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Diffusion tensor imaging

Variant of diffusion-weighted

magnetic resonance imaging,

DW-MRI.

Measures the spatial

diffusion of water molecules

by MRI per volume element

(voxel) .

MRI-device (Philips Chieva 3.0 T)
http://upload.wikimedia.org/

Consider a single voxel:

This leads to a diffusion tensor

D(x) =

(
dxx(x) dxy (x) dxz(x)
dyx(x) dyy (x) dyz(x)
dzx(x) dzy (x) dzz(x)

)



Multiscale
models for

glioma
invasion

Christina
Surulescu

Glioma
invasion:
Microscale,
mesoscale,
macroscale

Proliferation via
cell-tissue
interactions

Alternative
proliferation
modeling:
Go-or-grow

Therapy

More general
models and
theory issues

Representation of anisotropic diffusion tensor data
(see Hagmann et al. 2006)

Assume diffusion tensor in diagonal form: D(x) =

λ1 0 0
0 λ2 0
0 0 λ3

.

Spherical diffusion Prolate diffusion Oblate diffusion
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Representation of the anisotropic DTI data

Glyphs & tractography

θ2
1
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+
θ2

2
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3
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Fractional anisotropy

FA(x) =
√
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Modeling scales

Goal: multiscale descriptions
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Biochemical basis of the microscopic model

Cells interact with the neighbouring tissue in order to
move forward (contact guidance)

Zelle

Receptor binding to unsoluble components Q

Q + (R0 − y)
k+



k−

RQ
Notation: y := RQ.
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Glioma follow white matter tracts
(Giese & Westphal, 1996)

Glia cells and myelinated axon bundles
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Individual variables (N cells)

Position x(j) ∈ Rn

Velocity v(j) ∈ V = sSn−1

Receptor state y (j) ∈ Y (j = 1, ...,N).

Newton’s law (in the absence of reorientations)

dx(j)

dt
= v(j) ,

dv(j)

dt
= 0

ODE for receptor dynamics

dy (j)

dt
= G (y (j),Q(t, x(j)))
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Micro-meso model: kinetic transport equations

Wanted: cell density p(t, x, v, y) at time t, position x ∈ IRn,
with velocity v ∈ V ⊂ IRn, and internal state y ∈ Y ⊆ [0,R0].

∂tp+∇x·(vp)+∂y (G (y)p) = −λ(y)p+λ(y)

∫
V
K (x, v, v′)p(v′)dv′.

We choose K (x, v, v′) = q(x,v̂)
ω , where q(x, θ) represents the

directional distribution of tissue fibers and
ω =

∫
V q(v̂)dv = sn−1 where V = sSn−1.

q(x, ·) ∈ L2(Sn−1), q(x, θ) ≥ 0,

For unoriented tissue Eq(x) =
∫
Sn−1 θq(x, θ)dθ = 0

Notation for turning operator

L[λ(y)]p := −λ(y)p + λ(y)
q(x, v̂)

ω

∫
V
p(v′)dv′.
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Subcellular dynamics: d
dt y(t) = G (y(t),Q(t, x)).

Q(t, x): volume fraction of tissue fibres.

ẏ= k+(R0 − y)Q − k−y .

Together with the kinetic transport equation

∂tp +∇x · (vp) + ∂y (G (y)p) = L[λ(y)]p

this leads to a micro-meso model (the tissue informations Q
and q serve as input).
Issues:

Proliferation not included.

Numerical handling too complicated.

Actually wanted: macroscopic cell density.
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Receptor dynamics in a static field

Steady state: y∗ = k+QR0
k+Q+k− .

Introduce a new internal variable z := y∗ − y measuring
deviations from the steady state.

Consider the path of a single cell starting in x0 and moving
with velocity v through a time-invariant density field Q(x).

Turning rate: λ(z) = λ0 − λ1z ≥ 0, with adequate λ0, λ1 > 0.

