
RESIDUALLY FINITE ACTIONS AND CROSSED PRODUCTS

DAVID KERR AND PIOTR W. NOWAK

Abstract. We study a notion of residual finiteness for continuous actions of discrete groups on
compact Hausdorff spaces and how it relates to the existence of norm microstates for the reduced
crossed product. Our main result asserts that an action of a free group on a zero-dimensional
compact metrizable space is residually finite if and only if its reduced crossed product admits
norm microstates, i.e., is an MF algebra.

1. Introduction

Finite-dimensional approximation is a ubiquitous notion in the structure theory of C∗-algebras,
and it appears in a variety of different ways through properties like nuclearity, exactness, qua-
sidiagonality, and the existence of norm microstates (i.e., being an MF algebra) [11]. Given that
reduced crossed products by actions of countable discrete groups on compact metrizable spaces
play an important role as examples and motivation in the study of C∗-algebras, one would like
to understand the extent to which various forms of finite-dimensional approximation in such
crossed products are reflections of finite approximation properties at the level of the dynamics.

Nuclearity and exactness are essentially measure-theoretic concepts and do not reflect any-
thing intrinsically topological in the dynamics. Indeed nuclearity of the reduced crossed prod-
uct is equivalent to the amenability of the action, which can be expressed in purely measure-
dynamical terms [1], while exactness of the reduced crossed product is equivalent to the exactness
of the acting group [11, Thm. 10.2.9], which can be characterized by the existence of an amenable
action of the group on a compact metrizable space.

On the other hand, quasidiagonality and the existence of norm microstates both involve
the matricial approximation of multiplicative structure and are thus topological in nature, and
their precise relation to the dynamics is for the most part poorly understood. Actually much
of the difficulty stems from the group itself, as anything but the simplest geometry in the
Cayley graph can cause severe complications for an operator analysis based on perturbations,
and obtaining a topological understanding of the reduced crossed product amounts in part to
knowning something about the reduced group C∗-algebra, which sits inside the reduced crossed
product in a canonical way. For free groups on two or more generators it is a deep theorem
of Haagerup and Thorbjørnsen that the reduced group C∗-algebra is MF [21]. For countable
discrete groups G, if the reduced group C∗-algebra C∗λ(G) is quasidiagonal then G is amenable
[22], while C∗λ(G) is residually finite-dimensional if and only if G is residually finite and amenable
[14, Cor. 4]. Not much else seems to be known however about quasidiagonality and the existence
of norm microstates for reduced group C∗-algebras.

One important dynamical setting in which we do have a complete understanding of quasidi-
agonality is that of integer actions. Pimsner showed in [31] that for a self-homeomorphism of
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a compact metrizable space the following are equivalent: (i) the homeomorphism is pseudo-
nonwandering (i.e., chain recurrent), (ii) the crossed product is embeddable into an AF algebra,
(iii) the crossed product is quasidiagonal. Already though for Z2-actions it is not clear what
dynamical condition should correspond to quasidiagonality. Lin succeeded however in showing
that, for actions of Zd where d ≥ 1, embeddability of the crossed product into a simple AF
algebra is equivalent to the existence of an invariant Borel probability measure of full support
[26]. It is also known that almost periodic actions of certain amenable groups produce qua-
sidiagonal crossed products [30]. Note that in all of these cases the reduced and full crossed
products coincide and are nuclear due to the amenability of the acting group, and that a nuclear
C∗-algebra is quasidiagonal if and only if it admits norm microstates, i.e., is an MF algebra.

The goal of the present paper is to initiate a dynamical study of the MF property in reduced
crossed products that is primarily targeted at actions of free groups. Such a program owes
its very possibility to the Haagerup-Thorbjørnsen result cited above which establishes the MF
property of the reduced group C∗-algebras of free groups on two or more generators, a conclusion
whose validity is still unknown for the vast majority of nonamenable groups. For actions of a
countable discrete group G on a compact metric space X we define a dynamical version of
residual finiteness for groups, which we again call residual finiteness (Definition 2.1), and our
main result asserts that, when G is free and X is zero-dimensional, the action is residually finite
if and only if the reduced crossed product is an MF algebra (Theorem 3.10).

For G = Z residual finiteness is the same as chain recurrence and the situation reduces to
a special case of the equivalence of (i) and (iii) in the statement of Pimsner’s theorem above.
Pimnser showed in [31, Lemma 2] that, for a Z-action, chain recurrence is equivalent to every
open set being topologically incompressible, and he establish the implication (iii)⇒(i) by using
compressibility to construct a nonunitary isometry in the crossed product as an obstruction
to quasidiagonality. For a free group Fr with r ≥ 2 we do not have an analogue of this non-
compressibility characterization for residual finiteness, and so our proof that an Fr-action on a
zero-dimensional space is residually finite if the reduced crossed product is MF must proceed by
different means. The idea is to directly extract the finite approximations of the action from the
existence of norm microstates. To carry out the required perturbation arguments we need to be
able to work with projections, which explains our hypothesis that X is zero-dimensional.

A residually finite action of G on X is, roughly speaking, one that approximately admits
extensions consisting of actions of G on finite sets, i.e., there are actions of G on finite sets which
map into X approximately equivariantly with approximately dense image (see Section 2). This
can be viewed as a topological analogue of soficity for actions preserving a Borel probability
measure, in which the approximations are measured in 2-norm and the maps into X must
approximately push forward the uniform measure to the given measure on X. One can count
the exponential growth of the number of such approximately equivariant maps up to some
observational error to define a notion of entropy (see [8, 25] and especially Sections 2 and 3 of
[24]) and this is one motivation for the study of finite dynamical approximations. It can be shown
that all measure-preserving actions of Fr on a standard probability space are sofic (see [7]), and
that the von Neumann algebra crossed product of such actions admit tracial microstates, i.e.,
embed into the ultrapower Rω of the hyperfinite II1 factor (use [10]). So residual finiteness in our
topological context can be thought of as playing the role of measure-preservingness, while the
MF property (existence of norm microstates) is the analogue of embeddability into Rω (existence
of tracial microstates). Note however that in our setting one of the main points is to show that
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the MF property implies residual finiteness, while in the von Neumann algebra case there is
nothing to prove in this direction.

