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Abstract. We introduce a version of Voiculescu-Brown approximation entropy
for isometric automorphisms of Banach spaces and develop within this frame-
work the connection between dynamics and the local theory of Banach spaces as
discovered by Glasner and Weiss. Our fundamental result concerning this con-
tractive approximation entropy, or CA entropy, characterizes the occurrence of
positive values both geometrically and topologically. This leads to various appli-
cations; for example, we obtain a geometric description of the topological Pinsker
factor and show that a C∗-algebra is type I if and only if every multiplier inner
∗-automorphism has zero CA entropy. We also examine the behaviour of CA
entropy under various product constructions and determine its value in many
examples, including isometric automorphisms of `p for 1 ≤ p ≤ ∞ and noncom-
mutative tensor product shifts.

1. Introduction

In [26] E. Glasner and B. Weiss showed that if a homeomorphism from a compact
metric space K to itself has zero topological entropy, then so does the induced
homeomorphism on the space of probability measures on K with the weak∗ topology.
One of the two proofs they gave of this striking result established a remarkable
connection between topological dynamics and the local theory of Banach spaces. The
key geometric fact is the exponential dependence of k on n given an approximately
isometric embedding of `n1 into `k∞, which is a consequence of the work of T. Figiel,
J. Lindenstrauss, and V. D. Milman on almost Hilbertian sections of unit balls in
Banach spaces [20].

The first author showed in [36] that Glasner and Weiss’s geometric approach can
be conceptually simplified from a functional-analytic viewpoint using Voiculescu-
Brown entropy and also more generally applied to show that if a ∗-automorphism of
a separable exact C∗-algebra has zero Voiculescu-Brown entropy then the induced
homeomorphism on the unit ball of the dual has zero topological entropy. In this
case the crucial Banach space fact is the exponential dependence of k on n given
an approximately isometric embedding of `n1 into the matrix C∗-algebra Mk [36,
Lemma 3.1], which can be deduced from the work of N. Tomczak-Jaegermann on
the Rademacher type 2 constants of Schatten p-classes [52].

In the present paper we pursue this connection between dynamics and Banach
space geometry within a general Banach space framework via the introduction of
an analogue of Voiculescu-Brown entropy which we call contractive approximation
entropy, or simply CA entropy. This dynamical invariant has the advantage of
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being defined for any isometric automorphism of a Banach space and often exhibits
greater tractability as a result of its more basic structural context. With entropy
a basic problem is to determine whether or not it is positive (in which case the
dynamics can be thought of as being chaotic, or nondeterministic), and in the case
of CA entropy we are able to characterize the occurrence of positive values both
geometrically and topologically by expanding upon the arguments of Glasner and
Weiss. A large part of the paper will involve applications of these characterizations.
In particular, we give a description of the Pinsker algebra in topological dynamics in
terms of dynamically generated sets equivalent to the standard basis of `1, and prove
that a C∗-algebra is type I if and only if every multiplier inner ∗-automorphism has
zero CA entropy. The latter result was conjectured by N. P. Brown for Voiculescu-
Brown entropy [8] but seems to be out of reach in that case. For C∗-dynamics, the
drawback of CA entropy in comparison to Voiculescu-Brown entropy is that, being
oblivious to matricial structure, it can be much cruder as a numerical invariant, as
we illustrate by computing the value for the tensor product shift on the UHF algebra
M⊗Z
p to be infinity. Nevertheless, the condition of simplicity on a C∗-algebra does

not necessarily rule out the existence of ∗-automorphisms with finite nonzero CA
entropy, as we have discovered with the type 2∞ Bunce-Deddens algebra.

We begin in Section 2 by defining CA entropy and recording some basic properties.
In Section 3 we demonstrate that the topological entropy of a homeomorphism of
compact Hausdorff space agrees with the CA entropy of the induced ∗-automorphism
of the C∗-algebra of functions over the space, and then proceed to establish our
geometric and topological characterizations of positive CA entropy (Theorem 3.5).
Specifically, we show that positive CA entropy is equivalent to positivity of the
topological entropy of the induced homeomorphism on the unit ball of the dual as
well as to the existence of an element the restriction of whose orbit to a positive
density subset of iterates is equivalent to the standard basis of `1. Several immediate
corollaries ensue, such as the invariance of positive CA entropy under isomorphic
conjugacy and the vanishing of CA entropy for every isometric automorphism of a
Banach space with separable dual. We round out Section 3 by exhibiting C(T) as an
example of a Banach space which contains `1 isometrically but admits no isometric
automorphism with positive CA entropy.

Section 4 briefly compares CA entropy with its matricial analogue for com-
pletely isometric automorphisms of exact operator spaces, which we call completely
contractive approximation entropy, or CCA entropy. This was introduced in the
C∗-algebraic setting by C. Pop and R. Smith, who showed that it coincides with
Voiculescu-Brown entropy in that case [48]. Positive CA entropy implies positive
CCA entropy, but the converse is false. However, we have been unable to resolve
the problem of the converse for ∗-automorphisms of exact C∗-algebras. As our com-
putation for the noncommutative shift in Section 9 demonstrates, it is also possible
for the CA entropy to be strictly larger than the CCA entropy.

In Section 5 we obtain a geometric description of the topological Pinsker algebra,
which is the C∗-algebraic manifestation of the Pinsker factor (i.e., the largest zero
entropy factor) in topological dynamics [4]. It turns out that the elements of the
topological Pinsker algebra are precisely those which do not generate a subspace
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canonically isomorphic to `1 along a positive density set of iterates. This yields
geometric characterizations of positive and completely positive topological entropy,
and implies that tame and HNS Z-systems [22, 24] have zero entropy.

Section 6 contains our entropic characterization of type I C∗-algebras. For this
we establish two lemmas which demonstrate that the property of having zero CA
entropy behaves well with respect to Banach space quotients and continuous fields
of Banach spaces.

Section 7 examines the behaviour of CA entropy under various product construc-
tions. Subadditivity holds for the injective tensor product, but not necessarily for
other tensor product norms, as we illustrate with the shift on a spin system. Adapt-
ing an argument of C. Pop and R. Smith based on Imai-Takai duality [48], we prove
that, under taking a C∗-algebraic crossed product by the action of an amenable
locally compact group G, zero CA entropy is preserved on a group element g such
that Ad g generates a compact subgroup of Aut(G), and if the original C∗-algebra
is commutative then every value of CA entropy is preserved in the same situation.
The latter fact has the consequence that there exist simple C∗-algebras, for instance
the type 2∞ Bunce-Deddens algebra, which admit inner ∗-automorphisms with any
prescribed value of CA entropy. Finally we deduce in Section 7 that zero entropy is
preserved under taking reduced free products of commutative probability spaces by
applying a result of N. P. Brown, K. Dykema, and D. Shlyakhtenko [12].

In Section 8 we study the prevalence of zero and infinite CA entropy in C∗-
algebras. We find that, for many C∗-algebras which are subject to classification
theory (more specifically, those which are tensorially stable with respect to the
Jiang-Su algebra Z), the collection of ∗-automorphisms with infinite CA entropy is
point-norm dense, while in the special cases of UHF algebras, the Cuntz algebra O2,
and the Jiang-Su algebra the collection of ∗-automorphisms with zero CA entropy is
a point-norm dense Gδ set, giving a noncommutative version of a result of Glasner
and Weiss on homeomorphisms of the Cantor set [25].

In the last three sections we apply a combinatorial argument (Lemma 9.1) to
compute the CA entropy for some canonical examples. In Section 9 we prove that
the tensor product shift on the UHF algebraM⊗Z

p has infinite CA entropy, in contrast
to the value of log p for the Voiculescu-Brown entropy. This raises the question of
whether there exist ∗-automorphisms of simple AF algebras with finite nonzero CA
entropy. In Section 10 we show that the CA entropy of an isometric automorphism
of `∞ is either zero or infinity depending on whether or not there is a finite bound
on the cardinality of the orbits of the associated permutation of Z. Finally, in
Section 11 we show that the CA entropy of an isometric automorphism of `1 is
either zero or infinity depending on whether or not there is an infinite orbit in the
associated permutation of Z. As a consequence we deduce that CA entropy is not
an isomorphic conjugacy invariant.

All Banach spaces will be over the complex numbers, unless there is an indication
to the contrary, such as the tag R when referring to the real version of a standard
Banach space. We point out however that the relevant results in Sections 2, 3, and 10
are also valid over the real numbers, although in other situations differences between
the real and complex cases can arise, as Remark 11.2 illustrates. For terminology
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related to Banach spaces see [41, 34]. The spaces `p for 1 ≤ p ≤ ∞ will be indexed
over Z so that we may conveniently speak of the shift automorphism as obtained
from the shift k 7→ k + 1 on Z. Given a Banach space X and r > 0 the ball
{x ∈ X : ‖x‖ ≤ r} will be denoted Br(X). All C∗-tensor products will be minimal
and written using an unadorned ⊗. The set of self-adjoint elements of an operator
system X will be denoted Xsa. We write Md for the C∗-algebra of d × d complex
matrices.

This paper subsumes the material from our e-print [37].

Acknowledgements. D. Kerr was supported by the Alexander von Humboldt Foun-
dation and heartily thanks Joachim Cuntz for hosting his stay at the University of
Münster over the 2003–2004 academic year. The preliminary stages of this work
were carried out during his stay at the University of Rome “La Sapienza” over the
2002–2003 academic year and he is grateful to Claudia Pinzari for her generous
hospitality and to NSERC for support. He thanks Vitali Milman for addressing a
question in the local theory of Banach spaces. H. Li thanks George Elliott for helpful
discussions. We thank Andrew Toms and Wilhelm Winter for discussions relating
to Z-stability. We are also indebted to the referee for suggesting a unified approach
to obtaining the lower bounds in Sections 9 to 11 via Lemma 9.1, a variant of one
of our original lemmas.

2. Contractive approximation entropy

Let X and Y be Banach spaces and γ : X → Y a bounded linear map. Denote
by Pf(X) the collection of finite subsets of X. For each Ω ∈ Pf(X) and δ > 0 we
denote by CA(γ,Ω, δ) the collection of triples (φ, ψ, d) where d is a positive integer
and φ : X → `d∞ and ψ : `d∞ → Y are contractive linear maps such that

‖ψ ◦ φ(x)− γ(x)‖ < δ

for all x ∈ Ω. By a CA embedding of a Banach space X we mean an isometric linear
map ι from X to a Banach space Y such that CA(ι,Ω, δ) is nonempty for every
Ω ∈ Pf(X) and δ > 0. Every Banach space admits a CA embedding; for example,
the canonical map X → C(B1(X∗)) defined via evaluation is a CA embedding, as a
standard partition of unity argument shows.

Let ι : X → Y be a CA embedding. For each Ω ∈ Pf(X) and δ > 0 we set

rc(Ω, δ) = inf{d : (φ, ψ, d) ∈ CA(ι,Ω, δ)}.

We claim that this quantity is independent of the CA embedding, as our notation
indicates. Indeed suppose ι0 : X → Y0 is another CA embedding and (φ, ψ, d) ∈
CA(ι,Ω, δ). Take an ε > 0 such that

‖ψ ◦ φ(x)− ι(x)‖ < δ − ε

for all x ∈ Ω, and choose a (φ0, ψ0, d0) ∈ CA(ι0,Ω, ε). By the injectivity of `d0∞
we can extend φ ◦ ι−1 : ι(X) → `d0∞ to a contractive linear map ρ : Y → `d0∞. An
application of the triangle inequality then shows that (φ, ψ0 ◦ρ◦ψ, d) ∈ CA(ι0,Ω, δ),
from which the claim follows.
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We denote by IA(X) the collection of all isometric automorphisms of X. For
α ∈ IA(X) we set

hc(α,Ω, δ) = lim sup
n→∞

1
n

log rc(Ω ∪ αΩ ∪ · · · ∪ αn−1Ω, δ),

hc(α,Ω) = sup
δ>0

hc(α,Ω, δ),

hc(α) = sup
Ω∈Pf(X)

hc(α,Ω)

and refer to the last quantity as the contractive approximation entropy or CA entropy
of α.

