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Abstract. The theory of C∗-algebras traces its origins back to the develop-
ment of quantum mechanics and has evolved into a large and highly active
field of mathematics. Much of the progress over the last couple of decades
has been driven by an ambitious program of classification launched by Elliott
in the 1980s, and just recently this project has succeeded in achieving one of
its central goals in an unexpectedly dramatic fashion. This Snapshot aims to
recount some of the fundamental ideas at play.

1. Structure and classification in mathematics

In the 17th and 18th centuries, philosophers like Descartes and Kant signaled a
profound transformation in the way that mathematics was being understood and
created, away from the Platonic idea of uncovering a universe of static truths
and towards a more dynamical conception based on the notions of operation,
function, and relation and driven by an ethic of radical and prodigious invention.
One need only think of the emergence of group theory, which expresses the
shift in emphasis from object to relation in its starkest form and consequently
has come to underpin much of modern mathematics and theoretical physics, in
addition to having become a vigorous and voluminous subject in its own right.
Even geometry could now be described, as Klein and Poincaré suggested, as the
study of invariance under groups of transformations. In another direction, one
can also think of the way in which analysis was electrified by Cantor’s discovery
of a hierarchy of infinities and the construction of startling examples such as
Weierstrass’s continuous but nowhere differentiable function.

These developments were intimately tied up with the crisis in logic and set
theory at the end of the 19th century that ultimately paved the way for the
practice of mathematics as we know it today, where the modern ethos of inven-
tion still prevails but is now firmly grounded in strict and clearly formulated
standards of rigour and logical precision. Together with inspiration from ad-
vances in physics such as quantum mechanics and general relativity, these new
standards set the stage in the 20th century for the creation of whole new theories
built upon the foundation of a few simple axioms. As the axiomatic approach to
defining mathematical objects took hold, one was naturally led to questions of
structure and classification (how much variety is there among the objects which
model a given set of axioms, and what kind of structural differences express
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this variety?). These two terms taken together as a pair represent a distinctly
post-19th century paradigm that continues to guide much of the mathematical
activity in our own century.

Two remarkable achievements which epitomize this new paradigm are the
classification of finite simple groups (see the Oberwolfach Snapshot [9]) and
Perelman’s proof of Thurston’s geometrization conjecture in topology. Another
concerns the Elliott classification program in the theory of C∗-algebras, which
is less widely known but has been just as dramatic. In fact, a recent flourish of
progress has now brought the central chapter in this classification program to
a spectacular climax, capping off several decades of activity by a large interna-
tional group of researchers. This is a story with many surprises and twists, and
over the course of the following pages I will aim to recount some of the main
ideas that have propelled it.

2. What is a C∗-algebra?

A common way of constructing a mathematical theory is to build things up
from simple components, perhaps via some limiting process (think for example
of Riemann integration, or the construction of the real numbers from the ratio-
nals). The axiomatic viewpoint reverses this picture, so that we start from a
mathematical structure, whether defined in an explicit way or via some abstract
properties, and try to gain some better understanding of it by breaking it down
into simpler and more manageable components. To see how this applies to the
world of C∗-algebras, let us first try to get a rough sense of what C∗-algebras are
and where they come from, and then we will delve into some concrete examples
which will motivate and illustrate many of the concepts and techniques at play
in structure and classification.

C∗-algebras are historically linked to the development of quantum mechanics
through the groundbreaking work of von Neumann in the late 1920s, and since
the 1960s they have served as a natural mathematical framework for quantum
field theory. Over the last several decades the internal study of C∗-algebras has
evolved into a large and intensely active subject in its own right, with fertile
connections to many other areas of mathematics, including topology, number
theory, dynamical systems, graph theory, differential geometry, and random
matrix theory.

As the name suggests, C∗-algebras are first of all algebras, which means that
we can perform operations like addition, multiplication, and scaling by a con-
stant, but their power derives from the fact that they have extra analytic struc-
ture which interacts with the algebra (especially the multiplication) in a rather
rigid way that leads to a relatively tractable but at the same time very rich
structure theory. In practice most examples of C∗-algebras are constructed from
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combinatorial or topological data, or from dynamical systems like the irrational
rotations that we will encounter below.