Wanted: macroscopic cell density

M(t, x) :=

∫∫
V×Z

p(t, x, v, z)dzdv,

where Z ⊆ [R0 − y∗, y∗] is the shifted domain for internal
states.
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Notations: x = x0 + vt, f (Q(x)) = k+Q(x)R0

k+Q(x)+k−

Then for any t

d

dt
f
(
Q(x0 + vt)

)
= f ′(Q(x0 + vt)) v · ∇Q(x0 + vt)

and hence

ż = −(k+Q(x) + k−)z + f ′(Q(x))v · ∇Q(x)

= −(k+Q(x) + k−)z +
k+k−R0

(k+Q(x) + k−)2
v · ∇Q(x).

Assume for simplicity that the receptor dynamics equilibrates
rapidly, s.t. the system is close to steady-state. Then

∂tp+v·∇p−∂z(((k+Q+k−)z−f ′(Q)v·∇Q)p) = L[λ0]p+L[λ1]zp
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Modeling proliferation: interactions with tissue

P(p) = µ (x,M, v)︸ ︷︷ ︸
growth rate

∫
Z

χ(x, z , z ′)p(t, x, v, z ′)Q(x) dz ′,

with M(t, x) =
∫
V

∫
Z

p(t, x, v, z) dz dv.

The kernel χ characterizes the transition from the state z ′ to
the state z during a proliferative action (cell-tissue interaction).

Then our kinetic transport equation (KTE) becomes

∂tp +∇x · (vp)− ∂z(((k+Q + k−)z − f ′(Q)v · ∇Q)p)

= L[λ0]p + L[λ1]zp + P(p).

Remark: KTAP by N. Bellomo assumes cell-cell interactions

Pi [p](t, y) =
n∑

h,k=1

µhk

∫∫
Y×Y

χi
hk(y ′, y ′′; y)ph(t, y ′)pk(t, y ′′)dy ′dy ′′.
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Moments

m(t, x, v) =

∫
Z
p(t, x, v, z)dz ,

M(t, x) =

∫∫
V×Z

p(t, x, v, z)dzdv

mz(t, x, v) =

∫
Z

zp(t, x, v, z)dz ,

Mz(t, x) =

∫∫
V×Z

zp(t, x, v, z)dzdv

Higher order moments are set to zero, due to the small
deviations z from the steady-state y∗.
We assume the data to be compactly supported in the (x, v, z)
space; this allows to perform the computations for the
subsequent macroscopic scaling.
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Macroscopic scaling

Integrate the KTE w.r.t. z to obtain

∂tm +∇x · (vm) = −λ0m + λ1m
z + λ0

q

ω
M − λ1

q

ω
Mz

+ µ(x,M, v)Q(x)

∫
Z

∫
Z

χ(x, z , z ′)p(z ′) dz ′ dz

Multiply the KTE by z and integrate w.r.t. z to obtain

∂tm
z +∇x · (vmz) = −(k+Q + k− + λ0)mz

+ f ′(Q)v · ∇Qm + λ0
q

ω
Mz

+ µ(x,M, v)Q(x)

∫
Z

∫
Z

zχ(x, z , z ′)p(z ′) dz ′ dz .
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Macroscopic scaling

Parabolic scaling: t̂ = ε2t, x̂ = εx leads to (drop the hats!):

ε2∂tm + ε∇ · (vm) = −λ0m + λ1m
z + λ0

q

ω
M − λ1

q

ω
Mz

+ ε2µ(x,M, v)Q(x)

∫
Z

∫
Z

χ(x, z , z ′)p(z ′) dz ′ dz

ε2∂tm
z + ε∇ · (vmz) = −(k+Q + k− + λ0)mz + λ0

q

ω
Mz

+ εf ′(Q)v · ∇Qm

+ ε2µ(x,M, v)Q(x)

∫
Z

∫
Z

zχ(x, z , z ′)p(z ′) dz ′ dz .

