Mechanics I

Homework Jan. $30^{\text {th }}$; due Feb. $13^{\text {th }}$

1. A body moves according to

$$
y(x, t)=\left(x_{1}+k t x_{3}, x_{2}+k t x_{3}, x_{3}-k t\left(x_{1}+x_{2}\right)\right)
$$

for a constant $k>0$. What is the (particle) velocity in Lagrangian coordinates? What the velocity at a point y in Eulerian coordinates? Show that a particle with reference position x moves along a straight line orthogonal to x.
2. Assume a deformation $y(x, t)$ to have the deformation gradient $F(x, t)=$ $f(x) A(t), f: \Omega \rightarrow \mathbb{R}^{+}, A:[0, \infty) \rightarrow \mathbb{R}^{3 \times 3}$. Show that if the domain $\Omega \subset \mathbb{R}^{3}$ is connected, then f has to be constant.
3. Assume a deformation $y: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with deformation gradient to be given by

$$
F(x)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+\frac{b}{2 \pi r}\left(\begin{array}{cc}
-\sin (\theta) & \cos (\theta) \\
0 & 0
\end{array}\right)
$$

with $b>0$ small and cylindrical coordinates $x=(r \cos \theta, r \sin \theta)$. Show that this is a valid deformation gradient on $\mathbb{R}^{2} \backslash\{0\}$, but that there is a curl-concentration at $x=0$ (you can apply Stoke's theorem to a small ball around $x=0$ to compute the curl inside the ball). Such deformations do occur in physics; they are associated with material faults at $x=0$, called dislocations.
4. Let $\Omega=\left\{x: 0<x_{3}<1,0<\sqrt{x_{1}^{2}+x_{2}^{2}}<1\right\}$ be deformed by $y(x)=$ $\left(r \cos (2 \theta), r \sin (2 \theta), x_{3}\right)$, where $x=\left(r \cos \theta, r \sin \theta, x_{3}\right)$. Show that y is smooth with $\operatorname{det} D y>0$ everywhere, but that y is not even locally invertible.
5. Show that the motion

$$
y(x, t)=\left(x_{1}\left(x_{1}+2 x_{2}\right), 2 x_{2}\left(x_{1}+x_{2}\right),(1+t) x_{3}\right)
$$

is invertible on $\Omega=\left\{x_{1}>0, x_{2}>0,1<x_{1}+x_{2}<2,0<x_{3}<1\right\}$, using the global inverse function theorem.
6. Given $F \in \mathbb{R}^{3 \times 3}$ with $\operatorname{det} F>0$ and the polar decomposition $F=R U$, show that R is the orthogonal projection of F onto $\mathrm{SO}(3)$, i. e.

$$
|F-R|<|F-Q|
$$

for all $Q \in \mathrm{SO}(3)$ with $Q \neq R$, where $|A|=\operatorname{tr}\left(A^{T} A\right)$.
7. Consider the shear deformation

$$
y(x)=\left(x_{1}+\gamma x_{2}, x_{2}, x_{3}\right)
$$

for $\gamma \geq 0$. Represent the deformation by a composition of a rotation, a stretching/compression along the coordinate axes, and another rotation. Illustrate the composition by a sketch. (Hint: The polar decomposition of the deformation gradient reads $\left(\begin{array}{ccc}\cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{ccc}\cos \psi & \sin \psi & 0 \\ \sin \psi & \frac{1+\sin 2}{\cos \psi} & 0 \\ 0 & 0 & 1\end{array}\right)$ for $\psi=$ $\arctan \frac{\gamma}{2}$.)
8. A rigid deformation is a deformation $y(x)$ which preserve distances, i. e. $|y(x)-y(z)|=|x-z| \forall x, z \in \Omega$. Prove the equivalence of the following:

- y is a rigid deformation.
- $y(x)=a+R x$ for a constant vector a and a constant rotation R.
- The deformation gradient is a rotation everywhere.
- The Lagrangian strain tensor is zero everywhere.

