
Mechanics I
Homework Mar. 13th; due Apr. 10rd

1. Consider the following rectangular 2D geometry of horizontal width w and
vertical height h,
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where a surface load s/d is applied in a d thick region at the center of both
sides (denoted ∂Ω1; there are no body forces). The material has (using
linearized elasticity) the stress-strain law T = 2µε(u). We ask ourselves
how large the Gibbs free energy of the displacement u,

Ed[u] =
∫

Ω

µ|ε(u)|2 dx−
∫

∂Ω1

s
d · uda ,

is in equilibrium. This is obviously a difficult task, since we cannot directly
find a formula for the equilibrium displacement u (the minimizer of E).

• For d = h we can find the equilibrium displacement uh explicitly.
State uh, show that it is the equilibrium displacement, and compute
its energy Eh

min = Eh[uh].

For d < h we will find a lower bound on the energy via convex duality,
which requires a little work.

• Show that any twice weakly differentiable function φ : Ω→ R induces
a stress field T via

T =
(

φ,22 −φ,12

−φ,21 φ,11

)
which satisfies divT = 0 weakly.
In fact, one can show that any statically admissible stress field T
can be expressed via the above formula for some φ, which is called
the corresponding Airy stress function. The Airy stress function
obviously is only determined up to an affine function.

• Compute the Airy stress function φh for the equilibrium stress in the
case d = h, fixing φh(0, 0) = 0, ∇φh(0, 0) = 0.

• Find an Airy stress function φ̂d belonging to a statically admissible
stress (not necessarily the equilibrium stress—this is too difficult to
obtain) for d < h, fixing φ̂d(0, 0) = 0, ∇φ̂d(0, 0) = 0.

• We will now find a lower bound of the form

Ed
min ≤ Eh

min − f(d,w, h, s) .
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First, we construct an Airy stress function φd which belongs to a
statically admissible stress for d < h (and which probably comes
closer to the true equilibrium stress than φ̂d): We take φd = φh + φ,
where

– φ = φ̂d − φh at x = 0 and x = w,
– φ is rotationally symmetric on {(x, y) |x2 + y2 < (h

2 )2} around
(0, 0),

– φ is rotationally symmetric on {(x, y) | (x − w)2 + y2 < (h
2 )2}

around (w, 0),
– φ =const. elsewhere.

Compute the corresponding stress field and use it to find the above-
mentioned bound via convex duality.

2. Find the equilibrium displacement from the previous question numerically,
e. g. in Matlab, using finite elements and the parameters w = 3, h = 1,
d = 1/3, s = 1/10. Note: You can find the meaning and documentation
of all Matlab commands on www.mathworks.com.

• First create a finite element mesh:

x=linspace(0,w,37);
y=linspace(0,h,13);
[X,Y]=meshgrid(x,y);
boundaryIndicator=zeros(13,37);
boundaryIndicator(:,[1,end])=1;
boundaryIndicator([1,end],:)=1;
vertices=[X(:),Y(:),boundaryIndicator(:)];
triangles=delaunay(vertices(:,1),vertices(:,2));
boundaryConditionXComponent=zeros(13,37);
boundaryConditionXComponent(5:9,1)=-0.1;
boundaryConditionXComponent(5:9,end)=0.1;
boundaryCondition=[boundaryConditionXComponent(:),zeros(13*37,1)];

Each row of vertices now represents the (x, y)-coordinate of a ver-
tex of the mesh; the third entry is 1 on ∂Ω. boundaryCondition is
a matrix whose kth entry is the surface load on the kth node if this
node lies on the boundary.

• Assemble the stiffness matrix L and the right-hand side B of the
system, using the procedure from the lecture.
In detail: First we assemble the stiffness matrix

L =
(

L11 L12

L21 L22

)
.

For this purpose, you have to run over all the triangles. Say the kth

triangle Tk has nodes x̂i1 , x̂i2 , x̂i3 (ordered counterclockwise), where
i1, i2, i3 are just indices in {1, . . . , N}. Only the basis functions ϕj

i
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with i ∈ {i1, i2, i3} will be non-zero on Tk. First compute the affine
transformation matrix Ak = (x̂i2 − x̂i1 |x̂i3 − x̂i1) that transforms Tk

onto the reference triangle T . Next compute

L̃jl
mn :=

∫
Tk

Cε(ϕj
im

) : ε(ϕl
in

) dx for j, l ∈ {1, 2},m, n ∈ {1, 2, 3} ,

which via a pullback onto T can be written as

L̃jl :=

(
L̃jl

11 L̃jl
12 L̃jl

13

L̃jl
21 L̃jl

22 L̃jl
23

L̃jl
31 L̃jl

32 L̃jl
33

)
=
(−1 −1

1 0
0 1

) [
det Ak

2 A−1
k

(
C1j1l C1j2l

C2j1l C2j2l

)
A−T

k

] (−1 1 0
−1 0 1

)
for j, l ∈ {1, 2} .

Now add the (m,n)-entry of L̃jl onto the (im, in)-entry of Ljl. After
running over all triangles, the assembly of L is finished. An imple-
mentation trick: Instead of initializing the Ljl as N × N -matrices
full of zeros and then adding up entries in this matrix, one can use
the command sparse(i,j,s,m,n) which you can look up online. It
creates an empty m×n-matrix and then goes through the entries of
i,j,s, adding s(k) onto the (m(k),n(k))-entry of the matrix, so you
only have to produce the vectors i,j,s.

Next, we assemble the vector B =
(

B1

B2

)
which contains the surface

loads. Again, you have to run over all triangles. If triangle Tk with
nodes i1, i2, i3 has one side on ∂Ω (i. e. two of its nodes have a nonzero
third entry in vertices, say i1 and i2), then we have to compute

B̃j
m :=

∫
Tk∩∂Ω

s · ϕj
im

da for j ∈ {1, 2},m ∈ {1, 2} .

Writing s =
∑N

n=1

∑2
l=1 s

l
nφ

l
n (note that (s1

n, s
2
n) is the nth row of

boundaryCondition), this becomes

B̃ :=
(

B̃1
1 B̃2

1

B̃1
2 B̃2

2

)
= (B̃j

m)mj

=

(
2∑

n=1

2∑
l=1

sl
in

∫
Tk∩∂Ω

ϕl
in
· ϕj

im
da

)
mj

= |x̂i1−x̂i2 |
6 ( 2 1

1 2 )
(

s1
i1

s2
i1

s1
i2

s2
i2

)
.

Now B̃j
m has to be added onto the imth entry of Bj .

• Solve for the vector of the displacement:

U=B\L

• Visualize the displacement:
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subplot(2,1,1);
trimesh(triangles,vertices(:,1),vertices(:,2));
hold on;
quiver(X,Y,reshape(U(1:(13*37)),13,37),reshape(U(13*37+1:end),13,37));
subplot(2,1,2);
trimesh(triangles,vertices(:,1)+U(1:(13*37)),vertices(:,2)+U(13*37+1:end));

• Compute the equilibrium displacement for a refined mesh and attach
the total code as well as a printout of the result to your homework.
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