After introducing residually finite actions in Section 2, we show in the first part of Section 3
that such actions give rise to an MF reduced crossed product whenever the reduced group
C∗-algebra of the acting group is MF. In fact we prove this more generally in Theorem 3.4 for
actions on arbitrary separable C∗-algebras which are quasidiagonal in the sense of Definition 3.2.
Using this fact we then proceed in the second part of Section 3 to establish the equivalence of
residual finiteness and the MFness of the reduced crossed product in the case of a free group
acting on a zero-dimensional compact metrizable space (Theorem 3.10). Motivated by recent
work of Rørdam and Sierakowski on paradoxical decompositions in the context of continuous
actions on the Cantor set and purely infinite crossed products [34], we examine in Section 4 how
paradoxical decomposability fits into our discussion of residual finiteness at the other extreme.
Section 5 gives a list of characterizations of residual finiteness for minimal actions of free groups
which incorporates paradoxical decomposability among other phenomena. In Section 6 we use
spaces of probability measures to construct, for every nonamenable countable discrete group, an
example of an action which is not residually finite although its restriction to any cyclic subgroup
is residually finite. Finally, in Section 7 we revisit integer actions and observe in this case,
combining arguments and results from [22, 3, 16], that the following conditions are equivalent:
(i) the crossed product is a strong NF algebra, (ii) the OL∞ invariant of the crossed product is
1, and (iii) there is collection of transitive residually finite subsystems with dense union.

We remark that Margulis and Vinberg defined in [29] a nontopological notion of residual
finiteness for actions in which the maps in the finite modelling go in the other direction.

We round out the introduction with a few words about notational convention. Throughout
the paper G will always be a countable discrete group, with extra hypotheses added explicitly
whenever appropriate. Actions of G on a compact Hausdorff space X will often be unnamed,
in which case simply write G y X, and they will always be expressed using the concatenation
(s, x) 7→ sx for x ∈ X and s ∈ G. When necessary we will refer to actions by means of a
symbol such as α, in particular when we need to talk about the induced action on C(X), which
will actually be expressed using this symbol, i.e., αs(f)(x) = f(s−1x) for f ∈ C(X), x ∈ X,
and s ∈ G. We write λ for the left regular representation of G on `2(G). The reduced crossed
product of a continuous action G y X will be written C(X) oλ G and the reduced group C∗-
algebra of G will be written C∗λ(G). The canonical unitary in C(X) oλ G or C∗λ(G) associated
to a group element s will invariably be denoted by us. For background on crossed products and
group C∗-algebras, especially from the kind of finite-dimensional approximation viewpoint of
this paper, we refer the reader to [11].

For a compact Hausdorff space we writeMX for the space of regular Borel probability measures
on X equipped with the weak∗ topology, under which it is a compact Hausdorff space. Whenever
convenient we will simultaneously regard elements of MX as states on C(X). The unitary group
of a unital C∗-algebra A will be written U(A).
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the second author partially supported by NSF grant DMS-0900874. We thank Adam Sierakowski
for comments and corrections, and Hanfeng Li for the argument in Example 2.5 and the simple
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2. Residually finite actions

Definition 2.1. A continuous action of G on a compact Hausdorff space X is said to be
residually finite if for every finite set F ⊆ G and neighbourhood ε of the diagonal in X × X
there are a finite set E, an action of G on E, and a map ζ : E → X such that ζ(E) is ε-dense
in X and (ζ(sz), sζ(z)) ∈ ε for all z ∈ E and s ∈ F .

Note that if S is a generating set for G then to verify residual finiteness it is sufficient for F
in the definition to be quantified over all finite subsets of S by uniform continuity.

We will mostly be interested in actions on compact metrizable spaces, in which case residual
finiteness can be expressed in terms of a given compatible metric. Indeed if X is metrizable in
the above definition and d is a compatible metric on X then residual finiteness is the same as
saying that for every finite set F ⊆ G and ε > 0 there are a finite set E, an action of G on E,
and a map ζ : E → X such that ζ(E) is ε-dense in X and d(ζ(sz), sζ(z)) < ε for all z ∈ E and
s ∈ F .

Note that if G admits a free residually finite continuous action on a compact metrizable space,
then G must be a residually finite group, as is easy to see. Indeed this is the motivation for our
terminology in the dynamical setting.

In the case G = Z, residual finiteness is equivalent to chain recurrence, as explained at the
beginning of Section 7.

If X has no isolated points then a simple perturbation argument shows that in Definition 2.1
we can always take the set E to be a subset of X and the map ζ : E → X to be the inclusion.
However, for general X this is not possible, as the following example demonstrates. For each
i = 1, 2, 3 take Xi to be a copy of Z and consider the two-point compactification Xi ∪ {yi, zi}
where yi and zi are the points at −∞ and +∞. Let Z act on Xi ∪ {yi, zi} so that it translates
Xi via addition and fixes yi and zi. Now define X by taking the quotient of disjoint union of
the sets Xi ∪{yi, zi} for i = 1, 2, 3 which collapses each of the sets {z1, y2, y3} and {y1, z2, z3} to
single points.

The following proposition shows that in the definition of residual finiteness it is enough to
verify the ε-density condition in a local way.

Proposition 2.2. A continuous action of G on a compact Hausdorff space X is residually finite
if and only if for every x ∈ X, finite set F ⊆ G, and neighbourhood ε of the diagonal in X ×X
there are a finite set E, an action of G on E, and a map ζ : E → X such that x lies in the
ε-neighbourhood of ζ(E) and (ζ(sz), sζ(z)) ∈ ε for all z ∈ E and s ∈ F .