From the fact that rc(Ω, δ) does not depend on the CA embedding we see that
CA entropy is an invariant with respect to conjugacy by isometric isomorphisms. It
is not, however, an invariant with respect to conjugacy by arbitrary isomorphisms
(see Remark 11.3). Nevertheless, it turns out that zero CA entropy is an isomorphic
conjugacy invariant, as we will see in Section 3.

Proposition 2.1. Let α be an isometric automorphism of a Banach space X.

(i) If Y ⊆ X is an α-invariant closed subspace then hc(α|Y ) ≤ hc(α) (mono-
tonicity).

(ii) If {Ωλ}λ∈Λ is an increasing net in Pf(X) such that
⋃
λ∈Λ

⋃
n∈Z α

n(Ωλ) is
total in X then hc(α) = supλ hc(α,Ωλ),

(iii) For every k ∈ Z we have hc(αk) = |k|hc(α).

Proof. Monotonicity follows from the fact that the restriction of a CA embedding
to a closed subspace is a CA embedding, while for (ii) and (iii) we can proceed as
in the proofs of Propositions 1.3 and 3.4, respectively, in [53]. �

Proposition 2.2. Let X1, . . . , Xr be Banach spaces with respective isometric au-
tomorphisms α1, . . . , αr. Then for the isometric automorphism α1 ⊕ · · · ⊕ αr of the
`∞-direct sum (X1 ⊕ · · · ⊕Xr)∞ we have

hc(α1 ⊕ · · · ⊕ αr) = max
1≤i≤r

hc(αi).

Proof. The inequality hc(α1⊕· · ·⊕αr) ≥ max1≤i≤r hc(αi) is a consequence of mono-
tonicity (Proposition 2.1(i)), while the reverse inequality is readily seen using the
fact that an `∞-direct sum of CA embeddings is a CA embedding. �

We also see by applying Proposition 2.2 in conjunction with Proposition 2.1(ii)
that the CA entropy of a c0-direct sum of isometric automorphisms is equal to the
supremum of the CA entropies of the summands.

3. Topological and geometric characterizations of positive CA
entropy

Let K be a compact Hausdorff space and T : K → K a homeomorphism. Recall
that the topological entropy of T , denoted htop(T ), is defined as the supremum over
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all finite open covers W of K of the quantities

lim
n→∞

1
n

logN(W ∨ T−1W ∨ · · · ∨ T−(n−1)W),

where N(·) denotes the smallest cardinality of a subcover [1] (see [13, 31, 54] for
general references). The topological entropy of T may be equivalently expressed in
terms of separated and spanning sets [5, 42] as follows.

Denote by U the unique uniformity compatible with the topology on K, i.e., the
collection of all neighbourhoods of the diagonal in K×K. Let Q ⊆ K be a compact
subset, and let U ∈ U. A set E ⊆ K is (n,U)-separated (with respect to T ) if for
every s, t ∈ E with s 6= t there exists a 0 ≤ k ≤ n− 1 such that (T ks, T kt) /∈ U . A
set E ⊆ K is (n,U)-spanning for Q (with respect to T ) if for every s ∈ Q there is a
t ∈ E such that (T ks, T kt) ∈ U for each k = 0, . . . , n − 1. Denote by sepn(T,Q,U)
the largest cardinality of an (n,U)-separated subset of Q and by spnn(T,Q,U) the
smallest cardinality of an (n,U)-spanning set for Q. When Q = K we simply write
sepn(T,U) and spnn(T,U). We then have, by the same argument as in [5],

sup
U∈U

lim sup
n→∞

1
n

log sepn(T,Q,U) = sup
U∈U

lim sup
n→∞

1
n

log spnn(T,Q,U).

We also obtain the same quantity by taking either of the suprema over any given base
for U, the most important of which for our purposes is the collection consisting of the
sets Ud,ε = {(s, t) ∈ K×K : d(s, t) < ε} where d is a continuous pseudometric on K
and ε > 0. This quantity, which is invariant under conjugacy by homeomorphisms,
we denote by htop(T,Q). When Q = K it can be shown, as in [5], that we recover
the topological entropy htop(T ).

In the following proposition ht(·) denotes Voiculescu-Brown entropy [53, 10].

Proposition 3.1. Let K be a compact Hausdorff space and T : K → K a homeo-
morphism. Let αT be the ∗-automorphism of C(K) given by αT (f) = f ◦ T for all
f ∈ C(K). Then ht(αT ) = hc(αT ) = htop(T ).

Proof. The identity map from C(K) to itself is a CA embedding, and the parti-
tion of unity argument in the proof of Proposition 4.8 in [53] demonstrates that
hc(αT ) ≤ htop(T ). The inequality ht(αT ) ≤ hc(αT ) follows from the formulation of
Voiculescu-Brown entropy in terms of completely contractive linear maps [48] and
the observation that the identity on C(K) is a nuclear embedding (see Section 4)
along with the fact that a contractive linear map from an operator space into a
commutative C∗-algebra is automatically completely contractive [45, Thm. 3.8]. It
thus remains to show that htop(T ) ≤ ht(αT ). This holds when K is metrizable by
Proposition 4.8 of [53], and we can reduce the general case to the metrizable one as
follows.

Let δ > 0. Then there is a neighbourhood U of the diagonal in K ×K such that

htop(T ) ≤ lim sup
n→∞

1
n

log sepn(T,U) + δ.
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We may assume that U is of the form Ud,ε for some ε > 0 and pseudometric d of the
form

d(s, t) = sup
f∈Ω
|f(s)− f(t)|

for some Ω ∈ Pf(C(K)). Let A be the unital C∗-subalgebra of C(K) generated by⋃
k∈Z α

k
T (Ω). Then A is separable and αT -invariant. By separability we can enlarge

Ω to a compact total subset Γ of the unit ball of A and define a metric

d′(s, t) = sup
f∈Γ
|f(s)− f(t)|

on the spectrum of A which is compatible with the weak∗ topology, and with respect
to this metric the homeomorphism S of the spectrum of A induced from αT |A
evidently satisfies sepn(S,Ud′,ε) ≥ sepn(T,Ud,ε) for all n ∈ N. Knowing that the
desired inequality holds in the metrizable case and applying monotonicity we thus
obtain

htop(T ) ≤ htop(S) + δ ≤ ht(αT |A) + δ ≤ ht(αT ) + δ,

completing the proof. �

Lemma 3.2. Let X be a Banach space. Let Ω = {x1, . . . , xn} ⊆ X and suppose
that the linear map γ : `n1 → X sending the ith standard basis element of `n1 to xi
for each i = 1, . . . , n is an isomorphism. Let δ > 0 be such that δ < ‖γ−1‖−1. Then

log rc(Ω, δ) ≥ na‖γ‖−2(‖γ−1‖−1 − δ)2

where a > 0 is a universal constant.

Proof. Let ι : X → Y be a CA embedding, and suppose (φ, ψ, d) ∈ CA(ι,Ω, δ). For
any linear combination

∑
cixi of the elements x1, . . . , xn we have∥∥∥∑ cixi

∥∥∥ ≤ ∥∥∥ι(∑ cixi

)
− (ψ ◦ φ)

(∑
cixi

)∥∥∥
+
∥∥∥(ψ ◦ φ)

(∑
cixi

)∥∥∥
≤ δ

∑
|ci|+

∥∥∥φ(∑ cixi

)∥∥∥
≤ δ‖γ−1‖

∥∥∥∑ cixi

∥∥∥+
∥∥∥φ(∑ cixi

)∥∥∥
and so

∥∥φ(∑ cixi
)∥∥ ≥ (1− δ‖γ−1‖)

∥∥∑ cixi
∥∥. Since φ is contractive, it follows that

the composition φ ◦ γ is a ‖γ‖(‖γ−1‖−1 − δ)−1-isomorphism onto its image in `d∞.
The desired conclusion now follows from the `d∞ version of Lemma 3.1 in [36], which
can be deduced by the same kind of argument using (Rademacher) type 2 constants,
or as an immediate consequence by viewing `d∞ as the diagonal in the matrix algebra
Md. �

We remark in passing that Lemma 3.2 shows that the CA entropy is infinite for
the universal separable unital C∗-dynamical system, i.e., the shift on the infinite full
free product (C(T)∗N)∗Z, since the set of canonical unitary generators is isometrically
isomorphic to the standard basis of `1 (cf. [47, Sect. 8]).
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The following lemma is well known in Banach space theory and follows readily
from Théorème 5 of [44], as indicated in the proof of Lemma 3.2 in [36].

Lemma 3.3. For every ε > 0 and λ > 0 there exist d > 0 and δ > 0 such that
the following holds for all n ∈ N: if S ⊆ B1(`n∞) is a symmetric convex set which
contains an ε-separated set F of cardinality at least eλn then there is a subset
In ⊆ {1, 2, . . . , n} with cardinality at least dn such that

Bδ(`In∞) ⊆ πn(S),

where πn : `n∞ → `In∞ is the canonical projection.

Before coming to the statement of the main result of this section we introduce
and recall some terminology and notation. By saying that a set ∆ in a Banach space
is equivalent to the standard basis E of `I1 for some index set I we mean that there
is a bijection E → ∆ which extends to an isomorphism γ : `I1 → span∆. We also
say K-equivalent if ‖γ‖‖γ−1‖ ≤ K.

Definition 3.4. Let X be a Banach space and α ∈ IA(X). Let x ∈ X. We say that
a subset I ⊆ Z is an `1-isomorphism set for x if {αi(x) : i ∈ I} is equivalent to the
standard basis of `I1.

Given an isometric automorphism α of a Banach space X, we denote by Tα the weak∗

homeomorphism of the unit ball B1(X∗) of the dual of X given by Tα(ω) = ω ◦ α.
Recall that the upper density of a set I ⊆ Z is defined as

lim sup
n→∞

|I ∩ {−n,−n+ 1, . . . , n}|
2n+ 1

,

and if these ratios converge then the limit is referred to as the density of I.

Theorem 3.5. Let X be a Banach space and α ∈ IA(X). Let Z be a closed
Tα-invariant subset of B1(X∗) such that the natural linear map X → C(Z) is an
isomorphism from X to a (closed) linear subspace of C(Z). Then the following are
equivalent:

(1) hc(α) > 0,
(2) htop(Tα) > 0,
(3) htop(Tα) =∞,
(4) there exist an x ∈ X, constants K ≥ 1 and d > 0, a sequence {nk}k∈N in

N tending to infinity, and sets Ik ⊆ {0, 1, . . . , nk − 1} of cardinality at least
dnk such that {αi(x) : i ∈ Ik} is K-equivalent to the standard basis of `Ik1
for each k ∈ N,

(5) there exists an x ∈ X with an `1-isomorphism set of positive density,
(6) htop(Tα|Z) > 0.

We may moreover take x in (4) and (5) to be in any given total subset ∆ of X.

Proof. (1)⇒(2). The ∗-automorphism of C(B1(X∗)) induced from Tα has posi-
tive CA entropy in view of the canonical equivariant isometric embedding X ↪→
C(B1(X∗)) and monotonicity. Thus htop(Tα) > 0 by Proposition 3.1.
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(2)⇒(4). Without loss of generality we may assume that ∆ ⊆ B1(X). By assump-
tion there exist a continuous pseudometric d on B1(X∗), ε > 0, λ > 0, a sequence
{nk}k∈N in N tending to infinity, and an (nk, Ud,ε)-separated set Ek ⊆ B1(X∗) with
cardinality at least eλnk for each k ∈ N. By a simple approximation argument we
may assume that there is a finite subset Ω of ∆ such that

d(σ, ω) = sup
x∈Ω
|σ(x)− ω(x)|

for all σ, ω ∈ B1(X∗).
Define a linear map φ : X∗ → `Ω×nk∞ by (φ(f))x,i = f(αi(x)), where the standard

basis of `Ω×nk∞ is indexed by Ω×{0, . . . , nk − 1}. Then φ is a contraction and φ(Ek)
is ε-separated. By Lemma 3.3 there exist d > 0 and δ > 0 depending only on ε and
λ such that for every k ≥ 1 there is a set Jk ⊆ Ω× {0, . . . , nk − 1} with

(i) |Jk| ≥ d|Ω|nk, and
(ii) π(φ(B1(X∗))) ⊇ Bδ(`Jk∞), where π : `Ω×nk∞ → `Jk∞ is the canonical projection.