The elements of a C∗-algebra can be concretely viewed as continuous linear
transformations of a particular type of vector space H over the complex num-
bers, called a Hilbert space, which comes equipped with the geometric notions
of angle and distance. These transformations are called bounded operators, and
a C∗-algebra A is a collection of such operators on a fixed Hilbert space H such
that

(i) A is an algebra in the sense that we can add, scale, and multiply (i.e.,
compose) operators inside of A,

(ii) there is an operation ∗ on elements of A which behaves like complex
conjugation, and

(iii) we can take limits inside of A in a very strong sense which is much like
uniform convergence for a sequence of functions on R, in which the limit
function must be close to its approximants at every point, and not just
at finitely many points at a time like for pointwise convergence.

The idea of being close everywhere in some parameter space is a fundamental
theme that distinguishes C∗-algebras from their venerable operator-algebraic
cousins, the von Neumann algebras, and usually means that some challengingly
tight maneuvering has to be done when making approximations, as we will
attempt to illustrate below. The “C” in “C∗-algebra” refers to the fact that the
algebra is closed under taking limits as in (iii).

One can think of C∗-algebras as far-reaching generalizations of the complex
numbers. Readers who have studied some complex analysis will be familiar
with the principle that many of the pathologies and mysteries in the study
of functions of a real variable vanish when passing to functions of a complex
variable. This has to do with the special mixture of geometry and algebra in
the complex numbers. For example, rotation of the complex plane by an angle
θ can be implemented in an algebraic way via multiplication by eiθ, while the
“size” or “length” of a complex number z, viewed as a vector in the plane, can
be computed algebraically as the positive real number

√
z̄z. It is precisely this

combination of geometry, algebra, and the concept of positivity that is built into
the basic fabric of a C∗-algebra, and indeed C∗-algebras also admit an abstract
definition that is very reminiscent of the complex numbers (see Chapter 1 of [3]
or Section 2.1 of [14]) but flexible enough to allow for a vast array of infinite-
dimensional phenomena.

Finite-dimensional C∗-algebras are nothing but algebras of matrices (more
precisely, direct sums of the form Mn1⊕· · ·⊕Mnk

where Mn denotes the algebra
of all n×n matrices) and are thus completely understood. Such matrix algebras
turn out to be the key to unlocking the structure of large classes of naturally
arising C∗-algebras via a process of approximation. We will now proceed to
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describe how this approximation works, beginning with permutations as a simple
but suggestive model.

3. Permutations as models for approximation

Consider the finite set X = {1, . . . , d} where d is a large positive integer and
let T : X → X be the map which cyclically permutes the elements in X (which
we will refer to and imagine as points), so that T (k) = k+ 1 for k = 1, . . . , d− 1
and T (d) = 1 (such a T is referred to as a transformation of X):

Suppose now that we are given another positive integer n, possibly much
smaller than d, and let us suppose for simplicity that n divides d, that is, d = kn
for some integer k. Let T ′ : X → X be the map which for each j = 1, . . . , k
cyclically permutes the subset {jn+1, jn+2, . . . , (j+1)n}, as illustrated below
in the case d = 20 and n = 4:

Then T ′ is a union of k cyclic permutations of sets of size n, and it agrees with
T everywhere except at the points n, 2n, . . . , kn, of which there are k. Thus T ′

disagrees with T on a subset of X of proportional size k/d = 1/n, which will be
very small if n is very large.

Now if n did not necessarily happen to divide d, then one can still try to
define a map T ′ as before by taking cyclic permutations of consecutive segments
of length n, but there will be some remaining segment at the end containing at
most n− 1 points, which we can then permute amongst themselves in order to
round out the definition of our updated T ′, as illustrated below when d = 18
and n = 5:

Then the set of points at which T ′ disagrees with T will have proportional size
no greater than 1/n + (n − 1)/d, the first term coming from the permutations
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of the segments of length n and the second from the remainder. We therefore
see that if n is very large and d is very very large (i.e., large compared with
n) then T ′ and T are approximately equal in the sense that they agree at all
but a proportionally small number of points. This kind of play at two or more
different scales is a common theme in C∗-algebra theory and in many other areas
of analysis.

The whole point is that we can now view T approximately (via T ′) as consist-
ing of a single permutation of a relatively small set with size n not depending
on d (for a given tolerance in the approximation) but repeated with multiplic-
ity k. This suggests that we might be able to keep n and the tolerance in the
approximation fixed but replace {1, . . . , d} with an infinite set. This idea lies at
the root of matrix approximation in C∗-algebra theory, as we will see, but before
jumping to that let us illustrate with a basic but very important example of a
transformation of an infinite set.