Proof. For the nontrivial direction, given a finite set F ⊆ G and neighbourhood ε of the diagonal
in X ×X take, for every x in some finite ε-dense set D ⊆ X, a finite set Ex and an action of
G on Ex, and a map ζx : Ex → X such that x lies in the ε-neighbourhood of ζx(Ex) and
(ζx(sz), sζx(z)) ∈ ε for all z ∈ Ex and s ∈ F . Now set E =

∐
x∈D Ex and define ζ : E → X so

that it restricts to ζx on Ex for each x ∈ D. Then ζ(E) is ε-dense in X and (ζ(sz), sζ(z)) ∈ ε
for all z ∈ E and s ∈ F , verifying residual finiteness. �

Proposition 2.3. Let X be a compact Hausdorff space and Gy X a residually finite continuous
action. Then there is a G-invariant Borel probability measure on X.

Proof. Let Λ be the net of pairs (F, ε) where F is a finite subset of G and ε is a neighbourhood of
the diagonal in X×X and the order relation (F ′, ε′) � (F, ε) means that F ′ ⊇ F and ε′ ⊆ ε. For



RESIDUALLY FINITE ACTIONS 5

a given (F, ε) ∈ Λ there exist, by residual finiteness, a finite set D, an action of G on E, and a
map ζ : E → X such that (ζ(sz), sζ(z)) ∈ ε for all z ∈ E and s ∈ F , and we define µF,ε to be the
pullback under ζ of the uniform probability measure on E, i.e., µF,ε(f) = |E|−1

∑
z∈E f(ζ(z))

for f ∈ C(X). Now take a weak∗ limit point of the net {µF,ε}(F,ε)∈Λ, which is easily verified to
be a G-invariant Borel probability measure on X. �

Example 2.4. Suppose that G is residually finite. Let X be a compact Hausdorff space. Then
the Bernoulli action Gy XG given by s(xt)t∈G = (xs−1t)t∈G is easily seen to be residually finite.

Example 2.5. Let f be an element in the group ring ZG. Then G acts on ZG/ZGf by left
translation, and this gives rise to an action αf of G by automorphisms on the compact Abelian

dual group Xf := ̂ZG/ZGf . When f is equal to d times the unit for some d ∈ N we obtain the

Bernoulli action Gy {1, . . . , d}G. Suppose now that G is residually finite and f is invertible as
an element in the full group C∗-algebra C∗(G). Then the action αf is residually finite. Indeed
in this case the points in Xf which are fixed by some finite-index normal subgroup of G are
dense in Xf , which can be seen as follows. Let H be a finite-index normal subgroup of G.
Then the canonical surjective ring homomorphism πH : ZG → Z(G/H) induces a surjective
ring homomorphism ZG/ZGf → Z(G/H)/Z(G/H)πH(f) which in turn induces an injective
group homomorphism XπH(f) ↪→ Xf . Note that XπH(f), identified with its image in Xf , is equal
to the set of points in Xf which are fixed by H. It thus suffices to show that

⋃
H∈H XπH(f)

is dense in Xf where H denotes the collection of finite-index normal subgroups of G. This
happens precisely when the natural homomorphism ZG/ZGf →

∏
H∈H Z(G/H)/Z(G/H)πH(f)

is injective. To verify this injectivity, let g be an element in the kernel. Then for every H ∈H
there is a wH ∈ Z(G/H) such that πH(g) = wHπH(f). Since f is invertible in C∗(G), wH
is unique and its `2-norm is bounded above by some constant not depending on H. Now if
H1, H2 ∈ H and H1 ⊆ H2 then the image of wH1 in Z(G/H2) under the canonical map
Z(G/H1)→ Z(G/H2) is equal to wH2 , and so we can define the projective limit of the wH as an
element w in ZG. Then g = wf . Moreover, w lies in `2(G) because the `2-norms of the wH are
uniformly bounded, and so w has finite support since it takes integer values. Therefore g ∈ ZGf
and we obtain the desired injectivity.

We remark that when f is invertible in `1(G) and {Gi}∞i=1 is a sequence of finite-index normal
subgroups of G with

⋂∞
j=1

⋃∞
i=j Gi = {e}, the measure entropy of αf with respect to the Haar

measure and the sofic approximation sequence Σ arising from {Gi}∞i=1 is equal to the exponential
growth rate of the number of Gi-fixed points and to the logarithm of the Fuglede-Kadison
determinant of f in the group von Neumann algebra of G [8]. This is also true for the topological
entropy with respect to Σ more generally whenever f is invertible in the full group C∗-algebra
[25].

3. Residually finite actions and MF algebras

A separable C∗-algebra is said to be an MF algebra if it can be expressed as the inductive
limit of a generalized inductive system of finite-dimensional C∗-algebras [6, Defn. 3.2.1]. This is
equivalent to the embeddability of A into

∏∞
n=1Mkn/

⊕∞
n=1Mkn for some sequence {kn}∞n=1 in

N [6, Thm. 3.2.2], as well as to the existence of norm microstates (see Section 11.1 of [11]). The
following characterizations are tailored for our purposes.

Proposition 3.1. Let A be a separable C∗-algebra. The following are equivalent.
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(1) A is an MF algebra,
(2) for every ε > 0 and finite set Ω ⊆ A there are a k ∈ N and a ∗-linear map ϕ : A→ Mk

such that ‖ϕ(ab)− ϕ(a)ϕ(b)‖ < ε and
∣∣‖ϕ(a)‖ − ‖a‖

∣∣ < ε for all a, b ∈ Ω,
(3) there is a dense ∗-subalgebra A0 of A such that for every ε > 0 and finite set Ω ⊆ A0

there are a k ∈ N and a ∗-linear map ϕ : A0 → Mk such that ‖ϕ(ab) − ϕ(a)ϕ(b)‖ < ε
and

∣∣‖ϕ(a)‖ − ‖a‖
∣∣ < ε for all a, b ∈ Ω.