Then for every k ≥ 1 there exist some xk ∈ Ω and a set Ik ⊆ {0, . . . , nk − 1} such
that |Ik| ≥ dnk and {xk} × Ik ⊆ Jk. Consequently π′(φ(B1(X∗))) ⊇ Bδ(`Ik∞), where
π′ : `Ω×nk∞ → `Ik∞ is the canonical projection. The dual (π′ ◦ φ)∗ is an injection of
(`Ik∞)∗ = `Ik1 into X∗∗ and the norm of the inverse of this injection is bounded above
by δ−1. Notice that X ⊆ X∗∗, and from our definition of φ it is clear that (π′ ◦ φ)∗

sends the standard basis element of `Ik1 associated with i ∈ Ik to αi(xk).
Since Ω is a finite set, there is an x ∈ Ω such that xk = x for infinitely many k.

By taking a subsequence of {nk}k∈N if necessary we may assume that xk = x for all
k ∈ N, and so we obtain (4).

(5)⇒(1). This follows from Lemma 3.2.
(4)⇒(3). Multiplying x by a scalar we may assume that ‖x‖ = 1. On B1(X∗)

define the weak∗ continuous pseudometric

d(σ, ω) = |σ(x)− ω(x)|.

Denote span{αi(x) : i ∈ Ik} by Vk, and let γk denote the linear map from `Ik1 to Vk
sending the standard basis element of `Ik1 associated with i ∈ Ik to αi(x). For each
f ∈ (`Ik1 )∗ we have (γ−1

k )∗(f) ∈ V ∗k and ‖(γ−1
k )∗(f)‖ ≤ K‖f‖. By the Hahn-Banach

theorem we may extend (γ−1
k )∗(f) to an element in X∗ of norm at most K‖f‖, which

we will still denote by (γ−1
k )∗(f). Let 0 < ε < (2K)−1, and let M = b(2Kε)−1c be

the largest integer no greater than (2Kε)−1. Let {gi : i ∈ Ik} be the standard
basis of (`Ik1 )∗ = `Ik∞. For each f ∈ {1, . . . ,M}Ik set f̃ =

∑
i∈Ik 2f(i)εgi. Then

f ′ := (γ−1
k )∗(f̃) is in B1(X∗).

We claim that the set {f ′ : f ∈ {1, . . . ,M}Ik} is (nk, Ud,ε)-separated. Suppose
f, g ∈ {1, . . . ,M}Ik and f(i) < g(i) for some i ∈ Ik. Then

d(T iα(f ′), T iα(g′)) = |(T iα(f ′))(x)− (T iα(g′))(x)|
= |f ′(αi(x))− g′(αi(x))|
= 2(g(i)− f(i))ε
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> ε,

establishing our claim. Therefore sepnk(Tα, ε) ≥ M |Ik| ≥ Mdnk . It follows that
htop(Tα) ≥ d logM . Letting ε→ 0 we get htop(Tα) =∞.

(3)⇒(2). Trivial.
(4)⇒(5). Let Yx be the collection of sets I ⊆ Z such that the linear map from

`I1 to span{αi(x) : i ∈ I} which sends the standard basis element of `I1 associated
with i ∈ I to αi(x) is a K-isomorphism. If we identify subsets of Z with elements
of {0, 1}Z via their characteristic functions then Yx is a closed shift-invariant subset
of {0, 1}Z. It follows by the argument in the second paragraph of the proof of
Theorem 3.2 in [26] that Yx has an element J with density at least d. Clearly J is
an `1-isomorphism set for x.

(6)⇒(2). Trivial.
(5)⇒(6). By (5) we can find an x ∈ X with an `1-isomorphism set of positive

density. Then the image of x under the natural map X → C(Z) has the same `1
isomorphism set of positive density with respect to the induced automorphism α′ of
C(Z). Since (5) implies (1) we get hc(α′) > 0. Then (6) follows from Proposition 3.1.

�

Remark 3.6. It is easily seen that for the subset ∆ we need in fact only assume
that

⋃
j∈Z α

j(∆) is total in X. Furthermore, if α is a ∗-automorphism of a unital
commutative C∗-algebra then it suffices that

⋃
j∈Z α

j(∆) generate the C∗-algebra,
since in the proof of (2)⇒(4) the sets Ek may be taken to lie in the pure state space
(apply (2)⇒(1) and Proposition 3.1) and in this case pure states are multiplicative,
so that we may choose the set Ω to lie in a given ∆ of the desired type.

Remark 3.7. Combining Theorem 3.5 with Lemma 4.1 yields an alternate proof of
Theorem 3.3 in [36].

Corollary 3.8. Let X1 and X2 be Banach spaces and let α1 ∈ IA(X1) and α2 ∈
IA(X2). Suppose there is an isomorphism γ : X1 → X2 such that γ ◦ α1 = α2 ◦ γ.
Then hc(α1) = 0 if and only if hc(α2) = 0.

Since a Banach space with separable dual contains no isomorphic copy of `1, we
have:

Corollary 3.9. Every isometric automorphism of a Banach space with separable
dual has zero CA entropy.

It follows, for example, that `p for 1 < p < ∞, c0, and the compact operators
on a separable Hilbert space admit no isometric automorphisms with nonzero CA
entropy. This is also true for the nonseparable versions of these spaces since the
closed subspace dynamically generated by a finite subset lies within a copy of the
corresponding separable version.

Since topological entropy is nonincreasing under passing to closed invariant sets,
by Theorem 3.5 zero CA entropy is preserved under taking quotients:

Corollary 3.10. Let X be a Banach space, Y ⊆ X a closed subspace, and Q :
X → X/Y the quotient map. Let α be an isometric automorphism of X such that
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α(Y ) = Y , and suppose that α has zero CA entropy. Then the induced isometric
automorphism of X/Y has zero CA entropy.

The following corollary extends [26, Thm. A] to the nonmetrizable case.

Corollary 3.11. Let K be a compact Hausdorff space and T : K → K a homeomor-
phism. Let ST be the induced homeomorphism of the space of probability measures
on K with the weak∗ topology. Then htop(T ) = 0 if and only if htop(ST ) = 0.

Corollary 3.12. Let K be a compact Hausdorff space and T : K → K a homeo-
morphism. Then htop(T ) = 0 if and only if htop(T ′) = 0 for all metrizable factors T ′

of T .

Proof. The “only if” part is immediate as topological entropy is nonincreasing under
taking factors. The “if” part follows from Theorem 3.5, Proposition 3.1, and the
fact that there is a one-to-one correspondence between αT -invariant unital separa-
ble C∗-subalgebras of C(K) and metrizable factors of T , where αT is the induced
automorphism of C(K). �

Corollary 3.13. Let I be a nonempty index set and for each i ∈ I let αi be an
isometric automorphism of a Banach space Xi with hc(αi) = 0. Let 1 ≤ p < ∞,
and consider the isometric automorphism α of the `p-direct sum

(⊕
i∈I Xi

)
p

given
by α((xi)i∈I) = (αi(xi))i∈I . Then hc(α) = 0.

Proof. By Proposition 2.1(ii) we may assume that I is finite. Then the formal iden-
tity map from

(⊕
i∈I Xi

)
p

to the `∞-direct sum
(⊕

i∈I Xi

)
∞ is a linear contraction

with bounded inverse (of norm |I|1/p), and so we obtain the desired conclusion from
Proposition 2.2 and Corollary 3.8. �

Corollary 3.14. Let (S,Σ, µ) be a σ-finite measure space and let α be an isometric
automorphism of a Banach space X with hc(α) = 0. Let 1 ≤ p < ∞, and consider
the isometric automorphism β of the space Lp(S,Σ, µ,X) given by (β(f))(s) =
α(f(s)). Then hc(β) = 0.

Proof. Recall that Lp(S,Σ, µ,X) is the Banach space of all (equivalence classes of)
strongly µ-measurable functions f from S into X such that the norm

‖f‖p :=
(∫

S
‖f(s)‖p dµ(s)

)1/p

is finite [55, Chapter V] [14, Chapter II]. The set of functions of the form f = xχE ,
where x ∈ X and χE is the characteristic function of some E ∈ Σ with µ(E) < ∞,
is total in Lp(S,Σ, µ,X), and so the desired conclusion follows. �

In view of Theorem 3.5 we might ask whether there exists a Banach space which
contains `1 isometrically but does not admit an isometric automorphism with posi-
tive CA entropy. We claim that C(T) is such an example. By a theorem of Banach
and Mazur C(T) contains `1 isometrically (this result is usually stated for the Cantor
set ∆ or the unit interval, but we can embed C(∆) into C(T) isometrically by view-
ing ∆ as a subset of T and extending functions linearly on the complement). It is
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also well known that T admits no homeomorphisms with positive topological entropy
(see [54]). Thus we need only appeal to the following observation and proposition.

Let K be a compact Hausdorff space and α an isometric automorphism of C(K).
By the Banach-Stone theorem there are a unitary w ∈ C(K) and a homeomorphism
T : K → K such that α(f) = w(f ◦ T ) for all f ∈ C(K).

Proposition 3.15. Let K, α, w, and T be as above. Then

hc(α) ≤ htop(T ).

Also, if hc(α) = 0 then htop(T ) = 0.

Proof. We denote by EK the weak∗ compact set of extreme points of B1(C(K)∗),
whose elements are of the form λδt where λ ∈ T and δt is the point mass at some
t ∈ K. Let π : EK → K be the continuous surjection λδt 7→ t. Denoting by T ′

the homeomorphism of EK given by T ′(ω) = ω ◦ α, we then have a commutative
diagram

EK
T ′ //

π

��

EK

π

��
K

T // K.

Given a continuous pseudometric d on K, we define a continuous pseudometric e on
EK by e(ηδs, λδt) = max(|η − λ|, d(s, t)) for all η, λ ∈ T and s, t ∈ K. Then for a
given t ∈ K the map T ′ is isometric on π−1(t) with respect to e. Since the collection
of pseudometrics e arising as above generate the weak∗ topology on EK we infer
that htop(T ′, π−1(t)) = 0. Applying Theorem 17 of [5] (see Lemma 6.1) and the fact
that topological entropy does not increase under taking factors, we thus have

htop(T ) ≤ htop(T ′) ≤ htop(T ) + sup
t∈K

htop(T ′, π−1(t)) = htop(T )

so that htop(T ′) = htop(T ).
Let ι : C(K) → C(EK) be the isometric embedding given by ι(f)(ω) = ω(f)

for all f ∈ C(K) and ω ∈ EK , and β the ∗-automorphism of C(EK) given by
β(g)(ω) = g(T ′ω) for all g ∈ C(EK) and ω ∈ EK . Then α may be viewed as the
restriction of β to ι(C(K)). By monotonicity, Proposition 3.1, and the previous
paragraph we thus obtain

hc(α) ≤ hc(β) = htop(T ′) = htop(T ).

The second assertion of the proposition follows from Theorem 3.5 in view of the
fact that T ′ is a restriction of the induced homeomorphism Tα of B1(C(K)∗). �

4. Comparisons with matricial approximation entropies

We briefly examine here the relation between CA entropy and its matricial ana-
logue for exact operator spaces, which we call CCA entropy (completely contractive
approximation entropy). The latter was introduced for ∗-automorphisms of exact
C∗-algebras in [48] in which case it was shown to coincide with Voiculescu-Brown
entropy [48, Thm. 3.7]. For general references on operator spaces see [17, 47].
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Let X and Y be operator spaces and γ : X → Y a bounded linear map. For each
Ω ∈ Pf(X) and δ > 0 we denote by CCA(γ,Ω, δ) the collection of triples (φ, ψ,B)
where B is a finite-dimensional C∗-algebra and φ : X → B and ψ : B → Y are
completely contractive linear maps such that

‖ψ ◦ φ(x)− γ(x)‖ < δ

for all x ∈ Ω. By a nuclear embedding of an operator space X we mean a completely
isometric linear map ι from X to an operator space Y such that CCA(ι,Ω, δ) is
nonempty for every Ω ∈ Pf(X) and δ > 0. An operator space is exact (in the sense
of [17]) if and only if it admits a nuclear embedding [38, 16].

Let X be an exact operator space and ι : X → Y a nuclear embedding. For each
Ω ∈ Pf(X) and δ > 0 we set

rcc(Ω, δ) = inf{rankB : (φ, ψ,B) ∈ CA(ι,Ω, δ)}.