Remark. The proliferation rate is rescaled with ε2 to let it act
on the correct new time scale.
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Macroscopic scaling

Hilbert expansions of the moments:

m =
∞∑
k=0

εkmk M =
∞∑
k=0

εkMk

mz =
∞∑
k=0

εkmz
k Mz =

∞∑
k=0

εkMz
k

Collect the coefficients of the powers of ε and integrate w.r.t. v
to obtain:

m0 =
q

ω
M0, mz

0 = 0

Mz
0 = 0, m1 = − 1

λ0

(
∇ ·
(

v
q

ω
M0

)
− λ1m

z
1

)
mz

1 =
f ′(Q)

k+Q + k− + λ0
∇ ·
(

vQ
q

ω

)
M0,

M1 = 0, Mz
1 = 0.
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Effective equations on macroscale

∂tM0 −∇ · (DT (x)∇M0) +∇ · (g(Q(x))DT (x)∇Q(x)− u(x))M0)

= Q(x)µ(x,M0)M0,

with

g(Q(x)) = λ1(k+Q + k− + λ0)−1f ′(Q(x)), where

f (Q(x)) =
k+Q(x)R0

k+Q(x) + k−
(subcellular level information),

u(x) =
1

λ0ω

∫
V

v ⊗ v∇q dv (drift velocity)

DT (x) =
1

λ0ω

∫
V

qv ⊗ v dv (tumor diffusion tensor)

Semilinear advection-diffusion equation ; globally well posed
(with Neumann BCs and adequate ICs).
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Determine explicit forms of the coefficients

Choices of Q(x):

Fractional anisotropy (FA), from data.

Problem: assumes Q to be high where tissue is strongly
aligned ; also true in regions of isotropic (non-aligned)
and densely packed tissue??

Estimated Q via free path length from diffusivity
measured by DTI:
Characteristic (diffusion) length:

lc =
√
Dtc ,

with D a diffusion-related coefficient and tc the
characteristic (diffusion) time.

Choice of D: tr(DW ).
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Estimated Q via free path length from diffusivity
measured by DTI:
Characteristic (diffusion) length:

lc =
√
Dtc ,

with D a diffusion-related coefficient and tc the
characteristic (diffusion) time.

Choice of D: tr(DW ).
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Determine explicit forms of the coefficients

Choice of characteristic time tc : expected exit time of
Brownian motion from a ball with minimal radius surrounding
the voxel of length h, hence tc = h2

4 .

This estimate is valid for N (0, t − s)-distributed increments,
and ours are N (0, σ · (t − s))-distributed, where σ is some
estimation of the diffusion speed. We choose σ = l1, where l1 is
the largest eigenvalue of DW .

Volume fraction of tissue fibers:

Characteristic length lc =
√

h2tr(DW )
4l1

.

The free volume fraction of one voxel is l3c /h
3.

So the occupied volume is Q = 1− l3c
h3 .
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Determine explicit forms of the coefficients

Choices of q(x, θ) (θ ∈ Sn−1 gives the fiber orientation):

peanut (Hillen): q(x, θ) = n
|Sn−1|trDW (x)

θtDW (x)θ.

Advantage: very simple, convenient for calculations.
Drawback: cannot resolve crossings fiber tracts

bimodal von Mises-Fisher (Painter & Hillen, 2013):

q(x, θ) = k(x)
8π sinh(k(x)) (exp(k(x)φ(x) · θ) + exp(−k(x)φ(x) · θ)),

with k(x) = κFA(x) and φ the leading eigenvector of the
water diffusion tensor for each voxel.
Drawbacks:

concentration parameter κ cannot be determined by
measurements (ought to be assessed from many different
DTI data sets)
FA is not satisfactory enough as indicator for anisotropy
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Determine explicit forms of the coefficients

orientation distribution function (ODF):

q(x, θ) = ODF (θ) :=
∞∫
0

Π(rθ)r2 dr ,

describes the probability of diffusion in direction θ, where
Π(rθ): displacement probability of a spatial point in
spherical coordinates.
It can be shown (Aganj et al 2010) that

q(x, θ) =
1

4π|DW (x)| (θtDW (x)−1θ)
3
2

Advantages:
available for different medical imaging techniques,
including Q-Ball and HARDI;
allows to use medical data in different forms;
does not need supplementary parameters which are
difficult to assess.
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Example: peanut distribution

q(x, θ) = n
|Sn−1|trDW (x)

θtDW (x)θ.

Tumor diffusion tensor:

DT (x) =
s2

ωλ0(n + 2)

(
In + 2

DW

tr DW

)
,

Drift velocity:

u(x)=
s2

ωλ0(n + 2)

[
− 1

(tr DW )2

(
tr DW In + 2 DW

)
· ∇tr DW

+
1

tr DW

(
∇tr DW + 2∇ · DW

)]
.