Let T be the unit circle in R2 and θ an irrational number between 0 and 1, and
let T be the transformation of T which rotates by the angle 2πθ (in radians).
Given an ε > 0 and a natural number n, one can show that there is a finite dis-
joint union of arcs, which we’ll call C, such that the images TC, T 2C, . . . , T nC
of C under n iterations of T (i.e., the images of C under rotation by the angles
2πθ, 4πθ, . . . , nπθ) are pairwise disjoint and the lengths of the arcs making up
the complement of these images sum to less than ε. This is a bit tricky to do
by hand (the reader might wish to try, especially in the case that n is large
compared to 1/θ), but it is a straightforward consequence of a general result
known as the Rokhlin lemma. We thereby obtain much the same kind of ap-
proximation as before with prescribed period n. Note however that this time
we cannot exactly cycle back to the beginning, since the images of C under
rotation by 2πθ can never coincide with C itself in view of the irrationality of θ,
although T nC will mostly overlap with C. Note also that C can be interpreted
as the “multiplicity” in the periodic approximation, since the disjoint images
TC, T 2C, . . . , T nC divide up into the disjoint finite sets x, Tx, T 2x, . . . , T n−1x
for x ∈ C, although a given x ∈ C could be far away from T nx.

The rotation T generates a C∗-algebra called an irrational rotation algebra,
which is constructed by taking the algebra C(T) of continuous complex-valued
functions on T and enlarging it by the addition of an abstract element u which
implements the rotation in an internal algebraic way via conjugation, exactly
as in a semidirect product of groups, so that ufu−1 for a function f ∈ C(T) is
equal to the composition of f with the rotation of T by 2πθ. Some technical
work is required to turn this into a full-fledged C∗-algebra, but the construc-
tion, called the crossed product, is a natural one that also applies to actions of
general groups. Irrational rotation algebras are ubiquitous prototypes in the
field of noncommutative geometry [2] and were also an early impetus for the
development of C∗-algebra classification theory, as we will discuss below.
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4. Approximation in matrix algebras

Let us return now to the permutation T of {1, . . . , d} and its approximant
T ′ as in the first paragraph of the previous section. We can translate this
kind of approximation into C∗-algebraic language by linearizing our set-up and
expressing the maps T and T ′ as permutation matrices. We thus replace our set
{1, . . . , d} with the d-dimensional complex vector space Cd, with an element j ∈
{1, . . . , d} corresponding to the standard basis vector ej = (0, . . . , 0, 1, 0, . . . , 0)
where the 1 occurs in the jth coordinate. If for every positive integer m we
define Rm to be the m×m permutation matrix

0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


then T corresponds to the matrix Rd, which we’ll write as AT , while T ′ corre-
sponds to the block diagonal permutation matrix

AT ′ =


Rn 0 · · · 0
0 Rn · · · 0
...

...
. . .

...
0 0 · · · Rn

 .
Thus instead of permuting points we are now permutating the one-dimensional
coordinate subspaces of Cd through the action of these matrices on vectors.

Even though we’ve passed to matrices, we can still accommodate our original
set of points in this picture by identifying the integer j with the matrix whose
entries are all 0 except at the jth position down the diagonal, where the entry
is 1. In this picture the diagonal matrices can be viewed as functions on X, so
that we are effectively replacing points with functions. One can now check that
if D is a diagonal matrix then ATDA

−1
T is again a diagonal matrix whose entries

are the same as those of D except that they have been permuted according
to T . This is similarly the case for AT ′ and T ′. We can thereby incorporate
all information about our space X and the transformations T and T ′ into a
common framework, namely the algebra of d × d matrices, which we denote as
before by Md. One can verify that the subalgebra of Md generated by AT and
the diagonal matrices is all of Md, while the subalgebra A of Md generated by
AT ′ and the diagonal matrices is much smaller, consisting of all matrices which
decompose into diagonal blocks of size n × n (assuming for simplicity that n

divides d), or, viewed abstractly, as the direct sum M
⊕(d/n)
n of d/n copies of the

n×n matrix algebra Mn. This subalgebra A contains the diagonal matrices, i.e.,
the functions on X, and it also approximately contains the matrix AT coming
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from the original cyclic permutation T , since it contains AT ′ and the latter is
approximately equal to AT .

