Mechanics I Homework Apr. 24th; due May 8th - 1. Show that the phase flow g^t of a Hamiltonian system is a group. - 2. Consider a pendulum with mass m=1, length l=4, and gravitational acceleration g=1. Sketch the $(\theta,\dot{\theta})$ -phase plane as well as the image of the disk $\theta^2+(\dot{\theta}-\frac{1}{2})^2<\frac{1}{4}$ under the phase flow g^t for the time $t=\pi$. What is the relation between the areas of the disk and its image? How large is the area of the image in the (θ,p) -phase plane, where p is the momentum associated with θ ? - 3. For a linear system $\dot{x} = A(t)x$, $x(t) \in \mathbb{R}^n$, $A(t) \in \mathbb{R}^{n \times n}$, let $x_1(t), \dots, x_n(t)$ denote n linearly independent solutions and introduce the Wronskian $W(t) = \det(x_1(t)|\dots|x_n(t))$. Prove Liouville's formula $$W(t) = W(0)e^{\int_0^t \operatorname{tr} A(\tau) \, d\tau}.$$ (Hint: The proof can proceed similarly to the proof of Liouville's theorem.) - 4. Show that in a Hamiltonian system it is impossible to have asymptotically stable equilibrium points or asymptotically stable limit cycles in the phase space (using Liouville's theorem). - 5. Consider the unit circle S^1 and let g be rotation by an angle α . Using Poincaré's recurrence theorem, show that if $\frac{\alpha}{2\pi}$ is irrational, the set of points $g^k x$, $k \in \mathbb{N}$, is dense on S^1 for any $x \in S^1$. - 6. Solve Burgers' equation (which occurs e.g.g. in modeling gas dynamics and traffic flow), $$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0,$$ for initial data $u_0(x) = \max(0, 1 - |x|)$ at time t = 0, using the method of characteristics. When does the solution break down? - 7. Fermat's principle states that a light ray travelling from one point to another always takes that path which needs the least time. The speed of light in vacuum is given by c, the speed in a medium by v = c/n for the refractive index n of the medium. Of course, n may depend on the spatial location x. - Write down a Lagrangian $L(t, x, \dot{x})$ and the corresponding action functional for the motion of a light ray. - Assume, the light ray is never orthogonal to the x_3 -axis and travels in the direction of positive x_3 -values. Do a coordinate transform in which the time t is replaced by the x_3 -coordinate (this corresponds just to reparameterizing the path) and write down the Lagrangian and action for this new time variable. - Assume the half-space $\{x \in \mathbb{R}^3 : x_3 < 0\}$ to be occupied by a material with refractive index n_1 and the complement by a material with index n_2 . Consider the light ray from (0,0,-1) to (2,0,1). Derive an equation which describes the position $(x_1,x_2,0)$ of the light ray at the material interface. - Derive Snell's law of refraction: At a planar interface between two media with refractive indices n_1 and n_2 , respectively, $\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1}$ for the angles θ_1 and θ_2 between the light ray and the normal to the interface in medium 1 and 2, respectively. - Give an example where the path of a light ray (i.e. the extremal of the action) is not unique. (Hint: Think of lenses. This phenomenon is also used in astronomy: For instance, around a black hole the space-time-metric is distorted so that the black hole acts like a lense and one can thus see stars behind the black hole multiple times.)