Moreover, if A is unital then the maps ϕ in (2) and (3) may be taken to be unital.

Proof. (1)⇒(2). By Proposition 2.2.3(iii) of [6], there is an embedding Φ ofA into
∏∞
n=1Mkn/

⊕∞
n=1Mkn

for some sequence {kn}∞n=1 such that for each a ∈ A one has limn→∞ ‖an‖ = ‖a‖ for every
(an) ∈ π−1({a}) where π :

∏
λMkn →

∏
λMkn/

⊕
λMkn is the quotient map. Take a linear

map ψ : A →
∏∞
n=1Mkn such that π ◦ ψ = Φ. We may assume ψ to be ∗-linear by replacing

it with a 7→ (ψ(a) + ψ(a∗)∗))/2 if necessary. For each n let ψn : A → Mkn be the composi-
tion of ψ with the projection onto the nth factor. Then we have limn→∞ ‖ψn(a)‖ = ‖a‖ and
limn→∞ ‖ψn(ab)− ψn(a)ψn(b)‖ = 0 for all a, b ∈ A, from which (2) follows.

(2)⇒(3). Trivial.
(3)⇒(1). Since A is separable there is an increasing sequence Ω1 ⊆ Ω2 ⊆ · · · of finite subsets of

A0 such that
⋃∞
n=1 span(Ωn) is a dense ∗-subalgebra A1 of A. For each n ∈ N take a kn ∈ N and

a ∗-linear map ϕn : A0 → Mkn such that ‖ϕn(ab) − ϕn(a)ϕn(b)‖ < 1/n and
∣∣‖ϕn(a)‖ − ‖a‖

∣∣ <
1/n for all a, b ∈

⋃n
i=1 Ωi. Now define a map θ : A →

∏∞
n=1Mkn

/⊕∞
n=1Mkn by composing

a 7→ (ϕn(a))∞n=1 with the canonical projection map
∏∞
n=1Mkn →

∏∞
n=1Mkn

/⊕∞
n=1Mkn . Then

θ is isometric and multiplicative, and hence extends to an injective ∗-homomorphism A →∏∞
n=1Mkn

/⊕∞
k=1Mkn , yielding (1).

In the case that A is unital, note that in the proof of (1)⇒(2) the embedding Φ may be taken
to be unital, since we can lift the image of the unit under Φ to a projection (pn) in

∏
λMkn ,

producing an injective unital ∗-homomorphism from A to
∏∞
n=1 pnMknpn/

⊕∞
n=1 pnMknpn. This

enables us to arrange ψ to be unital, so that each ψn is unital. It follows that the maps ϕ in
conditions (2) and (3) may be taken to be unital. �

Note that the maps ϕ in Proposition 3.1 are typically not bounded.
A C∗-algebra is said to be quasidiagonal if it admits a faithful representation whose image is a

quasidiagonal set of operators. Voiculescu showed that a separable C∗-algebra A is quasidiagonal
if and only if for every ε > 0 and finite set Ω ⊆ A there are a n ∈ N and a contractive completely
positive map ϕ : A→Mn such that ‖ϕ(ab)−ϕ(a)ϕ(b)‖ < ε and ‖ϕ(a)‖ ≥ ‖a‖−ε for all a, b ∈ Ω
[39]. Blackadar and Kirchberg showed that a separable nuclear C∗-algebra is an MF algebra if
and only if it is quasidiagonal [6, Thm. 5.2.2]. The reduced group C∗-algebra of a free group on
two or more generators is an example of an MF algebra which is not quasidiagonal [21].

Voiculescu’s abstract characterization of quasdiagonality motivates the following definition,
which extends the concept of residual finiteness to actions on noncommutative C∗-algebras in
view of Proposition 3.3. We will formulate and prove Theorems 3.4 and 3.5 within this general
noncommutative framework.

Definition 3.2. Let α be an action of G on a separable C∗-algebra A. We say that α is
quasidiagonal if for every finite set Ω ⊆ A, finite set F ⊆ G, and ε > 0 there are an d ∈ N, an
action γ of G on Md, and a unital completely positive map ϕ : A→Md such that

(1) ‖ϕ(ab)− ϕ(a)ϕ(b)‖ < ε for all a, b ∈ Ω,
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(2) ‖ϕ(a)‖ ≥ ‖a‖ − ε for all a ∈ Ω, and
(3) ‖ϕ(αs(a))− γs(ϕ(a))‖ < ε for all a ∈ Ω and s ∈ F .

Note that the existence of a quasidiagonal action on A in the sense of the above definition
implies that A is quasidiagonal as a C∗-algebra.

Proposition 3.3. Let α be a residually finite continuous action of G on a compact metrizable
space X. Then α is quasidiagonal as an action of G on C(X).

Proof. Fix a compatible metric d on X. Let ε > 0 and let Ω be a finite subset of C(X). By
uniform continuity there is a δ > 0 such that |f(x) − f(y)| < ε for all f ∈ Ω and all points
x, y ∈ X satisfying d(x, y) < δ. By residual finiteness there are a finite set E, an action γ of G
on E, and a map ζ : E → X such that ζ(E) is δ-dense in X and d(ζ(s−1z), s−1ζ(z)) < δ for all
z ∈ E and s ∈ F . Define ϕ : C(X)→ C(E) by ϕ(f)(z) = f(ζ(z)) for all f ∈ C(X) and z ∈ E.
Then ϕ is a homomorphism, and for all f ∈ Ω and s ∈ F we have

‖ϕ(f)‖ = sup
x∈ζ(E)

|f(x)| ≥ ‖f‖ − ε

and

‖ϕ(αs(f))− γs(ϕ(f))‖ = sup
z∈E

∣∣f(s−1ζ(z))− f(ζ(s−1z)
∣∣ < ε,

showing that α is quasidiagonal. �

The proof of the following theorem is reminiscent of part of the proof of Theorem 7 in [31].