As in the contractive approximation setting this quantity is independent of the
nuclear embedding, which can be seen in the same way using the operator injectivity
of finite-dimensional C∗-algebras (i.e., Wittstock’s extension theorem).

Let α be a completely isometric automorphism of X. We set

hcc(α,Ω, δ) = lim sup
n→∞

1
n

log rcc(Ω ∪ αΩ ∪ · · · ∪ αn−1Ω, δ),

hcc(α,Ω) = sup
δ>0

hcc(α,Ω, δ),

hcc(α) = sup
Ω∈Pf(X)

hcc(α,Ω)

and refer to the last quantity as the completely contractive approximation entropy
or simply CCA entropy of α. As mentioned above, this coincides with Voiculescu-
Brown entropy when X is an exact C∗-algebra [48, Thm. 3.7].

The following is the matricial version of Lemma 3.2, obtained by applying Lemma
3.1 of [36].

Lemma 4.1. Let X be an exact operator space. Let x1, . . . , xn ∈ X and suppose
that the linear map γ : `n1 → X sending the ith standard basis element of `n1 to xi
for each i = 1, . . . , n is an isomorphism. Let δ > 0 be such that δ < ‖γ−1‖−1. Then

log rcc(Ω, δ) ≥ na‖γ‖−2(‖γ−1‖−1 − δ)2

where a > 0 is a universal constant.

Proposition 4.2. Let α be a completely isometric automorphism of an exact op-
erator space X. Suppose that hc(α) > 0. Then hcc(α) > 0.

Proof. Apply Theorem 3.5 and Lemma 4.1. �

In general there is no inequality relating CA and CCA entropy. For instance,
the tensor product shift on M⊗Z

p has infinite CA entropy (Theorem 9.3) but CCA
entropy equal to log p [53, Prop. 4.7], while the following example shows that it is
possible to have zero CA entropy in conjunction with positive CCA entropy.
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Example 4.3. The CAR algebra A may be described as the universal unital C∗-
algebra generated by self-adjoint unitaries {uk}k∈Z subject to the anticommutation
relations

uiuj + ujui = 0
for all i, j ∈ Z with i 6= j. We define a ∗-automorphism α of A by setting α(uk) =
uk+1 for all k ∈ Z. This is an example of a bitstream C∗-dynamical system as
studied in [27] (see also [49]). Let W be the operator space obtained as closure of
the span of {uk}k∈Z in A. Then α restricts to a completely isometric automorphism
of W , which we will denote by β.

Proposition 4.4. We have hcc(β) > 0 while hc(β) = 0.

Proof. For any n ∈ N the unitaries u1, . . . , un can be realized as tensor products of
Pauli matrices (see [30, Sect. 2] and [47, Sect. 9.3]) from which it can be seen that
the subset {u1⊗u1, . . . , un⊗un} of A⊗A is isometrically equivalent to the standard
basis of `n1 over R and hence 2-equivalent to the standard basis of `n1 over C. It
follows by Lemma 4.1 that hcc(α⊗α, {u1⊗u1}) > 0. Since hcc(α⊗α, {u1⊗u1}) ≤
2hcc(α, {u1}) by the local tensor product subadditivity of CCA entropy (cf. the proof
of Proposition 3.10 in [53]), we obtain hcc(β) ≥ hcc(β, {u1}) = hcc(α, {u1}) > 0.

Next we recall that the set {uk}k∈I is equivalent to the standard basis of `2 (cf.
[47, Sect. 9.3]). Indeed given a finite set F ⊆ Z and real numbers ck for k ∈ F , the
anticommutation relations between the ui’s yield

(∑
k∈F ckuk

)2 =
∑

k∈F c
2
k · 1 and

hence ∥∥∥∥∑
k∈F

ckuk

∥∥∥∥2

=
∥∥∥∥(∑

k∈F
ckuk

)2∥∥∥∥ =
∑
k∈F

c2
k,

from which it follows that {uk}k∈F is isometrically equivalent over the real numbers
to the standard basis of (`F2 )R, and hence 2-equivalent over the complex numbers to
the standard basis of `F2 . We conclude by Corollary 3.9 that hc(β) = 0. �

The above example is not a C∗-algebra automorphism, however, and so we ask
the following question.

Question 4.5. Is there a ∗-automorphism of an exact C∗-algebra for which the
Voiculescu-Brown entropy is strictly greater than the CA entropy?

5. A geometric description of the topological Pinsker algebra

Let T : K → K be a homeomorphism of a compact Hausdorff space. Since
zero topological entropy is preserved under taking products and subsystems, by a
standard argument (see Corollary 2.9(1) of [24]) T admits a largest factor with zero
entropy, which we will refer to as the topological Pinsker factor, following [23]. The
corresponding C∗-algebra will be called the topological Pinsker algebra and denoted
PK,T . It is an analogue of the Pinsker σ-algebra in ergodic theory.

In [4] F. Blanchard and Y. Lacroix constructed the topological Pinsker factor in
the metrizable setting as the quotient system arising from the closed T -invariant
equivalence relation on K generated by the collection of entropy pairs. Recall that
an entropy pair is a pair (s, t) ∈ K ×K with s 6= t such that for every two-element
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open cover U = {U, V } with s ∈ int(K \U) and t ∈ int(K \ V ) the local topological
entropy of T with respect to U is nonzero [2]. In [36] a description of PK,T for
metrizable K was given in terms of local Voiculescu-Brown entropy. By applying
the arguments from [36] and Section 3 we will obtain in Theorem 5.3 a geometric
description of PK,T for general K.

For a function f ∈ C(K) where K is a compact Hausdorff space, we denote by df
the pseudometric on K given by

df (s, t) = |f(s)− f(t)|
for all s, t ∈ K. For notation relating to CCA entropy see Section 4 .

Proposition 5.1. Let K be a compact Hausdorff space and T : K → K a homeo-
morphism. Then for any f ∈ C(K) the following are equivalent:

(1) hcc(αT , {f}) > 0,
(2) hc(αT , {f}) > 0,
(3) there exists an entropy pair (s, t) ∈ K ×K with f(s) 6= f(t),
(4) hdf (T ) > 0,
(5) there exist λ ≥ 1, d > 0, a sequence {nk}k∈N in N tending to infinity, and sets

Ik ⊆ {0, 1, . . . , nk − 1} of cardinality at least dnk such that {αiT (f) : i ∈ Ik}
is λ-equivalent to the standard basis of `1 for each k ∈ N,

(6) f has an `1-isomorphism set of positive density.

Proof. By restricting to the αT -invariant unital C∗-subalgebra of C(K) generated
by f we may assume that K is metrizable.

(1)⇒(2). Since the identity map on C(K) is a nuclear embedding (see Section 4)
we need only note that a contractive linear map from an operator space into a
commutative C∗-algebra is automatically completely contractive [45, Thm. 3.8].

(2)⇒(3)⇒(4). These implications follow from the proofs of Theorem 4.3 and
Lemma 4.2, respectively, in [36].

(4)⇒(5)⇒(6). Apply the same arguments as in the proofs of the respective im-
plications (2)⇒(4)⇒(5) in Theorem 3.5.

(6)⇒(1). By assumption there exist a set I ⊆ Z of density greater than some
d > 0 and an isomorphism γ : `I1 → span{αiT (f) : i ∈ I} sending the standard basis
element of `I1 associated with i ∈ I to αiT (f). Let 0 < δ < ‖γ−1‖−1. By Lemma 4.1,
for every n ∈ N we have

log rcc({αiT (f) : i ∈ I ∩ {−n,−n+ 1, . . . , n}}, δ)
≥ a|I ∩ {−n,−n+ 1, . . . , n}|‖γ‖−2(‖γ−1‖−1 − δ)2

for some universal constant a > 0. Since I has density greater than d and

rcc({f, αT (f), . . . , α2n
T (f)}, δ)

= rcc({α−nT (f), α−n+1
T (f), . . . , αnT (f)}, δ),

we infer that

log rcc({f, αT (f), . . . , α2n
T (f)}, δ) ≥ d(2n+ 1)a‖γ‖−2(‖γ−1‖−1 − δ)2

for all sufficiently large n ∈ N. Hence hcc(αT , {f}) > 0. �
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Corollary 5.2. Let A be a unital C∗-algebra and α an automorphism of A. Let α′

be the automorphism of C(S(A)) given by α′(f)(σ) = f(σ ◦ α) for all f ∈ C(S(A))
and σ ∈ S(A). Recall that there is an order isomorphism x 7→ x̄ from A to the
affine function space Aff(S(A)) ⊆ C(S(A)) given by x̄(σ) = σ(x) for all x ∈ A and
σ ∈ S(A). Then for any x ∈ A we have that hc(α′, {x̄}) > 0 implies hc(α, {x}) > 0.

Proof. The map x 7→ x̄ is a 2-isomorphism of Banach spaces which conjugates α
to α′

∣∣
Aff(S(A)), and so we obtain the conclusion from the implication (2)⇒(6) in

Proposition 5.1 and an appeal to Lemma 3.2. �

Theorem 5.3. Let T : K → K be a homeomorphism of a compact Hausdorff space.
Then the topological Pinsker algebra PK,T is equal to the set of all f ∈ C(K) which
do not have an `1-isomorphism set of positive density.

Proof. This follows from Proposition 5.1 and Remark 3.6. �

Corollary 5.4. The homeomorphism T has positive topological entropy if and only
if there is an f ∈ C(K) with an `1-isomorphism set of positive density.

Corollary 5.5. The homeomorphism T has completely positive entropy (i.e., every
nontrivial factor has positive topological entropy [3]) if and only if every nonconstant
f ∈ C(K) has an `1-isomorphism set of positive density.

Recently in [24] E. Glasner and M. Megrelishvili established a Bourgain-Fremlin-
Talagrand dichotomy for metrizable topological dynamical systems according to
which the enveloping semigroup either

(1) is a separable Rosenthal compactum (and hence has cardinality at most 2ℵ0),
or

(2) contains a homeomorphic copy of the Stone-Čech compactification βN of N
(and hence has cardinality 22ℵ0 ).

A topological dynamical system (i.e., a compact space with an action of a topological
group) is said to be tame if its enveloping semigroup is separable and Fréchet [22],
which is equivalent to (1) in the context of the above dichotomy. In particular, the
enveloping semigroup of a tame system has cardinality at most 2ℵ0 . Consider now
a homeomorphism T : K → K of a compact Hausdorff space. If the system (K,T )
is tame then it is Z-regular, i.e., C(K) does not contain a function f such that the
orbit {f ◦ Tn}n∈Z admits an infinite subset equivalent to the standard basis of `1
(the N-system version of this property is called regularity in [39]), for otherwise the
enveloping semigroup would contain a homeomorphic copy of βN (see the proof of
Corollary 5.4 in [39]). Thus Corollary 5.4 yields the following, which generalizes a
result of Glasner [22], who proved it for (K,T ) metrizable and minimal.

Corollary 5.6. A tame homeomorphism T : K → K of a compact Hausdorff space
has zero topological entropy.

If the system (K,T ) is HNS (hereditarily not sensitive) [24, Defn. 9.1] and K
is metrizable then it is tame and hence has zero topological entropy by the above
corollary. More generally we have:
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Corollary 5.7. An HNS homeomorphism T : K → K of a compact Hausdorff space
has zero topological entropy.

Proof. By Theorems 9.8 and 7.6 of [24] the system (K,T ) is HNS if and only if every
f ∈ C(K) is in Asp(K), i.e., if and only if the pseudometric space (K, ρZ,f |K) is
separable, where ρZ,f is the pseudometric on C(K)∗ defined by

ρZ,f (σ, ω) = sup
n∈Z
|σ(f ◦ Tn)− ω(f ◦ Tn)|.

By Lemma 1.5.3 of [19] the pseudometric space (C(K)∗, ρZ,f ) is also separable. Thus
the orbit {f ◦ Tn}n∈Z admits no infinite subset equivalent to the standard basis of
`1, and we obtain the result by Corollary 5.4. �

Versions of Proposition 5.1 and Theorem 5.3 can be similarly established for
topological sequence entropy [29, 32]. Recall that a system (K,T ) consisting of a
homeomorphism T : K → K of a compact Hausdorff space is said to be null if its
topological sequence entropy is zero for all sequences. Nullness is preseved under
taking products and subsystems, and so every system admits a largest null factor.
In analogy with Theorem 5.3 we then have the following.

