equal orientations is associated with zero interface energy, since Ωi ∪Ω j may be interpreted
as a single grain. Hence, after updating the orientations we merge all adjacent grains with misorientation
angle below a numerical threshold (10−2 in our code), which speeds up the subsequent gradient flow for
the partition {Ωi}i as well as the next update of the corresponding orientations {Ri}i. The new grain
is assigned the orientation of one of its parents. Note that in case of multiple connected grains whose
pairwise misorientation angle lies below the threshold, all these grains will be merged into one. The first
grain merge after an orientation update is visualized in Figure 2 as step 4©.

4. Stopping criterion. Stop if the energy decrease during the past 10 steps falls below a threshold value (in our
experiments chosen as 1 % of the absolute energy).
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Figure 3: Steps 50, 200, 800, and 2500 of a phase field crystal coarsening simulation segmented by the proposed
method (the bottom shows a zoom into the indicated region; colors indicate grain orientation).

4 Results
Figures 3 to 7 show the performance of the algorithm on test experiments. Figure 3 depicts several time snap shots of a
2D phase field crystal (PFC) simulation, which is a model for simulating the time evolution of atomic crystals [14]. A
zoom into the actual phase field crystal is shown at the bottom, while the large images show the result of our automatic
grain segmentation method. The grain segmentation clearly shows a coarsening of the polycrystalline structure over
time: the average grain size increases, while small grains shrink until they vanish. Note that during the initial stage of
coarsening, small grains seem to suddenly appear in a few places (the zoom shows one such instance). This is due to
the conceptual difficulty of defining a grain in a crystalline material with many defects: a single dislocation (a point
defect of the crystal) can sometimes either be interpreted as an isolated defect within a grain or as part of a low-angle
grain boundary which traverses the region previously interpreted as a single grain. Our method chooses one or the
other interpretation solely based on the energy, and the energetic character of the defect may vary during the crystal
evolution.

Figures 4 and 5 show segmentation results for artificial, periodic 2D PFC polycrystals, a polycrystal of hexagonal
grains (the original PFC image is not shown) as well as an array of circular grains embedded in a matrix of constant
orientation. The segmentation of the hexagonally tiled polycrystal is once performed for a constant interfacial energy
γ = γmax and once for the above-proposed misorientation-dependent interfacial energy. Note that in the former case
more grains are merged and that triple junctions all have 180 degree angles, wich is not true for the misorientation-
dependent interfacial energy.

The results are harder to visualize and comprehend in 3D, for which reason we choose a 128x128x128 input
image of an artificial, periodic 3D polycrystal, which is composed of cubic grains (Fig. 6 shows the input data as well
as the segmentation result). For a slightly larger simulation, eight copies of this polycrystal are stacked together into
a 256x256x256 input image. Again, the method correctly identifies the cubic grains, random subsets of which are
depicted in Fig. 7.

Table 1 shows the distribution of computation time over the different components of the algorithm for a small
3D example. Note that the employed techniques to avoid the very expensive fidelity term evaluations indeed lead
to reducing the time spent inside the fidelity term evaluation to times comparable to the convolution-redistancing
algorithm for the interface motion. The expensive components of the algorithm roughly scale linearly with the number
of voxels so that the segmentation of a 256x256x256 polycrystal image without parallelization roughly takes 16 h.
However, parallelization leads to a decrease in computing time approximately linear in the number of CPUs. Note that
2D simulations are more efficient due to the simpler representation of crystal orientations and the smaller stencil size.
Indeed, the non-parallelized segmentation of a 1024x1024 crystal image lies at the order of five to ten minutes.
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Figure 4: Left: Orientation angles in a synthetic polycrystal. Center: Segmentation result with uniform interfacial
energy. Right: Segmentation result with misorientation-dependent interfacial energy. Colors indicate grain orientation.

Figure 5: Left: PFC image; middle: orientation angles in synthetic polycrystal; right: segmentation result with inho-
mogenous interface energies.

Figure 6: Input data (left, middle) and selected grains from the segmentation result (right) for an artificial polycrystal
composed of cubic grains.
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Figure 7: Randomly chosen grains from the segmentation result for a 2x2x2 stack of the periodic block from Fig. 6.

gradient flow for interfaces 59%
convolution 1%
fidelity density evaluation 18%
recombination 7%
redistancing 14%
grain tracking and swapping 18%

initial update of orientations 19%
fidelity term evaluation 18%

further orientation updates 20%
fidelity term evaluation 17%
solution of trust-region subproblem 0%
grain merging 2%

energy evaluation for stopping criterion & output 2%

Table 1: Fraction of time spent in each part of the algorithm on a serial processor for the segmentation of a 256x256x4
3D crystal image. Total computation time was 15 min 9 s.
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