Theorem 3.4. Suppose that C∗λ(G) is an MF algebra. Let α be a quasidiagonal action of G on
a separable C∗-algebra A. Then Aoλ G is an MF algebra.

Proof. We view A as acting on a separable Hilbert space H via some faithful essential represen-
tation and Aoλ G as acting on H⊗ `2(G) in the standard way, as determined by aus(ξ ⊗ δt) =
α−1
st (a)ξ ⊗ δst for a ∈ A, s, t ∈ G, and ξ ∈ H, where {δs : s ∈ G} is the canonical basis of `2(G).
Since α is quasidiagonal there exist, for each n ∈ N, a positive integer kn, an action γn of G

on Mkn , and a unital completely positive map ϕn : A→Mkn so that

(1) limn→∞ ‖ϕn(ab)− ϕn(a)ϕn(b)‖ = 0 for all a, b ∈ A,
(2) limn→∞ ‖ϕn(a)‖ = ‖a‖ for all a ∈ A, and
(3) limn→∞ ‖ϕn(αs(a))− γn,s(ϕn(a))‖ = 0 for all a ∈ A and s ∈ G.

Note that if we view Mkn as acting on L2(Mkn , τ) via the GNS construction with respect to the
unique tracial state τ , then the action γ is implemented through conjugation by the unitaries ws
for s ∈ G defined by wsxη = γs(x)η where η is the canonical cyclic vector. Thus by replacing Mkn

with B(L2(Mkn , τ)) ∼= Mk2n
and relabeling we may assume that there are unitary representations

wn : G→ U(`kn2 ) such that

lim
n→∞

‖ϕn(αs(a))− wn,sϕn(a)w∗n,s‖ = 0

for all a ∈ A and s ∈ G.
Let Ω be a finite subset of the algebraic crossed product AoalgG, which by definition consists

of sums of the form
∑

s∈F asus where F is a finite subset of G and each as lies in A. Let
ε > 0. We will show the existence of a d ∈ N and ∗-linear map β : A oalg G → Md such that
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‖β(cc′) − β(c)β(c′)‖ < ε and
∣∣‖β(c)‖ − ‖c‖

∣∣ < ε for all c, c′ ∈ Ω. This is sufficient to complete
the proof by Proposition 3.1.

Regard Mkn as acting on `kn2 in the standard way. For N ∈ N we define the unital completely
positive map ΦN : A→

⊕∞
n=N Mkn by

ΦN (a) = (ϕN (a), ϕN+1(a), . . . ).

Write Dn for the C∗-subalgebra of B(`kn2 ⊗ `2(G)) generated by Mkn ⊗ 1 and the operators
wn,s ⊗ λs for s ∈ G. Define a ∗-linear map ΘN : Aoalg G→

⊕∞
n=N Dn by setting

ΘN (aus) = (ϕN (a)wN,s ⊗ λs, ϕN+1(a)wN+1,s ⊗ λs, . . . )
for a ∈ A and s ∈ G and extending linearly, which we can do since the subspaces Aus for s ∈ G
are orthogonal with respect to the canonical conditional expectation from Aoλ G onto A. We
aim to show the existence of an N ∈ N such that

(1) ‖ΘN (cc′)−ΘN (c)ΘN (c′)‖ < ε/2 for all c, c′ ∈ Ω, and
(2)

∣∣‖ΘN (c)‖ − ‖c‖
∣∣ < ε/2 for all c ∈ Ω.

Since Ω is finite we can find an ε′ > 0 such that, for all n ∈ N and c ∈ Ω, if
∣∣‖Θn(c)‖2−‖c‖2

∣∣ <
ε′ then

∣∣‖Θn(c)‖ − ‖c‖
∣∣ < ε/2. Take a finite set F ⊆ G such that for every c ∈ Ω we can write

c =
∑

s∈F ac,sus where ac,s ∈ A for each s ∈ F . Set M = maxc∈Ω,s∈F ‖ac,s‖. For each c ∈ Ω

take a unit vector ηc in H⊗ `2(G) such that ‖c‖ ≤ ‖cηc‖+ ε′/2 and ηc =
∑

t∈K ξc,t⊗ δt for some
finite set K ⊆ G and vectors ξc,t ∈ H. For notational simplicity we may assume K to be the
same for all c ∈ Ω.

Take a δ > 0 such that (1 + 2|F ||K|)|F |2δ2 ≤ ε′/2. Since the unital completely positive maps
ϕn are asymptotically multiplicative and asymptotically isometric, by the version of Voiculescu’s
theorem which appears as Theorem 2.10 in [9] and stems from [35] we can find a N ∈ N and a

unitary U :
⊕∞

n=N `
kn
2 → H such that∥∥UΦN (α−1

st (ac,s))U
−1 − α−1

st (ac,s)
∥∥ < δ

2

for all c ∈ Ω, s ∈ F , and t ∈ K. For s ∈ G set ws = (wN,s, wN+1,s, . . . ) ∈
⊕∞

n=N Mkn . By the
asymptotic equivariance of the maps ϕk, we may assume that N is large enough so that∥∥ΦN (α−1

st (ac,s))− w∗stΦN (ac,s)wst
∥∥ < δ

2
and hence ∥∥wstU−1α−1

st (ac,s)− ΦN (ac,s)wstU
−1
∥∥ < δ

for all c ∈ Ω, s ∈ F , and t ∈ K. We may moreover assume that N is large enough so that
‖ΘN (cc′)−ΘN (c)ΘN (c′)‖ < ε/2 for all c, c′ ∈ Ω, since for a, b ∈ A, and s, t ∈ G we have