Theorem 5.8. Let T : K → K be a homeomorphism of a compact Hausdorff space.
Then the largest null factor of the system (K,T ), when viewed as a dynamically
invariant C∗-subalgebra of C(K), is equal to the set of all f ∈ C(K) satisfying the
property that for every λ ≥ 1 there exists an m ∈ N such that if Ω is a subset of
{f ◦ Tn}n∈N which is λ-equivalent to the standard basis of `Ω1 then |Ω| ≤ m. In
particular, the system (K,T ) is null if and only if the above property is satisfied by
every f ∈ C(K) (equivalently, by every f in a given ∆ ⊆ C(K) such that

⋃
j∈Z α

j(∆)
generates C(K) as a C∗-algebra).

Corollary 5.9. A null homeomorphism T : K → K of a compact Hausdorff space
is Z-regular.

We also have the following analogue for nullness of [26, Thm. A] (cf. Corollary 3.11).

Theorem 5.10. A homeomorphism T : K → K of a compact Hausdorff space is null
if and only if the induced weak∗ homeomorphism of the space M(K) of probability
measures on K is null.

Proof. The image of C(K) in C(M(K)) under the equivariant map given by eval-
uation generates C(M(K)) as a C∗-algebra, and so we can apply Theorem 5.8 to
obtain the nontrivial direction. �

We point out that, for minimal distal metrizable systems, nullness, Z-regularity,
and equicontinuity are equivalent. The equivalence of nullness and equicontinuity
is established in [32] (see Corollaries 2.1(2) and 4.2 therein), while the equivalence
of Z-regularity and equicontinuity follows from Corollary 1.8 of [22] and the fact
that tameness and Z-regularity coincide in the metrizable case. The equivalence of
nullness and Z-regularity can also be extracted from [32]: if the system is not null
then the proofs of Corollaries 4.2 and 4.1 and Lemma 3.1 in [32] show that there is a
two-element open cover satisfying the property in the statement of Proposition 2.3 in
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[32], yielding the existence of a real-valued continuous function on the space whose
forward orbit contains a subsequence isometrically equivalent to the standard basis
of `1 over R, so that the system is not Z-regular.

6. A dynamical characterization of type I C∗-algebras

By [43, 8] a separable unital C∗-algebra is type I if and only if every inner ∗-
automorphism has zero Connes-Narnhofer-Thirring entropy with respect to each
invariant state. The question thus arises of whether there is a topological version of
this result, and indeed N. P. Brown conjectured in [8] that the analogous assertion
for Voiculescu-Brown entropy also holds. One major difficulty is that the behaviour
of zero Voiculescu-Brown entropy with respect to taking extensions is not well un-
derstood. For CA entropy, however, we can show that zero values persist under
taking extensions by reducing the problem to a topological-dynamical one by means
of Theorem 3.5. The topological-dynamical ingredient that we require is provided
by the following lemma, which, using the notions of separated and spanning sets
described in Section 3, can be established in the same way as its specialization to
the metric setting [5, Thm. 17].

Lemma 6.1. Let K,J be compact Hausdorff spaces and T : K → K, S : J → J
homeomorphisms. Let π : K → J be a continuous surjective map such that π ◦ T =
S ◦ π. Then

htop(T ) ≤ htop(S) + sup
s∈J

htop(T, π−1(s)).

Lemma 6.2. Let X be a Banach space, Y ⊆ X a closed subspace, and Q : X →
X/Y the quotient map. Let α be an isometric automorphism of X such that α(Y ) =
Y , and denote by ᾱ the induced isometric automorphism of X/Y . Then hc(α) = 0
if and only if hc(α|Y ) = hc(ᾱ) = 0.

Proof. The “only if” part follows from monotonicity and Corollary 3.10. For the
“if” part we first observe that we have a commutative diagram

B1(X∗)
Tα //

Φ
��

B1(X∗)

Φ
��

B1(Y ∗)
Tα|Y // B1(Y ∗)

where Φ is the weak∗ continuous surjective map given by restriction. Lemma 6.1
then yields

htop(Tα) ≤ htop(Tα|Y ) + sup
σ∈B1(Y ∗)

htop(Tα,Φ−1(σ)).

By Theorem 3.5 an isometric automorphism of a Banach space has zero CA entropy
if and only if the induced homeomorphism of the unit ball of the dual has zero
topological entropy, and thus, since hc(α|Y ) = 0 by hypothesis, the proof will be
complete once we show that htop(Tα,Φ−1(σ)) = 0 for all σ ∈ B1(Y ∗).
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So let σ ∈ B1(Y ∗). Pick an ω ∈ Φ−1(σ) and define the weak∗ continuous map Ψ :
B1((X/Y )∗)→ X∗ by Ψ(ρ) = 2ρ◦Q+ω for all ρ ∈ B1((X/Y )∗). Let {x1, x2, . . . , xr}
be a finite subset of B1(X) and define on X∗ the weak∗ continuous pseudometric

d(η, τ) = sup
1≤j≤r

|η(xj)− τ(xj)|.

Note that d(cη, cτ) = cd(η, τ) and d(η + ρ, τ + ρ) = d(η, τ) for all η, τ, ρ ∈ X∗ and
c > 0. We also define on (X/Y )∗ the weak∗ continuous pseudometric

d̄(η, τ) = sup
1≤j≤r

|η(Q(xj))− τ(Q(xj))|.

Let n ∈ N and ε > 0, and let E ⊆ B1((X/Y )∗) be an (n,Ud̄,ε/4)-spanning set with
respect to Tᾱ. Now suppose η ∈ Φ−1(σ). Since Q is a quotient map there is a
ρ ∈ (X/Y )∗ such that ρ ◦ Q = (η − ω)/2 and ‖ρ‖ = ‖η − ω‖/2 ≤ 1. We can then
find a τ ∈ E such that

d̄(T kᾱ(ρ), T kᾱ(τ)) < ε/4
for each k = 0, . . . , n− 1. Then for each k = 0, . . . , n− 1 we have

d(T kα(η), T kα(Ψ(τ))) = d(T kα(2ρ ◦Q+ ω), T kα(2τ ◦Q+ ω))

= 2d(T kα(ρ ◦Q), T kα(τ ◦Q))

= 2d̄(T kᾱ(ρ), T kᾱ(τ))

< 2(ε/4) = ε/2.

For every τ ∈ E we pick, if possible, an ητ ∈ Φ−1(σ) such that

d(T kα(ητ ), T kα(Ψ(τ))) < ε/2

for each k = 0, . . . , n−1. For those τ ∈ E for which this is not possible we set ητ = 0.
It is then easily checked that the set F = {ητ : τ ∈ E}, which has cardinality at most
that of E, is (n,Ud,ε)-spanning with respect to Tα. Hence spnn(Tα,Φ−1(σ), Ud,ε) ≤
spnn(Tᾱ, Ud̄,ε/4). Since htop(Tᾱ) = hc(ᾱ) = 0 by Theorem 3.5 and our hypothesis,
we conclude that htop(Tα,Φ−1(σ)) = 0, as desired. �

We also need to know that zero CA entropy is well behaved with respect to
continuous fields over locally compact Hausdorff spaces.

Lemma 6.3. Let Z be a locally compact Hausdorff space, and let (Xz)z∈Z be a
continuous field of Banach spaces over Z. Let X be the Banach space of continuous
sections of (Xz)z∈Z vanishing at infinity. Let α be an isometric automorphism of X
which arises from αz ∈ IA(Xz) for z ∈ Z. Then hc(α) = 0 if and only if hc(αz) = 0
for all z ∈ Z.

Proof. The “only if” part follows from Corollary 3.10. Suppose then that hc(αz) = 0
for all z ∈ Z, and let us show that hc(α) = 0. We first reduce the problem to the
case Z is compact. For each compact subset W ⊆ Z let XW be the Banach space of
continuous sections of the restriction field (Xw)w∈W of Banach spaces over W and
let QW : X → XW be the quotient map. The isometric automorphisms (αw)w∈W
give us an isometric automorphism αW of XW . If hc(α) > 0 then by Theorem 3.5
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we can find an x ∈ X with an `1-isomorphism set of positive density. Using the fact
that x vanishes at infinity, we can find a compact subset W ⊆ Z such that QW (x)
has the same `1-isomorphism set of positive density under αW . Then hc(αW ) > 0
by Theorem 3.5. Replacing Z by W , we may thus assume that Z is compact.

Next we reduce the problem to the case in which X contains an element x such
that Qz(x) has norm 1 and is fixed under αz for every z ∈ Z, where Qz is the quotient
map X → Xz. Set Yz to be the `∞-direct sum Xz⊕C for each z ∈ Z. Then (Yz)z∈Z
is in a natural way a continuous field of Banach spaces over Z. The global section
space Y of this field is the `∞-direct sum X ⊕ C(Z). The automorphisms α and
αz naturally extend to isometric automorphisms of Y and Yz fixing C(Z) and C,
respectively. By Lemma 6.2 we have hc(γz) = 0 for every z ∈ Z, where γz is the
extension of αz. Note the constant function 1 ∈ C(T ) ⊆ Y satisfies the above
requirement. Replacing X by Y , we may assume that X contains such an element
x.

For each z ∈ Z denote by Sz the subset of B1(X∗z ) consisting of linear functionals
σ satisfying σ(Qz(x)) ≥ 1/2. Clearly the sets Q∗z(Sz) for z ∈ Z are pairwise disjoint.
Let S =

⋃
z∈Z Q

∗
z(Sz), and let ψ : S → Z be the map which sends σz ∈ Q∗z(Sz) to

z ∈ Z. Denote by Tα (resp. Tαz) the homeomorphism of B1(X∗) (resp. B1(X∗z ))
induced by α (resp. αz). One checks easily that ψ is surjective and continuous,
and that S is a Tα-invariant closed subset of B1(X∗). By Theorem 3.5 we have
htop(Tαz |Sz) = 0. Applying Lemma 6.1 we get

htop(Tα|S) = sup
z∈Z

htop(Tα, ψ−1(z)) = sup
z∈Z

htop(Tαz |Sz) = 0.

Now given any unit vectors v and w in a Banach space V and r ∈ [0, 1], there exists
a σ ∈ B1(V ∗) with σ(v) ≥ r and |σ(w)| ≥ (1 − r)/3 (indeed if σ is an element of
B1(V ∗) such that σ(v) = 1 and |σ(w)| < (1− r)/3, then choose a τ ∈ B1(V ∗) with
τ(v) ≥ 0 and |τ(w)| = 1 and replace σ with (σ+(1−r)τ)/‖σ+(1−r)τ‖). It follows
that the natural linear map X → C(S) is an isomorphism from X to a closed linear
subspace of C(S). We thus conclude by Theorem 3.5 that hc(α) = 0. �

Given a C∗-algebra A we denote by M(A) its multiplier algebra and by Prim(A)
its primitive ideal space.

Theorem 6.4. Let A be a C∗-algebra. Then the following are equivalent:
(1) A is type I,
(2) hc(α) = 0 for every α ∈ Aut(A) with trivial induced action on Prim(A),
(3) hc(Adu) = 0 for every unitary u ∈M(A),
(4) hc(Adu) <∞ for every unitary u ∈M(A).

Proof. (1)⇒(2). By [46, Thm. 6.2.11] there is a composition series (Iρ)0≤ρ≤µ (i.e.,
an increasing family of closed two-sided ideals of A indexed by ordinals with Iµ = A
and Iρ equal the norm closure of

⋃
ρ′<ρ Iρ′ for any limit ordinal ρ ≤ µ) such that each

quotient Iρ+1/Iρ for 0 ≤ ρ < µ is a continuous trace C∗-algebra. By Lemma 6.2
and Proposition 2.1 we may therefore assume that A is a continuous trace C∗-
algebra. Thus Â is a locally compact Hausdorff space and A is the C∗-algebra of
continuous sections vanishing at infinity of a continuous field of C∗-algebras over Â
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with each fibre Ax equal to the compact operators K(Hx) for some Hilbert space
Hx. By Corollary 3.9 (see the comment following it) every isometric automorphism
of K(Hx) has zero CA entropy, and so by Lemma 6.3 we conclude that hc(α) = 0.