If one only needs A to approximately contain a certain selection of diagonal
matrices in addition to AT , then one can typically do even better by replacing
A with the smaller subalgebra given by the image of M⊕k

n under an embedding
of the form

(A1, . . . , Ak) 7→ diag(A1, . . . , A1, A2, . . . , A2, . . . , Ak, . . . , Ak)

where a certain number of copies of each of the matrices A1, . . . , Ak are dis-
tributed as blocks down the diagonal in Md (in order to express this map in
such a clean form, one will need to do some coordinate shuffling in Cd, which
amounts to conjugating all of the matrices in Md by a fixed permutation matrix).
What is at play here, like in the definition of AT ′ itself, is the phenomenon of
multiplicity. This is most simply illustrated in the case k = 1, n = 2, and d = 4,
where the above embedding is given by

A =

[
a b
c d

]
7→

[
A 0
0 A

]
=


a b 0 0
c d 0 0
0 0 a b
0 0 c d

 ,
and if one shuffles coordinates then one can also express this by

A =

[
a b
c d

]
7→

[
aI bI
cI dI

]
=


a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d


where I is the 2 × 2 identity matrix [ 1 0

0 1 ]. One can start to compose these
kinds of embeddings in an iterative manner, increasing the matrix sizes at every
stage, and even continue the process indefinitely in order to obtain an infinite-
dimensional “limit” object known as an approximately finite-dimensional C∗-
algebra, or AF-algebra for short. In the 1970s a whole calculus was developed
to classify the different algebras that can arise in this manner, first by Bratteli
in terms of combinatorial data attached to the successive embeddings and then
by Elliott in the language of groups (K-theory). Elliott’s classification of AF-
algebras set the stage for the program of classifying much broader classes of
C∗-algebras defined in a more abstract way by a less rigid matrix approximation
property (the nuclear C∗-algebras). This project came quite early on to include
the irrational rotation algebras, which can be shown not to be AF-algebras. In
order to describe and appreciate how the classification program has ultimately
panned out, we will need to pursue our discussion of matrices a little further.



8 DAVID KERR

5. C∗-algebra approximation and Berg’s technique

Although our discussion above veered into AF-algebras, it turns out that the
kind of approximation that we have been discussing, beginning with permuta-
tions, is in fact the wrong one for C∗-algebras (in the case of AF-algebras, this is
tied up with what our description of them as “limits” actually means). Here we
can appreciate the essential dividing line between C∗-algebras and their cousins
the von Neumann algebras, which are built around approximations which al-
low us to completely ignore small parts of the space or of the matrix algebra.
The more stringent demands of C∗-approximation force us to leverage additional
symmetry within the algebra itself and not merely in the dynamics around which
the algebra may be built. We simply cannot do everything at the level of the
space. In fact even changing a permutation at a single point is far too drastic
an operation in the C∗-algebra world. Much more subtle tricks are needed.

One trick that works very well to give these extra good matrix approximations
for the irrational rotation algebras is Berg’s technique, which we will try to give
a flavour of using a few pictures. Think back again to our cyclic permutation T
of the set {1, . . . , d}, which we now illustrate in two rows:

If we wish to chop up this into two smaller permutations it suffices to swap the
images of a pair of points as follows:
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As mentioned, this is already too drastic for the purposes of C∗-approximation,
but perhaps we can do this swapping in a gradual way by introducing some kind
of extra ghost points that allow for a gentle interchange of the two streams:

It is precisely within the matrix algebra Md that we can reify these ghosts by
using 2× 2 rotation matrices of the form

e−iθ
[

cos θ i sin θ
i sin θ cos θ

]
with θ varying in discrete but small increments in the range from 0 to π/2, which
begins with the identity matrix [ 1 0

0 1 ] and ends up at the coordinate flip [ 0 1
1 0 ].

Use of the complex number i =
√
−1 here is forced upon us given that these

matrices, like the original permutation matrix they will help us approximate,
will need to be unitary in the sense that they perserve lengths when acting
on vectors in C2 (this is another good example of the indispensable role that
the complex numbers play in the algebraic implementation of symmetry). The
pairs of vertically aligned points in the middle portion of the diagram, viewed
as standard basis vectors in Cd on which our matrices act, each get “twisted”
inside the amplified space Cd, with the amount of twisting gradually increasing
as we move along the streams (one should view the red part of the diagram
three-dimensionally as a 180-degree twist in a double helix, so that the two lines
do not actually cross but rather rotate around each other). Each intermediate
twisted “ghost” pair is a nontrivial linear combination of the standard basis
vectors corresponding to the original pair. The two streams then interchange at
the end of the twisting, producing a pair of cyclic permutations.