The values of the water diffusion tensor DW are known from
DTI measurements.
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A useful lemma

Lemma (Hillen, 2005)

Consider the mean of velocity tensors v̄i1...ik :=
∫
V
v i1 . . . v ikdv

If k ∈ IN is odd, then v̄i1...ik = 0, ∀ i1, . . . , ik ∈ {1, . . . , n}.
If k ∈ IN is even, then there is a constant ck > 0 s.t.

v̄i1...ik = sk+n−1ck
( ∑
π(i1,...,ik )

δij1 ij2 . . . δ
ijk−1

ijk

)
,

where the set of all pairs of indices out of (i1, . . . , ik) is

π(i1, . . . , ik) := {((ij1 , ij2 ), . . . , (ijk−1 , ijk )) : {j1, . . . , jk} = {1, . . . , k}}.

The constants ck are given by

c0 = |Sn−1|, , c2 =
1

n
|Sn−1|, , ck =

ck−2

k − 2 + n
, for k ≥ 4.
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Setting v = sθ with θ ∈ Sn−1 we get (let ωn := |Sn−1|)

DT (x) =
1

λ0ω

∫
V

v ⊗ vqdv

=
s2

ωλ0

∫
Sn−1

θ ⊗ θ n

ωntrDW (x)
θtDW (x)θdθ

=
ns2

ωλ0ωntrDW

∫
Sn−1

n∑
i ,j

θiθj
n∑
k,l

θkθlDkl
w dθ

=
ns2

ωλ0ωntrDW

n∑
i ,j ,k,l

Dkl
w

∫
Sn−1

θiθjθkθldθ
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By Lemma∫
Sn−1

θiθjθkθldθ = c4(δijδkl + δkiδlj + δkjδil)

=
ωn

n(n + 2)
(δijδkl + δkiδlj + δkjδil)

thus

DT (x) =
ns2

ωλ0ωntrDW

ωn

n(n + 2)

n∑
i ,j ,k,l

Dkl
w (δijδkl + δkiδlj + δkjδil)

=
s2

ωλ0(n + 2)trDW

n∑
i ,j

(trDW δij + D ij
w + D ji

w ).

Assume Dw is symmetric. This implies

DT (x) =
s2

ωλ0(n + 2)

(
In + 2

DW

tr DW

)
.
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Simulation results (with peanut)

day 0, FA day 200, FA day 400, FA day 600, FA

day 0, Q day 200, Q day 400, Q day 600, Q
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Simulation results in 3D
(with estmated Q and peanut)

day 200 day 400 day 600
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Comparison with a pure macroscopic model

∂tM0 −∇ · (DT (x)∇M0) = Q(x)µ(M0)M0.

day 200, Q day 400, Q day 600, Q
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Alternative proliferation modeling: Go-or-grow

• Moving cancer cells:

∂tp+∇x · (vp) +∂y (G (y ,Q)p) = L[λ]p−a(x)p+
bq

ω
r − `(N)p

• Non-moving (proliferating) cancer cells:

∂tr = a(x)

∫
V
pdv − br + g(N)r − `(N)r .

L[λ]p := −λ(y)p + λ(y)q(x,v̂)
ω

∫
V p(v′)dv′ (turning operator)

• Subcellular (receptor) dynamics:

d

dt
y(t) = G (y(t),Q),

• Total cell density (macroscopic):

N(t, x) =

∫
V

∫
Y
p(t, x, v, y)dy dv +

∫
Y
r(t, x, y)dy
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Deducing the effective macroscale equations

Assumptions:

system is close to steady-state;

time scale on which birth and death events occur is much
slower than the (biased) random walk process.

Wanted moments:

M(t, x) :=

∫∫
V×Z

p(t, x, v, z)dzdv

w(t, x, v) :=

∫
Z
r(t, x, v, z)dz

to recover the macroscopic cell density N(t, x).

Parabolic scaling again: t̂ = ε2t, x̂ = εx.

g(N)→ ε2ĝ(N̂)

`(N)→ ε2 ˆ̀(N̂).
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`(N)→ ε2 ˆ̀(N̂).