(2)⇒(3)⇒(4). Trivial.
(4)⇒(1). Here we can apply the construction in the proof of Theorem 1.2 in [8].

Suppose that A is not type I. Denote by Ã the unitization of A. Let γ be the tensor
product shift on the CAR algebra M2∞ = M⊗Z

2 . Set β = γ⊗N ∈ Aut((M2∞)⊗N). As
in the proof of Theorem 1.2 in [8], we can find a unital C∗-subalgebra B ⊆ Ã such
that there are a unitary u ∈ Ã and a surjective ∗-homomorphism π : B → (M2∞)⊗N

with π◦Adu = β◦π. For each j ∈ N let xj be the matrix
[

1 0
0 −1

]
viewed as an element

of the zeroeth copy of M2 in the jth copy of M2∞ in (M2∞)⊗N, and pick a bj ∈ B
such that ‖bj‖ = 1 and π(bj) = xj . Let m ∈ N and set Ωm = {bj : j = 1, . . . ,m}.
For each b ∈ Ωm write b = λb1+ab where λb ∈ C and ab ∈ A, and note that ‖ab‖ ≤ 2
(otherwise ab would be invertible).

Denote by ϕ the contractive linear map from `
{1,...,m}×Z
1 to span

⋃
k∈Z Aduk(Ωm)

which sends standard basis elements to elements in
⋃
k∈Z Aduk(Ωm) respecting the

indexing in the obvious way. It is easily checked that ϕ is a 2-isomorphism. Set
Ω′m = {ab : b ∈ Ωm} and let ϕ′ be the bounded linear map from `

{1,...,m}×Z
1 to

span
⋃
k∈Z Aduk(Ω′m) which corresponds to ϕ on the standard basis elements via

the association of Aduk(ab) with Aduk(b). We will argue that ϕ′ has an inverse
of norm at most 2. Suppose f is a norm one element of `{1,...,m}×{1,...,n}1 . Then
g = f ⊕ (−f) ∈ `

{1,...,m}×{1,...,2n}
1 has norm 2, and so ‖ϕ(g)‖ ≥ 1. Since Adu is

unital we have

ϕ(g) = ϕ(f)− unϕ(f)u−n = ϕ′(f)− unϕ′(f)u−n = ϕ′(g)

and hence at least one of ‖ϕ′(f)‖ and ‖unϕ′(f)u−n‖ is greater than or equal to 1/2.
Therefore ‖ϕ′(f)‖ ≥ 1/2, as desired.

Having shown that ϕ′ is an isomorphism (in fact a 4-isomorphism since ‖ϕ′‖ ≤ 2),
it follows from Lemma 3.2 that for a given 0 < δ < 1/2 we have hc(Adu,Ω′m, δ) ≥ am
for some a > 0 which does not depend on m, and consequently hc(Adu) =∞. �

7. Tensor products, crossed products, and free products

We have tensor product subadditivity with respect to the injective tensor product:

Proposition 7.1. Let X1 and X2 be Banach spaces and let α1 ∈ IA(X1) and
α2 ∈ IA(X2). Then the isometric automorphism α1⊗̌α2 of X1⊗̌X2 satisfies

hc(α1⊗̌α2) ≤ hc(α1) + hc(α2).

Proof. Let ι1 : X1 → Y1 and ι2 : X2 → Y2 be CA embeddings. Then ι1⊗̌ι2 :
X1⊗̌X2 → Y1⊗̌Y2 is a CA embedding, and if for given finite subsets Ω1 ⊆ B1(X1)
and Ω2 ⊆ B1(X2) and δ > 0 we have (φi, ψi, di) ∈ CA(ιi,Ωi, δ) for i = 1, 2 then
since `d1∞⊗̌`d2∞ = `d1d2∞ it is readily checked that

(φ1⊗̌φ2, ψ1⊗̌ψ2, d1d2) ∈ CA(ι1⊗̌ι2,Ω1 ⊗ Ω2, 2δ),

from which the result follows. �
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The subadditivity of Proposition 7.1 can fail for other tensor product norms, in
particular for the minimal operator space tensor product, as the following example
demonstrates. Let β be the completely isometric automorphism of the operator
subspace W of the CAR algebra as described in Example 4.3. The CAR algebra is
∗-isomorphic to the infinite tensor product UHF algebra M⊗Z

2 , and so W is exact.
In Proposition 4.4 it was shown that hc(β) = 0. On the other hand, applying mono-
tonicity and using Corollary 5.5 as in the first part of the proof of Proposition 4.4
(to which we refer for notation) we have

hc(β ⊗ β) ≥ hc(α⊗ α, {u0 ⊗ u0}) > 0.

We turn next to C∗-crossed products. All crossed products considered here will be
reduced and so for economy we won’t bother to tag the product symbol to indicate
this, contrary to usual practice. Note however that the full and reduced crossed
products coincide if the acting group is amenable, as will ultimately be the case
here.

We will establish in Theorem 7.4 below an analogue of Theorem 5.3 of [48], whose
proof based on Imai-Takai duality we will adapt. In our case we cannot establish
equality beyond the zero entropy case unless the action is on a commutative C∗-
algebra, since tensor product subadditivity only holds with respect to the injective
tensor product.

The following lemma and proposition are the analogues of Lemma 2.2 and Theo-
rem 5.2, respectively, in [48].

Lemma 7.2. Let X1 and X2 be Banach spaces and α1 ∈ IA(X1) and α2 ∈ IA(X2).
Suppose there exists a net

X1
Sλ // X2

Tλ // X1

of contractive linear maps such that Tλ ◦ Sλ converges to idX1 in the point-norm
topology and Sλ◦α1 = α2◦Sλ and Tλ◦α2 = α1◦Tλ for all λ. Then hc(α1) ≤ hc(α2).

Proof. Let ι1 : X1 → Y1 and ι2 : X2 → Y2 be CA embeddings. We may assume that
Y1 is injective by taking ι1 to be, for example, the composition of the map X1 →
C(B1(X∗)) defined via evaluation with the canonical embedding of C(B1(X∗)) into
its second dual. Let Ω ∈ Pf(X1) and δ > 0. Pick a λ such that ‖Tλ ◦Sλ(x)− x‖ < δ
for all x ∈ Ω. Let n ∈ N and suppose (φ, ψ, d) ∈ CA(ι2, Sλ(Ω) ∪ α2(Sλ(Ω)) ∪ · · · ∪
αn−1

2 (Sλ(Ω)), δ). By the injectivity of Y1 we can extend Tλ◦ι−1
2 |ι2(X2) to a contractive

linear map γ : Y2 → Y1. From our assumption we have Sλ ◦ αk1(x) = αk2(Sλ(x)) and
Tλ ◦ αk2(Sλ(x)) = αk1 ◦ Tλ(Sλ(x)) for all x ∈ Ω and k ∈ Z, and so by an estimate
using the triangle inequality we have

(φ ◦ Sλ, τ ◦ γ ◦ ψ, d) ∈ CA(ι1,Ω ∪ α1Ω ∪ · · · ∪ αn−1
1 Ω, 2δ).

We infer that hc(α1,Ω, 2δ) ≤ hc(α2, Sλ(Ω), δ), from which we conclude that hc(α1) ≤
hc(α2). �

Proposition 7.3. Let A be a C∗-algebra, G a locally compact group, and α a
strongly continuous action of G on A by ∗-automorphisms. Let g ∈ G, and suppose
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that e has a basis of neighbourhoods N satisfying gNg−1 = N . Then

hc(αg) ≤ hc(Adλg|AoαG).

Proof. In the proof of Theorem 5.2 in [48] it is shown that the pair

(A,αg), (Aoα G,Adλg|AoαG)

has the covariant completely contractive factorization property (see Section 2 of
[48]), and so we can apply Lemma 7.2 to obtain the result. �

For a locally compact group G we consider Aut(G) with its standard topological
group structure, for which a neighbourhood basis of idG is formed by the sets {α ∈
Aut(G) : α(x) ∈ V x and α−1(x) ∈ V x for all x ∈ K} where K ⊆ G is compact and
V is a neighbourhood of e in G.

Theorem 7.4. Let A be a C∗-algebra, G an amenable locally compact group, and
α a strongly continuous action of G on A by ∗-automorphisms. Let g ∈ G, and
suppose that the closure of the subgroup of Aut(G) generated by Ad g is compact.
Then hc(Adλg|AoαG) = 0 if and only if hc(αg) = 0. If A is furthermore assumed to
be commutative then hc(Adλg|AoαG) = hc(αg).

Proof. By [48, Lemma 5.1] and Proposition 7.3 it suffices to prove that hc(αg) = 0
implies hc(Adλg|AoαG) = 0, and, in the case thatA is commutative, that hc(Adλg|AoαG) ≤
hc(αg).

It is shown in the proof of Theorem 5.3 in [48] that the pair

(Aoα G,Adλg|AoαG), (Aoα Goα̂ G,Ad (λg ⊗ lgrg)|AoαGoα̂G)

has the covariant completely contractive factorization property (see Section 2 of [48])
and hence by Lemma 7.2 we have

hc(αg) ≤ hc(Adλg|AoαG) ≤ hc(Ad (λg ⊗ lgrg)|(AoαG)oα̂G).

By Theorem 4.1 of [48] we have

Ad (λg ⊗ lgrg)|AoαGoα̂G = αg ⊗ (Ad lgrg|K(L2(G))).

Since the minimal C∗-tensor product coincides with the injective tensor product if
one of the factors is commutative, it follows by Proposition 7.1 that if A is commu-
tative then

hc(Ad (λg ⊗ lgrg)|AoαGoα̂G) ≤ hc(αg) + hc(Ad lgrg|K(L2(G)))

and hence hc(Adλg|AoαG) = hc(αg) since every ∗-automorphism of the compact
operators has zero CA entropy by Corollary 3.9.

Assuming now that A is not commutative, we suppose that hc(αg) = 0. For
economy we set βg = Ad lgrg|K(L2(G)). Let x ∈ A ⊗ K(L2(G)). To obtain the
desired equality hc(Adλg|AoαG) = 0, it suffices by the general observations above
and Theorem 3.5 to show that x admits no `1-isomorphism set of positive density
with respect to the ∗-automorphism αg ⊗βg. Since the span of rank one projections
is dense in K(L2(G)), we may assume that x is of the form

∑r
k=1 ak ⊗ pk where

p1, . . . , pr are rank one projections in B(L2(G)). Denoting by pξ the orthogonal
projection onto the subspace spanned by a given vector ξ ∈ L2(G), it is readily
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verified that βg(pξ) = pξ◦Ad g−1 for all ξ ∈ L2(G) using the unimodularity of g [48,
Lemma 5.1] and that the function from L2(G) \ {0} to B(L2(G)) given by ξ 7→ pξ
is norm continuous. Thus, since for a given ξ ∈ L2(G) the function from Aut(G) to
L2(G) defined by γ 7→ ξ ◦ γ−1 is continuous by Proposition IV.5.2 of [7], we infer in
view of our assumption on g that the set

Θ =
{
βng (pk) : k = 1, . . . , r and n ∈ Z

}
has compact closure in K(L2(G)). Now suppose I ⊆ Z is a positive density subset
and let ε > 0. Since Θ has compact closure there is a finite subset F ⊆ Θ which
is δ-dense in Θ for δ = ε

(
2rmax1≤k≤r ‖ak‖

)−1. Using the fact that every finite
partition of a positive density subset of Z contains at least one member of positive
upper density, we can apply a diagonal argument across k to find a subset J ⊆ I of
positive upper density and q1, . . . , qr ∈ F such that(

max
1≤k≤r

‖ak‖
)
‖βng (pk)− qk‖ ≤

ε

2r

for every k = 1, . . . , r and n ∈ J . By Proposition 2.2 the `∞-direct sum of r copies
of αg has zero CA entropy, and so by Theorem 3.5 there exist a finite subset E ⊆ J
and a norm one element (cn)n∈E of `E1 such that

sup
1≤k≤r

∥∥∥∥∑
n∈E

cnα
n
g (ak)

∥∥∥∥ ≤ ε

2r
.