‖ΘN (ausbut)−ΘN (aus)ΘN (but)‖ = sup
n≥N
‖ϕn(aαs(b))wn,st − ϕn(a)wn,sϕn(b)wn,t‖

≤ sup
n≥N
‖(ϕn(aαs(b))− ϕn(a)ϕn(αs(b)))wn,st‖

+ sup
n≥N
‖ϕn(a)(ϕ(αs(b))wn,s − wn,sϕn(b))wn,t‖,

where the last two suprema tend to zero as N → ∞, and the subspaces Aus for s ∈ G linearly
span Aoalg G.
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Let c ∈ Ω. Write Ũ for the unitary operator from (
⊕∞

n=N `
kn
2 )⊗ `2(G) to H⊗ `2(G) given by

Ũ(ζ ⊗ δt) = Uw−1
t ζ ⊗ δt. Since ηc is a unit vector, for s ∈ F we have∥∥∥∥∑

t∈K

(
wstU

−1α−1
st (ac,s)− ΦN (ac,s)wstU

−1
)
ξc,t ⊗ δst

∥∥∥∥2

=
∑
t∈K

∥∥(wstU−1α−1
st (ac,s)− ΦN (ac,s)wstU

−1
)
ξc,t
∥∥2

≤
∑
t∈K

∥∥wstU−1α−1
st (ac,s)− ΦN (ac,s)wstU

−1
∥∥2‖ξc,t‖2

< δ2.

For any vectors x1, . . . , xn, y1, . . . , yn ∈ H we have∥∥∥∥ n∑
i=1

xi

∥∥∥∥2

≤
(∥∥∥∥ n∑

i=1

yi

∥∥∥∥+

∥∥∥∥ n∑
i=1

(xi − yi)
∥∥∥∥)2

≤
∥∥∥∥ n∑
i=1

yi

∥∥∥∥2

+

(
1 + 2

∥∥∥∥ n∑
i=1

yi

∥∥∥∥)∥∥∥∥ n∑
i=1

(xi − yi)
∥∥∥∥2

and so applying this inequality and the crude bound

‖ΘN (c)Ũ−1ηc‖ =

∥∥∥∥∑
s∈F

∑
t∈K

ΦN (ac,s)wstU
−1ξc,t ⊗ δst

∥∥∥∥ ≤∑
s∈F

∑
t∈K
‖ΦN (ac,s)‖ ≤ |F ||K|.(∗)

we obtain

‖cηc‖2 =

∥∥∥∥Ũ−1
∑
s∈F

∑
t∈K

α−1
st (ac,s)ξc,t ⊗ δst

∥∥∥∥2

=

∥∥∥∥∑
s∈F

∑
t∈K

wstU
−1α−1

st (ac,s)ξc,t ⊗ δst
∥∥∥∥2

≤ ‖ΘN (c)Ũ−1ηc‖2 +
(
1 + 2‖ΘN (c)Ũ−1ηc‖

)
×
(∑
s∈F

∥∥∥∥∑
t∈K

(
wstU

−1α−1
st (ac,s)− ΦN (ac,s)wstU

−1
)
ξc,t ⊗ δst

∥∥∥∥)2

≤ ‖ΘN (c)‖2 + (1 + 2|F ||K|)|F |2δ2

= ‖ΘN (c)‖2 +
ε′

2
.

Consequently
∥∥ΘN (c)

∥∥2 ≥ ‖cηc‖2 − ε′/2 ≥ ‖c‖2 − ε′.
Next let us show that ‖c‖2 ≥ ‖ΘN (c)‖2 − ε′. Take a unit vector η in H ⊗ `2(G) such that

‖ΘN (c)‖ ≤ ‖ΘN (c)Ũ−1η‖+ ε′/2. The idea is to argue as in the above paragraph, reversing the
roles of c and ΘN (c) and replacing ηc with η. Notice that the only way the particular choice of
the vectors ηc entered into the above estimates, besides their being of norm one, was in obtaining
the bound (∗). Here however we can simply take ‖Ũ−1cη‖ ≤ ‖c‖ as the replacement for this
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bound, in which case

‖ΘN (c)Ũ−1η‖2 =

∥∥∥∥∑
s∈F

∑
t∈K

ΦN (ac,s)wstU
−1ξc,t ⊗ δst

∥∥∥∥2

≤ ‖Ũ−1cη‖2 +
(
1 + 2‖Ũ−1cη‖

)
×
(∑
s∈F

∥∥∥∥∑
t∈K

(
ΦN (ac,s)wstU

−1 − wstU−1α−1
st (ac,s)

)
ξc,t ⊗ δst

∥∥∥∥)2

≤ ‖c‖2 + 3|F |2δ2

= ‖c‖2 +
ε′

2

and hence ‖c‖2 ≥ ‖ΘN (c)Ũ−1η‖2 − ε′/2 ≥ ‖ΘN (c)‖2 − ε′. By our choice of ε′ we conclude that∣∣‖ΘN (c)‖ − ‖c‖
∣∣ < ε/2 for all c ∈ Ω, so that the map ΘN satisfies the desired properties.

Now let M be an integer greater than or equal to N to be determined shortly. Set D =⊕M
n=N Dn. Define the ∗-linear map θ : Aoalg G→ D by declaring that

θ(aus) = (ϕN (a)wn,s ⊗ λs, . . . , ϕM (a)wn,s ⊗ λs)
for a ∈ A and s ∈ G and extending linearly. In view of the properties of ΘN we have ‖θ(cc′)−
θ(c)θ(c′)‖ < ε/3 for all c, c′ ∈ Ω and, by taking M large enough,

∣∣‖θ(c)‖ − ‖c‖∣∣ < ε/2 for all
c ∈ Ω.