Multiscale
models for

glioma
invasion

Christina
Surulescu

Glioma
invasion:
Microscale,
mesoscale,
macroscale

Proliferation via
cell-tissue
interactions

Alternative
proliferation
modeling:
Go-or-grow

Therapy

More general
models and
theory issues

We obtain

∂tN0 −∇ ·
(

1

λ0 + a(x)
∇ ·
(

b

a(x) + b
DT (x)N0

))
+∇ · ( λ1

λ0 + a(x)
γ(x)f ′(Q)

b

a(x) + b
DT (x) · ∇Q N0)

=
a(x)

a(x) + b
g(N0)N0 − N0`(N0),

with the tumor diffusion tensor DT (x) = 1
ω

∫
V vvtq(v̂) dv.
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Effective equations on the macroscale

With the logistic growth choice g(N0) = cg , `(N0) = c`N0,
where N0 = a+b

b M0, we get

∂tN0 − cD(x)∇∇ (DT (x)N0)−λ1cD(x)∇ (u(x)N0)

=
a

a + b
cgN0 − c`N

2
0 ,

with cD(x) = b
(λ0+a(x))(a(x)+b) and the drift velocity

u(x) = γ(x)f ′(Q(x))DT (x)∇Q,

where γ(x) = (k+Q + k− + λ0 + a)−1 and

f (Q(x)) = k+Q(x)R0

k+Q(x)+k− .
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Simulation results, full multiscale model

t = 0 t = 100 · 104s t = 200 · 104s t = 300 · 104s

t = 400 · 104s t = 500 · 104s t = 600 · 104s t = 700 · 104s
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Comparison between the two types of proliferation
(time: 1 year, estimated Q, ODF)

Mesoscopic cell-tissue Go-or-grow
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Micro-meso model via go-or-grow, with therapy

Chemotherapy: inhibition of receptor binding (by
peptidomimetics), with dosis dc

Radiotherapy: cell killing by ionizing radiation, with dosis
dr

∂tp +∇x · (vp) + ∂y (G (y ,Q, dc , dr )p)

= L[λ(y)]p − a(x, dc)p + b(x, dc)
q(v̂)

ω
r − L1(N, α1, dr )p

∂tr = a(x, dc)

∫
V
p(v)dv−b(x, dc)r+g(N, dc)r−L2(N, α2, dr )r

with Ll(N, αl , dr ) := `l(N) + Rl(αl , dr ) (l = 1, 2).

ẏ = G (y ,Q, dc , dr ) = k+(dc)(R0 − y)Q S(α3, dr )− k−(dc)y .
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ẏ = G (y ,Q, dc , dr ) = k+(dc)(R0 − y)Q S(α3, dr )− k−(dc)y .



Multiscale
models for

glioma
invasion

Christina
Surulescu

Glioma
invasion:
Microscale,
mesoscale,
macroscale

Proliferation via
cell-tissue
interactions

Alternative
proliferation
modeling:
Go-or-grow

Therapy

More general
models and
theory issues

Rj(αj , dr )=
ν∑

i=1

(1− S(αj , dr ))ηδ(t − ti ), ti ∈ radiotherapy,

supp ηδ ⊂ (−δ, δ), δ << 1, j = 1, 2, 3.

Survival fractions (LQ model): S(αj , dr ) = exp(−αjdr − βjd2
r ).

For ν fractions, each of dosis d̂r :
S(αj , dr ) = exp(−ν(αj d̂r + βj d̂

2
r )) = exp(−αjdr (1 + d̂r/(αj/βj))).

αj represents lethal lesions produced by a single radiation
track (αjdr , cell kill per Gy)

βj characterizes lethal lesions produced by two radiation
tracks (βjd

2
r , cell kill per Gy2)

αj

βj
: radiation sensitivity, correlates with cell cycle length
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Effective equation on macroscale

Remember N(t, x) =
∫
V

∫
Y p(t, x, v, y)dy dv +

∫
Y r(t, x, y)dy .