Now if two angles θ1 and θ2 are close together then the matrices e−iθ1
[

cos θ1 i sin θ1
i sin θ1 cos θ1

]
and e−iθ2

[
cos θ2 i sin θ2
i sin θ2 cos θ2

]
will be close together entry by entry, without exception,

which is consistent with the requirements of C∗-algebra approximation. The
above procedure of lining up the two streams and slowly twisting, called Berg’s
technique, thus softens the brutal chopping operation we began with to some-
thing much more C∗-friendly.

While Berg’s technique and related methods have been successfully employed
to unravel the structure of many C∗-algebras arising from transformations, like
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the irrational rotation algebras (see [5] and Chapter VI of [3]) and the crossed
products of minimal transformations of the Cantor set [16], their use becomes
severely limited if the algebra is built up not from a single transformation but
from many transformations which together generate a group other than Z, since
there will now be many different “directions” inside the group, so that it typically
becomes impossible to pair off points in a way that allows us to perform a
decomposition of the dynamics through twisting. Given that the study of actions
of groups other than Z has become one of the next frontiers in C∗-classification
theory, alternative methods are needed for producing matrix approximations.

One approach that has turned out to be surprisingly effective was initiated
by Winter in the late 1990s and turns on the concept of dimensionality, not
in the sense that some C∗-algebras are finite-dimensional and others infinite-
dimensional as vector spaces or algebras, but rather in a more inherently topo-
logical sense that is in line with the notion that an interval is one-dimensional
and a sphere is two-dimensional. Some overlapping is still permitted (and usu-
ally even required) as in Berg’s technique, but one no longer needs to resolve
these overlaps by any kind of twisting, and in addition the matrix models are
now allowed to be distorted. There are some variations in the technical imple-
mentation of this idea, but the most important for our present discussion is due
to Winter and Zacharias, who referred to the minimum amount of “overlap”
that one can get away with as the nuclear dimension of the C∗-algebra [22].

Nuclear dimension is a highly flexible tool that applies in a tractable way to
large classes of examples. The drawback however is that it does not give us as
direct an access to the structure of the C∗-algebra due to the possible distortion
in and interference between the matrix models that appear in its definition. The
point now is to rely instead on a general classification theorem to do all of the
heavy lifting in producing a complete structural picture of the C∗-algebra based
on genuine matricial approximation, with nuclear dimension being precisely the
device that will clear the path leading us there.

6. Nuclear dimension

As we discussed in Section 4, given an even positive integer d the embedding
A 7→ diag(A, . . . , A) from M2 into Md can alternatively be described, by shuffling
coordinates, as [

a b
c d

]
7→
[
aI bI
cI dI

]
where I is the (d/2)×(d/2) identity matrix. Now if we replace I by an arbitrary
(d/2)× (d/2) matrix H then[

a b
c d

]
7→
[
aH bH
cH dH

]
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still defines an embedding ϕ : M2 →Md, but it will no longer be multiplicative
in general, i.e., we might have ϕ(AB) 6= ϕ(A)ϕ(B) for some A and B, which
means that the image might no longer be a matrix algebra. However, a vestige of
multiplicativity remains: one can check that ϕ(A)ϕ(B) = 0 whenever AB = 0,
in which case we call ϕ an order-zero map. Winter had the insight that for a
great many purposes it enough to perform approximations using finite collections
of such order-zero maps, with the images of these maps being allowed to overlap
or “interfere” with each other in any way as long as there is a uniform bound
on the number of maps which are used at every scale of approximation. This
leads to the notion of nuclear dimension. For the record, we give the precise
definition below. More details and an explanation of all of the terms can be
found in [22]. What is important to note is that the definition is local in nature
in the sense that one only needs to check the condition on finitely many elements
in the C∗-algebra at a time.