Set k =
∑M

n=N kn. Note that D is a C∗-subalgebra of B(
⊕M

n=N `
kn
2 ) ⊗ C∗λ(G) as canonically

represented on (
⊕M

n=N `
kn
2 ) ⊗ `2(G) where the latter is identified in the standard way with⊕M

n=N (`kn2 ⊗ `2(G)). Via some fixed identification of B(
⊕M

n=N `
kn
2 ) with Mk we view D as a

C∗-subalgebra of Mk ⊗ C∗λ(G). By hypothesis C∗λ(G) is MF, and hence so is Mk ⊗ C∗λ(G), for
if C∗λ(G) ↪→

∏∞
n=1Mkn

/⊕∞
n=1Mkn is an embedding witnessing the fact that C∗λ(G) is MF then

we obtain an embedding

Mk ⊗ C∗λ(G) ↪→Mk ⊗

( ∞∏
n=1

Mkn

/ ∞⊕
n=1

Mkn

)
∼=
∞∏
n=1

(
Mk ⊗Mkn

)/ ∞⊕
n=1

(
Mk ⊗Mkn

)
.

Thus by Proposition 3.1 there is a d ∈ N and a ∗-linear map ϕ : Mk ⊗ C∗λ(G)→ Md such that,
for all c, c′ ∈ Ω,

(1) ‖ϕ(θ(c)θ(c′))− ϕ(θ(c))ϕ(θ(c′))‖ < ε/3,
(2) ‖ϕ(θ(cc′)− θ(c)θ(c′))‖ < ‖θ(cc′)− θ(c)θ(c′)‖+ ε/3, and
(3) |‖ϕ(θ(c))‖ − ‖θ(c)‖

∣∣ < ε/2.

Set β = ϕ ◦ θ. Then β is ∗-linear, and for all c, c′ ∈ Ω we have

‖β(cc′)− β(c)β(c′)‖ ≤ ‖ϕ(θ(cc′)− θ(c)θ(c′))‖+ ‖ϕ(θ(c)θ(c′))− ϕ(θ(c))ϕ(θ(c′))‖

≤ ‖θ(cc′)− θ(c)θ(c′)‖+
ε

3
+
ε

3
< ε

and ∣∣‖β(c)‖ − ‖c‖
∣∣ ≤ ∣∣‖ϕ(θ(c))‖ − ‖θ(c)‖

∣∣+
∣∣‖θ(c)‖ − ‖c‖∣∣ < ε

2
+
ε

2
= ε,

completing the proof. �
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Theorem 3.5. Suppose that C∗λ(G) is quasidiagonal. Let α be a quasidiagonal action of G on
a separable nuclear C∗-algebra A. Then Aoλ G is quasidiagonal.

Proof. By a result of Rosenberg (see the appendix of [22]), the quasidiagonality of C∗λ(G) implies
that G is amenable. Since A is nuclear, it follows that the crossed product A oλ G is nuclear
(see Section IV.3.5 of [2]). Since C∗λ(G) is quasidiagonal it is an MF algebra, and so A oλ G
is an MF algebra by Theorem 3.4. Since separable nuclear MF algebras are quasidiagonal [6,
Thm. 5.2.2], we conclude that Aoλ G is quasidiagonal. �

An action of G on a compact Haudorff space X is said to be topologically free if the set of
points in X with trivial isotropy group is dense.

Corollary 3.6. Suppose that G is amenable. Let Gy X be a topologically free residually finite
action on a compact metrizable space. Then C(X) oλ G is quasidiagonal.

Proof. Because it admits a topologically free residually finite action, G must be a residually
finite group, as is easy to verify. Since the full and reduced group C∗-algebras of G coincide by
amenability, it follows that C∗λ(G) is quasidiagonal [14, Cor. 4]. Since C(X) is nuclear we obtain
the conclusion by Theorem 3.5. �

Now we fix an r ∈ {2, 3, . . . ,∞} and concentrate on actions of the free group Fr for the remain-
der of the section. Our aim is to show that, for continuous actions of Fr on a zero-dimensional
compact metrizable space, residual finiteness is equivalent to the reduced crossed product being
an MF algebra. Note that such a crossed product cannot be quasidiagonal since it contains
C∗λ(Fr), which, by a result of Rosenberg [22], is not quasidiagonal since Fr is nonamenable. The
property of being an MF algebra is the appropriate substitute for quasidiagonality in the nona-
menable case. Indeed quasidiagonality and the property of being an MF algebra are equivalent
for separable nuclear C∗-algebras [6, Thm. 5.2.2], and so quasidiagonality in the general group
action setting can viewed as an artifact of nuclearity.

The following two lemmas are standard types of perturbation results.

Lemma 3.7. Let η > 0. Then there is a δ > 0 such that whenever d ∈ N and p and q are
projections in Md satisfying ‖pq‖ < δ there exists a projection q′ ∈ (1 − p)Md(1 − p) such that
‖q′ − q‖ < η.

Proof. Let δ be a strictly positive number less than η/6 to be further specified. Let p and q be
projections in some matrix algebra Md such that ‖pq‖ < δ. Set a = (1− p)q(1− p). Then

‖q − a‖ = ‖pq + qp− pqp‖ ≤ 3‖pq‖ < 3δ.

Since

‖a2 − a‖ ≤ ‖a2 − q2‖+ ‖q − a‖ < ‖(a− q)a‖+ ‖q(a− q)‖+ 3δ < 9δ,

if δ is small enough as a function of η there exists, by the functional calculus, a projection
q′ ∈ (1−p)Md(1−p) such that ‖q′−a‖ < η/2. Since δ < η/6, we have ‖q′−q‖ ≤ ‖q′−a‖+‖a−q‖ <
η/2 + η/2 = η, as desired. �

Lemma 3.8. Let n ∈ N and ε > 0. Then there exists a δ > 0 such that whenever d ∈ N and
a1, . . . , an are n self-adjoint elements in Md satisfying

(1) ‖a2
i − ai‖ < δ for all i = 1, . . . , n,
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(2) ‖aiaj‖ < δ for all distinct i, j = 1, . . . , n, and
(3)

∑n
i=1 ai = 1

there exist pairwise orthogonal projections p1, . . . , pn ∈Md such that
∑n

i=1 pi = 1 and ‖pi−ai‖ <
ε for all i = 1, . . . , n.