∂tN0 −∇ ·
(

1

λ0 + a
∇ ·
(

b

a + b
DT (x)N0

))
+∇ ·

(
λ1f
′(Q)

γ(x)

b

(λ0 + a )(b + a )
DT (x)∇QN0

)
=

(
(g(N0)− L2(N0))

a

a + b
− L1(N0)

b

a + b

)
N0,

where γ(x) := k+QS + k− + λ0 + a.
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Therapy strategies

Strategy 1: resection (2 weeks after start), no further
therapy.

Strategy 2: resection (2 weeks after start), followed after 3
weeks by radiotherapy (weekends excluded) for 6 weeks.

Strategy 3: resection (2 weeks after start), followed after 3
weeks by concurrent chemotherapy and radiotherapy
(weekends excluded) for 6 weeks.
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follow-up after two months

follow-up, scaled
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Moving on...

Goal: Multiscale model with tactic reorientations and tissue
degradation.

Involve on the mesolevel both hapto- and chemotaxis to
describe cell reorientations ; more complex subcellular
dynamics.

Model tissue degradation dependent on direction of cell
motion (mesolevel description).
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Subcellular dynamics revisited

Cells interact with the neighbouring tissue in order to
move forward (contact guidance)

Zelle

Integrin receptor binding:

to insoluble components Q

Q + (R0 − y1 − y2)
k1



k′1

RQ

Notations: y1 := RQ, y2 := RL.
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Subcellular dynamics revisited

Cells interact with the neighbouring tissue in order to
move forward (contact guidance)

Zelle

Integrin receptor binding:

to insoluble components Q

Q + (R0 − y1 − y2)
k1



k′1

RQ

to soluble components L

L + (R0 − y1 − y2)
k2



k′2

RL

Notations: y1 := RQ, y2 := RL.
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ODE for receptor dynamics (j = 1, . . . ,N, N: number of cells)

dy(j)

dt
=

(
k1(R0 − y1 − y2)Q(t, x(j))− k ′1y1

k2(R0 − y1 − y2)L(t, x(j))− k ′2y2

)
︸ ︷︷ ︸

G(y(j),Q(t,x(j)),L(t,x(j)))

R0 total receptor concentration
y1, y2 concentration of receptors bound to Q̄, resp. L.
In the absence of reorientations:

∂p

∂t
+ v · ∇xp︸ ︷︷ ︸

Transport with velocity v

+∇y · (G(y,Q, L)p)︸ ︷︷ ︸
Receptor dynamics

= 0

Changes in orientation (and speed) have to be incorporated in
the right-hand side.
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Reorientation mechanisms - Haptotaxis

Cells tend to align their movement direction to the
direction of the fibers in the tissue.
Haptotaxis:

H(p, q) = H+(p, q)−H−(p, q).

Gain term

H+(p, q) =

∫
V

∫
Sn−1

ηh(t, x, v′, y)ψ(v; v′, θ′)p(v′)Q(θ′)dv′dθ′.

Loss term

H−(p, q) = f (v)

∫
V

∫
Sn−1

ηh(t, x, v, y)ψ(v′; v, θ′)q(θ′)dv′dθ′.

ηh is the rate for haptotactic reorientation
ψ(v; v′, θ′) probability kernel for a reorientation v′ → v
after encounter with a fibre in direction θ′. E.g.,

ψ(v; v′, θ′) = |v̂′ · θ′| K (1)
H (v, θ′) + (1− |v̂′ · θ′|) K (2)

H (v, v′).



Multiscale
models for

glioma
invasion

Christina
Surulescu

Glioma
invasion:
Microscale,
mesoscale,
macroscale

More general
models and
theory issues

Reorientation mechanisms - Chemotaxis

Chemotaxis: C = C+ − C−.

Gain term

C+(p, L, y) =

∫
V
ηc(t, x, v′, y)K [L](v, v′, y)p(v′)dv′.

Loss term
C−(p, L, y) = ηc(t, x, v, y)p(v).

Turning kernel

K [L](v, v′, y) = α1(y)K (v, v′) + α2(y)K (v,∇L).