Definition 6.1. The nuclear dimension of a C∗-algebra A is the least integer
d ≥ 0 such that for every finite set Ω ⊆ A and ε > 0 there are finite-dimensional
C∗-algebras B0, . . . , Bd and completely positive linear maps

A
ϕ−→ B0 ⊕ · · · ⊕Bd

ψ−→ A

such that ϕ is contractive, ψ|Bi
is contractive and order zero for each i = 0, . . . , d,

and

‖ψ ◦ ϕ(a)− a‖ < ε

for every a ∈ Ω. If no such d exists then we define the nuclear dimension to be
∞.

The definition of nuclear dimension turns out to be compatible enough with
dynamical phenomena that one can compute the value, or at least derive use-
ful estimates, for many crossed products (see [18, 8]). The irrational rotation
algebras can be shown for example to have nuclear dimension exactly one. A
breakthrough by Szabó in [18] showed that the crossed products of a large class
of Zn-actions have finite nuclear dimension, taking us well outside the domain
where Berg’s technique is applicable. Szabó’s results have since been extended
to actions of finitely generated nilpotent groups in [19].

The point now is that the periodic approximations that we needed before to
construct our matrix algebras can still be used to construct the matrix approxi-
mations in the definition of nuclear dimension (note that the algebras B0, . . . , Bd,
being finite-dimensional, are all direct sums of matrix algebras) but they no
longer need to cycle back on themselves, even approximately. So they are no
longer really even periodic, but rather “open-ended” finite segments of the dy-
namics. However, these segments must overlap with each other to some degree
in order to be able to produce the matrix approximations B0, . . . , Bd, and the
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extent of the overlapping is what controls the parameter d. These are won-
derfully supple conditions compared to the usual rigid demands of C∗-algebra
theory, and since they don’t involve in any essential way the kind of past-and-
future directionality that we relied on to carry out Berg’s technique, they end up
applying to actions of a wide variety of groups. For more details see Section 8
of [22] or Section 8 of [8].

Dynamics aside, nuclear dimension is also closely related to the ordinary no-
tion of dimension in topology. Consider for example the unit interval [0, 1], which
we can cover using two collections of disks with diameter as small as we wish
such that the disks in each subcollection are pairwise disjoint, as illustrated be-
low by using different colours (empty and hatched) to indicate the subcollection
to which each disk belongs:

The d-cube [0, 1]d can be similarly covered by balls but now grouped into d+ 1
subcollections each of which is disjoint, as illustrated below in the case d = 2:

The (covering) dimension is then defined as one less than the smallest number
of subcollections each of which is disjoint. We thus allow balls to overlap, just
not within each subcollection. A subcollection being disjoint is the analogue of a
map being order-zero, and in fact this correspondence goes beyond mere analogy
as one can use this picture of covering dimension to show that the C∗-algebra of
continuous functions on [0, 1]d has nuclear dimension d. This requires the notion
of partition of unity, which allows one to build functions over individual balls in
a coherent fashion.
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7. Structure and classification of C∗-algebras

We will now finally formulate the classification theorem. By an invariant we
mean a collection of data which is associated to a mathematical object (e.g., a
C∗-algebra) in some structural way and depends only on its isomorphism class.
A prototypical example is the dimension of a vector space. One can picture an
invariant as a kind of skeleton which provides us enough information to be able
to completely flesh out the original object.

To say that a class of C∗-algebras is classified by an invariant means that two
C∗-algebras in the class are isomorphic if and only if they have the same invari-
ant. Of course, for such a classification to have any utility the invariant should
be (formally) much simpler than the C∗-algebra itself. Here we are working with
the Elliott invariant, about which we will not say anything in detail except that
it consists of ordered K-theory paired with traces. Let us now state the theo-
rem and then follow up with some explanation. The theorem is a culmination
of several decades of effort by many people and was clinched in recent work of
Gong–Lin–Niu [7], Elliott–Gong–Lin–Niu [4], and Tikuisis–White–Winter [20].
Although this Snapshot has been implicitly concerned with C∗-algebras that are
tracial, which is an incompressibility property satisfied by irrational rotation
algebras and many other crossed products and is the case targeted by the pa-
pers just cited, the statement below also incorporates an earlier classification of
Kirchberg and Phillips from the 1990s in the “compressible” purely infinite case
[12].

Theorem 7.1. The class of infinite-dimensional simple separable unital C∗-
algebras satisfying the UCT and having finite nuclear dimension is classified by
the Elliott invariant.