We then have, for each k = 1, . . . , r,∥∥∥∥∑
n∈E

cn(αg ⊗ βg)n(ak ⊗ pk)
∥∥∥∥

≤
∥∥∥∥(∑

n∈E
cnα

n
g (ak)

)
⊗ qk

∥∥∥∥
+
∥∥∥∥∑
n∈E

cnα
n
g (ak)⊗ (βng (pk)− qk)

∥∥∥∥
≤
∥∥∥∥∑
n∈E

cnα
n
g (ak)

∥∥∥∥+
∑
n∈E
|cn|‖ak‖‖βng (pk)− qk‖

≤ ε

2r
+

ε

2r
=
ε

r

and hence ∥∥∥∥∑
n∈E

cn(αg ⊗ βg)n(x)
∥∥∥∥ ≤ r∑

k=1

∥∥∥∥∑
n∈E

cn(αg ⊗ βg)n(ak ⊗ pk)
∥∥∥∥

≤ r ε
r

= ε.

Since ε was arbitrary we conclude that I is not an `1-isomorphism set for x, com-
pleting the proof. �
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One consequence of Theorem 7.4 is the existence of a simple separable unital
nuclear C∗-algebra on which every possible value for CA entropy is realized by an
inner ∗-automorphism. Indeed we argue that this happens for the Bunce-Deddens
algebra B of type 2∞ (see Example 3.2.11 of [50]) as follows. By the classification
theorem of [18] B can be expressed as the crossed product associated to the dyadic
odometer, since these two C∗-algebras are real rank zero AT-algebras with the same
Elliott invariant (see Section 3.2 of [50]). Now given any r ∈ [0,∞], by [6] there
is a minimal homeomorphism of the Cantor set which is strong orbit equivalent to
the dyadic odometer and has topological entropy equal to r, and by Theorem 2.1
of [21] the crossed product associated to this homeomorphism is ∗-isomorphic to
B. Applying Theorem 7.4 we thus obtain an inner ∗-automorphism of B with CA
entropy equal to r.

We close this section with a result on reduced free product ∗-automorphisms. For
notation and terminology see Section 2 of [12].

Proposition 7.5. Let D be a finite-dimensional C∗-algebra. Let (A,E) and (B,F )
be D-probability spaces with A and B commutative, and suppose that the GNS
representations of E and F are faithful. Let α and β be ∗-automorphisms of (A,E)
and (B,F ), respectively, such that α|D = β|D and hc(α) = hc(β) = 0. Then

hc(α ∗ β) = 0.

Proof. For a ∗-automorphism of a unital commutative C∗-algebra the CA entropy
and Voiculescu-Brown entropy agree by Proposition 3.1. We can thus apply The-
orem 5.7 of [12] to obtain ht(α ∗ β) = 0, and this implies that hc(α ∗ β) = 0 by
Theorem 3.5 and [36, Thm. 3.3] (see Proposition 4.2). �

8. On the prevalence of zero and infinite CA entropy in C∗-algebras

Let A be a unital C∗-algebra A. We denote by U(A) the unitary group of A and by
U0(A) the subgroup of U(A) consisting of those unitaries which are homotopic to 1.
We denote by Aut(A) the group of ∗-automorphisms of A, by Inn(A) the subgroup
of inner ∗-automorphisms, and by Inn0(A) the subgroup of inner ∗-automorphisms
that can be expressed as Adu for some u ∈ U0(A). Unless stated otherwise, the
topology on Aut(A) will be the point-norm one, i.e., the topology which has as a
base sets of the form {β ∈ Aut(A) : ‖β(a)−α(a)‖ < ε for all a ∈ Ω} for some ε > 0
and finite set Ω ⊆ Aut(A). In particular, Inn(A) and Inn0(A) refer to point-norm
closures. For separable A the space Aut(A) is Polish.

Proposition 8.1. Let A be a unital C∗-algebra and u ∈ A a unitary with finite
spectrum. Then hc(Adu) = 0.

Proof. By the functional calculus there exist pairwise orthogonal projections p1, . . . , pn ∈
A with sum 1 and λ1, . . . , λn ∈ C of unit modulus such that u = λ1p1 + · · ·+ λnpn.
For 1 ≤ i, j ≤ n set Aij = piApj . Then A decomposes as the direct sum of the
Aij ’s, and Ad (u) acts on Aij by multiplication by λi/λj . Thus if Ω is a finite sub-
set of the union of the Aij ’s then hc(Adu,Ω) = 0. The result now follows from
Proposition 2.1(ii). �
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Proposition 8.1 shows in particular that, within the set of inner ∗-automorphisms
of a von Neumann algebra, those with zero CA entropy are norm dense, since any
unitary can be approximated in norm by one with finite spectrum using the Borel
functional calculus.

Recall that a C∗-algebra is said to be subhomogeneous if it is ∗-isomorphic to a
C∗-subalgebra of Mn(C0(X)) for some n ∈ N and locally compact Hausdorff space
X. By the structure theory for von Neumann algebras, a von Neumann algebra is
subhomogeneous if and only if it can be written as a finite direct sum of matrix
algebras over commutative von Neumann algebras.

Proposition 8.2. For a von Neumann algebra M the following are equivalent:
(1) M is not subhomogeneous,
(2) hc(α) > 0 for some α ∈ Inn(M),
(3) The set of α ∈ Inn(M) such that hc(α) =∞ is norm dense in Inn(M).

Proof. The implications (3)⇒(1) and (1)⇔(2) follow from Theorem 6.4. Suppose
then that (1) holds. We will obtain (3) upon showing that, given a unitary u ∈ M
and an ε > 0, there is a unitary v ∈ M with ‖v − u‖ < ε and hc(Ad v) = ∞. By
the Borel functional calculus we can find a set Γ of pairwise orthogonal projections
with sum 1 in the von Neumann subalgebra of M generated by u with the property
that for each p ∈ Γ there is a λ ∈ C of unit modulus such that ‖pup − λp‖ < ε.
By (1) there must be a q ∈ Γ such that qMq is not subhomogeneous. Then qMq
is not a type I C∗-algebra and so by Theorem 6.4 there is a unitary w ∈ qMq
with hc(Adw) =∞. Perturbing u via the Borel functional calculus if necessary, we
may assume that quq = λq for some λ ∈ C of unit modulus. By taking a branch
of the logarithm function we can apply the Borel functional calculus to obtain a
unitary z ∈ qMq such that ‖z − 1qMq‖ < ε and zn = w for some n ∈ N. Put
v = u(z + 1− q) ∈M . Then v is a unitary with

‖v − u‖ ≤ ‖z − q‖ < ε.

It remains to observe that Ad v restricts to Ad z on qMq so that by monotonicity
and Proposition 2.1(iii) we obtain

hc(Ad v) ≥ hc(Ad z) =
1
n

hc(Ad zn) =
1
n

hc(Adw) =∞,

completing the proof. �

Since Aut(M) = Inn(M) for a type I factor we obtain the following.

Corollary 8.3. Let M be an infinite-dimensional factor of type I. Then the set of
α ∈ Aut(M) with hc(α) = 0 (resp. hc(α) =∞) is norm dense in Aut(M).

Let X be a separable Banach space. Choose a dense sequence {x1, x2, . . . } in the
unit ball of X and define on B1(X∗) the metric

d(σ, ω) =
∞∑
n=1

2−n|σ(xn)− ω(xn)|,
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which is compatible with the weak∗ topology. On the set of homeomorphisms of
B1(X∗) we consider the metric

ρ(T, S) = sup
σ∈B1(X∗)

d(Sσ, Tσ) + sup
σ∈B1(X∗)

d(S−1σ, T−1σ).

Then on IA(X) the topology arising from ρ (via the identification of an element
α ∈ IA(X) with the induced homeomorphism Tα of B1(X∗)) and the point-norm
topology agree, as is readily checked. We can then apply Lemma 2.4 of [25] and
Theorem 3.5 to obtain the following lemma.

Lemma 8.4. Let X be a separable Banach space. Then the elements α of IA(X)
with hc(α) = 0 form a Gδ subset of IA(X) in the point-norm topology.

Proposition 8.5. Let A be a separable unital C∗-algebra with real rank zero. Then
the set of ∗-automorphisms in Inn0(A) (resp. in Inn0(A)) with zero CA entropy is a
dense (resp. norm dense) Gδ subset.

Proof. By [40] a unital C∗-algebra has real rank zero if and only if for every unitary
u ∈ U0(A) and ε > 0 there is a unitary v ∈ A with finite spectrum such that
‖u− v‖ < ε. Thus by Proposition 8.1 and Lemma 8.4 we obtain the result. �

Proposition 8.6. Let A be a separable C∗-algebra which is an inductive limit of
type I C∗-algebras. Then the set of ∗-automorphisms in Inn(A) (resp. in Inn(A))
with zero CA entropy is a dense (resp. norm dense) Gδ subset.

Proof. Apply Theorem 6.4 and Proposition 2.1(ii). �

The following is the noncommutative analogue of Corollary 2.5 in [25]. For the
definition of the Jiang-Su C∗-algebra Z see [33].

Proposition 8.7. Let A be a UHF C∗-algebra, the Cuntz C∗-algebra O2, or the
Jiang-Su C∗-algebra Z. Then the ∗-automorphisms in Aut(A) with zero CA entropy
form a dense Gδ subset.

Proof. If A is a UHF algebra or Z then it is an inductive limit of type I C∗-algebras
and Inn(A) = Aut(A) (see [50, 33]), and so the conclusion follows from Proposi-
tion 8.6. In the case of O2 every unitary is homotopic to 1 and every ∗-automorphism
is approximately inner (see [50]) whence Inn0(A) = Aut(A), and thus since O2 has
real rank zero we can apply Proposition 8.5. �

We will next establish an infinite entropy density result for ∗-automorphisms of
C∗-algebras which are tensorially stable with respect to the Jiang-Su C∗-algebra
Z. We say briefly that a C∗-algebra A is Z-stable if A ⊗ Z is ∗-isomorphic to A
(note that the C∗-tensor product is unique in this case by the nuclearity of Z).
The class of Z-stable C∗-algebras is of importance in the classification theory for
nuclear C∗-algebras and includes all Kirchberg algebras and all simple unital infinite-
dimensional AH algebras of bounded dimension [33, Thm. 5] [50, Example 3.4.5]
(for obstructions to Z-stability see [28]). Recently A. Toms and W. Winter have
informed us that they have established Z-stability for all separable approximately
divisible C∗-algebras.
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Lemma 8.8. Let A be a Z-stable C∗-algebra. For any Ω ∈ Pf(A) and ε > 0 there
exists a ∗-isomorphism Φ : A→ A⊗ Z such that ‖Φ(x)− x⊗ 1Z‖ < ε for all x ∈ Ω.

Proof. Since A is Z-stable, we may write A as A⊗Z, and by a simple approximation
argument we may assume that Ω is contained in the algebraic tensor product of
A and Z. It suffices then to consider the case A = Z. By [33, Thm. 4] we can
find a ∗-isomorphism Ψ : Z → Z ⊗ Z. Denote by ψ the embedding Z → Z ⊗ Z

sending a ∈ Z to a⊗ 1Z. Then ψ ◦Ψ−1 is a unital ∗-endomorphism of Z⊗ Z which
is approximately inner by [33, Thm. 3]. Thus we can find a unitary u ∈ Z ⊗ Z

such that ‖uyu∗ − ψ(Ψ−1(y))‖ < ε for all y ∈ Ψ(Ω). Set Φ = Adu ◦ Ψ. Then
‖Φ(x)− x⊗ 1Z‖ < ε for all x ∈ Ω. �

Proposition 8.9. Let A be a unital Z-stable C∗-algebra. Then the set of ∗-
automorphisms in Aut(A) (resp. in Inn(A)) with infinite CA entropy is dense in
Aut(A) (resp. in Inn(A)).