α1, α2 : Y → [0, 1] with α1(y) + α2(y) = 1, ∀y ∈ Y .
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Full mesoscopic equation for cells

∂p

∂t
+ v · ∇xp︸ ︷︷ ︸

Transport with velocity v

+∇y · (G(y,Q, L)p)︸ ︷︷ ︸
Receptor dynamics

= H(p, q) + C(p, L)︸ ︷︷ ︸
Changes in velocity

The macroscopic population density at time t and position x is
given by

M(t, x) :=

∫
Y

∫
V
p(t, x, v, y)dvdy
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Tissue modification (Hillen 2005)

Cell motion is both based on and can be impeded by ECM;
Cells cut ECM-fibres using enzymes (proteolysis);
Mean projection of movement direction on fiber
orientation:

Π[p](t, x, θ) =
1

M(t, x)


∫
Y

∫
V

|θ · v̂|p(t, x, v, y)dvdy, undirected∫
Y

∫
V

θ · v̂ p(t, x, v, y)dvdy, directed

(a) 1 − Π = 1 high proteolytic activity (b) 1 − Π = 0 no proteolytic activity
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Tissue degradation and production of soluble ligand

Tissue equation based on mass-action kinetics:

∂q

∂t
= κ(Π[p](t, x, θ)− 1)M(t, x)q(t, x, θ).

Tissue degradation leads to production of a soluble ligand
which then diffuses and degrades:

∂L

∂t
= DL4L+

∫
Sn−1

κ(1−Π[p](t, x, θ))M(t, x)q(t, x, θ)dθ−rLL

DL: diffusion coefficient of L
rL: degradation rate of L
κ: rate for proteolytic degradation of q.
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Multiscale cell migration model

Cells p : [0,T ]× Rn × V × Y → R

∂p
∂t + v · ∇xp +∇y · (G(y,Q, L)p) = H(p, q) + C(p,∇L)

with p(0, x, v, y) = p0(x, v, y) and ∂np = 0 on ∂Y .

Tissue q : [0,T ]× Rn × Sn−1 → R

∂q

∂t
= κ(Π[p](t, x, θ)− 1)M(t, x)q(t, x, θ)

with q(0, x, θ) = q0(x, θ).

Soluble product of fibre cutting L : [0,T ]× Rn → R

∂L

∂t
= DL4L +

∫
Sn−1

κ(1− Π[p](t, x, θ))M(t, x)q(t, x, θ)dθ − rLL

with L(0, x) = L0(x) = 0.
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Global existence and uniqueness

Theorem (Kelkel & S. 2012)

There exists a global unique solution of the multiscale model in
L1 ∩ L∞.

Theorem (Lorenz & S. 2014)

There exists a global unique solution of a more general
multiscale model (allowing e.g., for nonlocal cell-tissue
interactions) in L2.

Nonlocal cell-tissue interactions:

∂q

∂t
= κ (Π[p](t, x, θ)− 1) M(t, x) K ? q(t, x, θ)

1 + γQ |q(t, x, θ)| ,

K ?φ: convolution of a given spatial kernel K with a function φ.
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Conclusions

Multiscale models:

allow testing the influence of many factors;

are more difficult to handle numerically and analytically:

high dimensionality;
different scales both w.r.t. space and time;
highly nonlinear coupling;

Micro-meso-macro models:

Other cells (no tissue): Erban & Othmer (Multiscale Model.

Simul. 2005); Xue & Othmer (SIAP 2009).

Tumor cells (moving in tissue networks):
Bellomo et al. (M3AS 2010); Kelkel & S. (MBE 2011);
Kelkel & S. (M3AS 2012); Lorenz & S. (M3AS 2014);
Engwer, Hillen, Knappitsch, S. (JMB 2015);

Engwer, Hunt & S. (IMA Math. Med. Biol. 2015); Engwer,

Knappitsch & S. (MBE 2015); Hunt & S. (2015).
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Outlook

Goal: predict better CTVs and PTVs to allow for
patient-specific treatment planning.

tissue degradation modeled on mesoscale ; chemotaxis
equations on macroscale?

lymph and blood angiogenesis;

cell-cell interactions ; effects on proliferation & invasion;
can we recover macroscopic adhesion models?

effects of hypoxia, acid-mediated invasion, tumor
heterogeneity w.r.t. treatment response.
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