The conditions of simplicity, separability, and unitalness are all ambient as-
sumptions. The first means that the C∗-algebra is indecomposable (i.e., it is
a kind of “atom” in the theory), the second that the C∗-algebra is not set-
theoretically exotic, and the third that the C∗-algebra behaves like a compact
topological space, so that the kinds of issues typically associated with unbound-
edness do not arise. The UCT (universal coefficient theorem) is a technical
assumption that allows one to leverage a version of K-theory for pairs of C∗-
algebras and might very well be automatic, and at least is known to hold in all
examples of interest. Thus the only truly operative hypothesis is finite nuclear
dimension, and it is a necessary hypothesis since it can fail to hold in many cases,
in particular for some crossed products of transformations of infinite-dimensional
spaces [21, 10] (these crossed products are nevertheless nuclear in the sense that
matrix approximations as in the definition of nuclear dimension always exist,
just not with a uniform bound on the d; crossed products of actions of free
groups, on the other hand, frequently fail even to be nuclear).
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The conciseness of the theorem statement obscures the fact that there is
a whole cast of characters standing behind it, including the concepts of Z -
stability, strict comparison, decomposition rank, and tracial rank, all of which
play a significant technical role in the proof. That nuclear dimension would in
fact play the starring role was not even clear until shortly before the result was es-
tablished. I might also mention that it is a prominent and still not fully resolved
conjecture of Toms and Winter that for simple separable infinite-dimensional
nuclear C∗-algebras the properties of finite nuclear dimension, Z -stability, and
strict comparison are all equivalent.

It is worth noting that the contributions of Gong–Lin–Niu and Elliott–Gong–
Lin–Niu on the one hand and of Tikuisis–White–Winter on the other are of a
different nature. The latter was a singular and surprising advance that showed
that a large class of C∗-algebras, much larger than previously known, satisfy
an external finite-dimensional approximation property called quasidiagonality,
which can be extremely difficult to verify in individual examples. The former on
the other hand was an extraordinarily labour-intensive achievement (totalling
some 300 pages and building on thousands of pages of earlier work including
the influential paper [13] of Lin) that established the classification on the basis
of hypotheses that could be pared down to finite nuclear dimension once one
knew the quasidiagonality result. It is absolutely remarkable that these two
pieces of the puzzle, which are related in their technical content but precisely
complementary in their outcome, came together at just about the same moment
in 2015. Another crucial earlier contribution that should be mentioned here
is a result of Sato, White, and Winter [17] that clarified the relation between
quasidiagonality and nuclear dimension.

Returning now to the statement of the classification theorem itself, the ques-
tion that immediately arises is: how do we compute the Elliott invariant, and
in particular how do we compute K-theory? This can be done in some special
cases (see for example the beautiful Giordano–Putnam–Skau theory of crossed
products of minimal transformations of the Cantor set [6]) but in general is a
difficult business. One line of attack in the case of group C∗-algebras and general
types of crossed products is mapped out by the Baum–Connes conjecture, which
has spawned an extensive theory with fascinating connections to topology and
coarse geometry [15, 8].

Notwithstanding the problem of actually computing the invariant, the the-
orem still provides us an extraordinary dividend in structural understanding,
which is perhaps its most compelling consequence. Just as the spaces Rn for
n = 1, 2, . . . are models for all of the possible finite dimensions among real vec-
tor spaces, it is known that, in the tracial case, the Elliott invariant is already
exhausted among C∗-algebras which are limits of nested sequences of algebras
of matrices whose entries are not necessarily complex numbers (like in the case
of AF-algebras) but, more generally, continuous functions on some space like
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a torus or a sphere. One concludes that all of the tracial C∗-algebras appear-
ing in the theorem can be expressed in this rigid asymptotic matricial form, all
as a consequence of the relatively soft and amenable property of finite nuclear
dimension. Such a stark structural picture is simply impossible to obtain in a
bare-hands way for a great many examples, including crossed products of various
kinds of group actions. This is a supreme example of how the modern paradigms
of structure and classification are, in the end, two sides of the same coin.

What next? The world of C∗-algebras extends to horizons far beyond finite
nuclear dimension, and this wider C∗-universe remains largely uncharted. For
a glimpse of what lurks at the outer boundaries of the subject the reader may
wish to take a look at the striking recent work of Breuillard, Kalantar, Kennedy,
and Ozawa on the simplicity of group C∗-algebras [11, 1].
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