Proof. Let α ∈ Aut(A), and let Ω ∈ Pf(A) and ε > 0. By Lemma 8.8 we can find a
∗-isomorphism Φ : A→ A⊗Z such that ‖Φ(x)−x⊗ 1Z‖ < ε/2 for all x ∈ Ω∪α(Ω).
Since Z is non-type I, by Theorem 6.4 it contains a unitary v with hc(Ad v) = ∞.
Set β = Φ−1 ◦ (α⊗Ad v) ◦ Φ. Note that when α is inner, so is β. Then hc(β) =∞
by monotonicity, and for all x ∈ Ω we have

‖β(x)− α(x)‖ = ‖(α⊗Ad v)(Φ(x))− Φ(α(x))‖
≤ ‖(α⊗Ad v)(Φ(x))− (α⊗Ad v)(x⊗ 1Z)‖

+ ‖α(x)⊗ 1Z − Φ(α(x))‖
< ε,

completing the proof. �

Question 8.10. Does there exist a non-type I C∗-algebra A such that the set of
∗-automorphisms in Aut(A) with infinite CA entropy is not dense in Aut(A)?

Question 8.11. Let A be a unital nuclear C∗-algebra and u ∈ A a unitary with
hc(Adu) > 0. Must the spectrum of u be the entire unit circle?

Note that the answer to Question 8.11 is no if, for example, A is a von Neumann
algebra, for in this case by the Borel functional calculus there is a unitary v ∈ A
without full spectrum such that v2 = u, and hc(Ad v) > 0 by Proposition 2.1(iii).

9. The shift on M ⊗Z
p

In this section we will show that for p ≥ 2 the tensor product shift on the UHF
C∗-algebra M ⊗Z

p (obtained from the shift k 7→ k+ 1 on the index set Z) has infinite
CA entropy. The key to obtaining arbitrarily large lower bounds is the following
lemma, which will also be applied in Sections 10 and 11.

Lemma 9.1. Let X be a Banach space and α ∈ IA(X). Let Ω ⊆ X be a finite set of
unit vectors such that ‖x+y‖ < 2 for all x, y ∈ Ω with x 6= y and

∥∥∑n−1
k=0 α

k(xk)
∥∥ = n

for all n ∈ N and (xk)k ∈ Ωn. Then hc(α,Ω) ≥ log |Ω|.
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Proof. Let 0 < δ < 2−max{‖x+y‖ : x, y ∈ Ω and x 6= y} and n ∈ N. Let ι : X → Y
be a CA embedding and let (ϕ,ψ, d) ∈ CA(ι,Ω∪αΩ∪· · ·∪αn−1Ω, δ2). For every x =
(xk)k ∈ Ωn we can find a 1 ≤ bx ≤ d such that

∣∣∑n−1
k=0 ϕ(αk(xk))(bx)

∣∣ ≥ n(1 − δ2).
Take a maximal subset Qn ⊆ Ωn with the property that |{k : xk 6= yk}| ≥ 3nδ
for all x, y ∈ Qn with x 6= y (in which case

∥∥∑n−1
k=0 α

k(xk + yk)
∥∥ < n(2 − 3δ2)).

If x and y are any distinct elements of Qn with bx = by then the arguments of∑n−1
k=0 ϕ(αk(xk))(bx) and

∑n−1
k=0 ϕ(αk(yk))(by) are separated by at least δ2, and so

we get the inequality d ≥ δ2(2π)−1|Qn|.
With a view to obtaining a lower bound for |Qn|, for each x ∈ Qn define Θx to be

the subset of Ωn consisting of all y such that |{k : xk 6= yk}| < 3nδ. Setting m = |Ω|
and supposing that δ < 1/6 and n is sufficiently large, we have the estimate

|Θx| =
b3nδc∑
k=0

(m− 1)k
(
n

k

)
≤ m3nδ

(
n

3nδ

)
.

By Stirling’s formula we can find an M > 0 such that for all n ∈ N and 0 < δ < 1/6
we have (

n

3nδ

)
≤ M√

nδ
(1− 3δ)−n

(
1− 3δ

3δ

)3nδ

.

Using the maximality of Qn, it follows in our case that

|Qn| ≥
mn

maxx∈Qn |Θx|

≥ mn(1−3δ)

√
nδ

M
(1− 3δ)n

(
3δ

1− 3δ

)3nδ

.

Since the logarithm of this last expression divided by n tends to logm + C(δ) as
n→∞ where limδ→0+ C(δ) = 0, we obtain the assertion of the lemma. �

For each k ∈ N we denote by uk and vk the self-adjoint matrices
[

1 0
0 −1

]
and

[
0 1
1 0

]
,

respectively, viewed as elements of M ⊗Z
p by first identifying M2 with the upper left-

hand 2×2 corner of Mp and then embedding Mp into M ⊗Z
p as the kth tensor product

factor. For each n ∈ N we set Yn = spanR{uk, vk}nk=1 ⊆ (M ⊗Z
p )sa and denote by Wn

the `1-direct sum of n copies of `22 over the real numbers.

Lemma 9.2. For each n ∈ N the linear map from Wn to Yn given by

((ck, dk))nk=1 7→
n∑
k=1

ckuk + dkvk

is an isometric isomorphism.

Proof. Let c1, . . . , cn, d1, . . . , dn ∈ R. For each k = 1, . . . , n we note that ckuk+dkvk,
as an element of M2, has characteristic polynomial x2 − (c2

k + d2
k) and hence admits

a unit eigenvector whose corresponding vector state σk satisfies

σk(ckuk + dkvk) = (c2
k + d2

k)
1/2 = ‖ckuk + dkvk‖.
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Thus
n∑
k=1

(c2
k + d2

k)
1/2 =

n∑
k=1

‖ckuk + dkvk‖

≥
∥∥∥∥ n∑
k=1

ckuk + dkvk

∥∥∥∥
≥
∣∣∣∣(σ1 ⊗ · · · ⊗ σn)

( n∑
k=1

ckuk + dkvk

)∣∣∣∣
=
∣∣∣∣ n∑
k=1

σk(ckuk + dkvk)
∣∣∣∣

=
n∑
k=1

(c2
k + d2

k)
1/2

so that
∥∥∑n

k=1 ckuk + dkvk
∥∥ =

∑n
k=1(c2

k + d2
k)

1/2, which establishes the proposition.
�

Theorem 9.3. The tensor product shift α on M ⊗Z
p has infinite CA entropy.

Proof. By Lemma 9.2 every finite subset of the unit sphere of Y1 satisfies the hy-
potheses of Lemma 9.1, and so we obtain the result. �

Theorem 9.3 prompts the following question. (Compare the discussion after The-
orem 7.4.)

Question 9.4. Is there a ∗-automorphism of M ⊗Z
p (or any other simple AF algebra)

with finite nonzero CA entropy?

We also remark that we don’t know whether there exists a ∗-automorphism of a
simple purely infinite C∗-algebra (in particular, the Cuntz algebra O2) with finite
nonzero CA entropy (cf. [12]).

10. Isometric automorphisms of `∞

By the Banach-Stone theorem, for every isometric automorphism α of `∞ there
are a double-sided sequence λ : Z→ T and permutation σ of Z such that α(x)(s) =
λ(s)x(σ(s)) for all x ∈ `∞ and s ∈ Z (cf. [41, Prop. 2.f.14]).

Proposition 10.1. For every isometric automorphism α of `∞ we have either
hc(α) = 0 or hc(α) = ∞ depending on whether or not there is a finite bound
on the cardinality of the orbits of the associated permutation of Z.

Proof. Let α be an isometric automorphism of `∞ with associated T-valued sequence
λ and permutation σ of Z, as above. Suppose first that there is a d ∈ N such that
every orbit of σ is of cardinality at most d. To show that hc(α) = 0 we may assume
that σ is the identity by replacing α with αd! and applying Proposition 2.1(iii). We
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may then view α as the isometric automorphism of C(βZ) ∼= `∞ given by multipli-
cation by the continuous T-valued extension of λ to the Stone-Čech compactification
βZ, so that we can appeal to Proposition 3.15 to conclude that hc(α) = 0, as desired.

Suppose now that there is no finite bound on the cardinality of the orbits of σ.
Let m ∈ N. By relabelling the coordinates of `∞ if necessary we can associate to
each n ∈ N and f ∈ {1, . . . ,m}{0,...,n−1} an interval If in Z of the form [sf , sf +n−1]
such that σ(t) = t + 1 for all t ∈ If , and we can arrange for the intervals If to be
pairwise disjoint. Now let 1 ≤ j ≤ m and define the unit vector xj ∈ `∞ as follows.
For every n ∈ N, f ∈ {1, . . . ,m}{0,...,n−1}, and k = 0, . . . , n− 1 we set

xj(sf + k) =
{
λ(sf )λ(sf + 1) · · ·λ(sf + k − 1) if f(k) = j,
0 otherwise.

At all remaining coordinates we take xj to be zero. Then the set Ω = {x1, . . . , xm}
satisfies the hypotheses of Lemma 9.1, from which we obtain hc(α,Ω) ≥ logm. Since
m is arbitrary we conclude that hc(α) =∞, completing the proof. �

Remark 10.2. From Propositions 3.1 and 10.1 we see that the Stone-Čech com-
pactification βZ (i.e., the spectrum of `∞) provides an example of a compact Haus-
dorff space which admits a homeomorphism with infinite topological entropy but no
homeomorphism with finite nonzero topological entropy.

11. Isometric automorphisms of `1

Given an isometric automorphism α of `1 there are a double-sided sequence λ :
Z→ T and a permutation σ of Z such that α(x)(s) = λ(s)x(σ(s)) for all x ∈ `1 and
s ∈ Z [41, Prop. 2.f.14].

Proposition 11.1. For every isometric automorphism α of `1 we have either hc(α) =
∞ or hc(α) = 0 depending on whether or not there is an infinite orbit in the asso-
ciated permutation of Z.

Proof. Suppose first that there is an infinite orbit in the permutation of Z associated
to α. Let k be an integer contained in this infinite orbit and let ek be the kth standard
unit basis vector in `1. Then for any finite subset Ω of the unit sphere of span{ek}
we have hc(α,Ω) ≥ log |Ω| by Lemma 9.1, whence hc(α) =∞.

If on the other hand there is no infinite orbit in the associated permutation of Z,
then `1 contains a dense union of finite-dimensional α-invariant subspaces, so that
hc(α) = 0 by Proposition 2.1(ii). �

Remark 11.2. The infinite value of CA entropy for the shift on `1 is a reflection
of the fact that the unit sphere of the scalar field C is infinite. If we work instead
over R, whose unit sphere has two elements, then the CA entropy of the shift α′ on
(`1)R is log 2. Indeed (`n1 )R embeds isometrically in (`2

n

∞ )R so that hc(α′) ≤ log 2,
while from Lemma 9.1 we get the lower bound hc(α′) ≥ log 2 by taking Ω = {e,−e},
where e is any standard unit basis vector in (`1)R.

Remark 11.3. Using Proposition 11.1 we can show that infinite CA entropy is not
an isomorphic conjugacy invariant, in contrast to zero CA entropy. Consider the
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shift T on {1,−1}Z. Define the self-adjoint unitary function f ∈ C({1,−1}Z) by

f((ak)k) = a0

for all (ak)k ∈ {1,−1}Z. Then {f ◦T k}k∈Z is isometrically equivalent to the standard
basis of `1 over R, and hence equivalent to the standard basis of `1 over C. Denoting
by βT the restriction of the induced ∗-automorphism of C({1,−1}Z) to span{f ◦
T k}k∈Z, we obtain an isometric automorphism which is isomorphically conjugate
to the shift on `1. While the latter has infinite CA entropy, however, we have
hc(βT ) ≤ log 2 by monotonicity and Proposition 3.1.

Example 11.4. Let σ be a permutation of Z. Let σ∗ be the corresponding free
permutation ∗-automorphism of the full free group C∗-algebra C∗(FZ) sending uj
to uσ(j), where {uj}j∈Z is the set of canonical unitary generators of C∗(FZ). Then
hc(σ∗) = ∞ if and only if σ has an infinite orbit. As pointed out in [47, Sect. 8],
{uj}j∈Z is isometrically equivalent to the standard basis of `1, and so the “if” part
holds by Proposition 11.1 and monotonicity. For the “only if” part, supposing that
σ has no infinite orbits we can take ∆ in Theorem 3.5 to be the set of unitaries in
C∗(FZ) corresponding to elements of FZ to get htop(Tσ∗) = 0, as desired. We re-
mark that the corresponding ∗-automorphisms of the reduced free group C∗-algebra
C∗r (FZ) all have zero CA entropy by [11, 15] and Proposition 4.2.
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