Proof. We may assume that ε ≤ 1. Using Lemma 3.7 we successively choose numbers δn >
δn−1 > · · · > δ1 > 0 such that δn = ε/2n and, for each k = 1, . . . , n − 1, whenever d ∈ N
and p and q are projections in Md satisfying ‖pq‖ < (k + 1)δk there exists a projection q′ ∈
(1− p)Md(1− p) such that ‖q′ − q‖ < δk+1. Let δ be a strictly positive number less than δ1/4n
to be further specified. Let a1, . . . , an be n self-adjoint elements in some matrix algebra Md such
that ‖a2

i −ai‖ < δ for all i = 1, . . . , n, ‖aiaj‖ < δ for all distinct i, j = 1, . . . , n, and
∑n

i=1 ai = 1.
By the functional calculus, we may take δ to be small enough as a function of ε in order to be
able to find projections q1, . . . , qn ∈Md such that ‖ai− qi‖ < ε/2n for all i = 1, . . . , n. Then for
all distinct i, j = 1, . . . , n we have

‖qiqj‖ ≤ ‖(qi − ai)qj‖+ ‖ai(qj − aj)‖+ ‖aiaj‖
≤ ‖qi − ai‖+ (‖qi‖+ ‖ai − qi‖)‖qj − aj‖+ δ < 4δ.

Using our choice of the numbers δn, . . . , δ1 as given by Lemma 3.7, we successively construct
pairwise orthogonal projections p1, . . . , pn ∈ Md such that ‖pi − qi‖ < ε/2n for all i = 1, . . . , n.

More precisely, at the kth stage we use the fact that the projections p =
∑k

i=1 pi and q = qk+1

satisfy

‖pq‖ ≤
k∑
i=1

‖piqk+1‖ ≤
k∑
i=1

(
‖pi − qi‖+ ‖qiqk+1‖

)
≤ δ1 + · · ·+ δk + 4kδ < (k + 1)δk

to obtain a projection pk+1 with ‖pk+1 − qk+1‖ < δk+1. We then have ‖pi − ai‖ < ε/n ≤ ε for
all i = 1, . . . , n, and∥∥∥∥1−

n∑
i=1

pi

∥∥∥∥ =

∥∥∥∥ n∑
i=1

(ai − pi)
∥∥∥∥ ≤ n∑

i=1

‖ai − pi‖ < n · ε
n
≤ 1,

which shows that the projection 1−
∑n

i=1 pi must be zero, i.e.,
∑n

i=1 pi = 1. �

Lemma 3.9. Let r ∈ {2, 3, . . . ,∞}. Let X be a zero-dimensional compact metrizable space and
Fr y X a continuous action. Suppose that C(X) oλ Fr is an MF algebra. Then the action is
residually finite.

Proof. Since the MF property passes to C∗-subalgebras and residual finiteness is a condition
that is witnessed on finitely many group elements at a time, we may assume that r is finite. We
may also assume that X is infinite, for otherwise the action is automatically residually finite.
Then by metrizability we can take an enumeration q1, q2, . . . of the projections in C(X). On X
we define the compatible metric

d(x, y) =
∞∑
i=1

2−j |qj(x)− qj(y)|.
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Let ε > 0. Choose a n ∈ N such that 2−n+1 < ε. Take a partition of unity P = {p1, . . . , pm} ⊆
C(X) consisting of nonzero projections such that (i) each of the projections q1, . . . , qn is a sum of
projections in P, and (ii) the clopen subsets of X of which the projections in P are characteristic
functions all have diameter less than ε.

Write u1, . . . , ur for the canonical unitaries in the crossed product C(X)oλ Fr corresponding
to the standard generators s1, . . . , sr of Fr. Write Ω for the set of all elements in C(X) oλ Fr
of the form up or pu∗ where p ∈ P ∪ {1} and u ∈ {1, u1, . . . , ur}. Write A for the unital
commutative C∗-subalgebra of C(X)oλFr generated by elements of the form upu∗ where p ∈ P

and u ∈ {1, u1, . . . , ur}. Let δ > 0 be such that ((1+δ)2 +(1+δ)+1)δ < 1/4. Let δ′ be a strictly
positive number less than δ to be further specified. Since C(X)oλ Fr is MF, by Proposition 3.1
there exist a d ∈ N and a unital ∗-linear map ϕ : C(X) oλ Fr →Md such that

(1)
∣∣‖ϕ(a)‖ − ‖a‖

∣∣ < δ‖a‖ for all a ∈ A,
(2) ‖ϕ(ukpiu

∗
kulpju

∗
l )− ϕ(ukpiu

∗
k)ϕ(ulpju

∗
l )‖ < δ′ for all i, j = 1, . . . ,m and k, l = 1, . . . , r,

(3) ‖ϕ(ukpiu
∗
k)− ϕ(uk)ϕ(piu

∗
k)‖ < δ for all i = 1, . . . ,m and k = 1, . . . , r,

(4) ‖ϕ(piu
∗
k)− ϕ(pi)ϕ(u∗k)‖ < δ for all i = 1, . . . ,m and k = 1, . . . , r,

(5) ‖ϕ(uk)ϕ(uk)
∗ − 1‖ < δ′ for all k = 1, . . . , r.

Since every minimal projection in A has the form pi0u1pi1u
∗
1 · · ·urpiru∗r for some i0, . . . , ir ∈

{1, . . . ,m}, by repeated use of (1) and (2) and the triangle inequality we see that by taking δ′

small enough we can arrange for ‖ϕ(p)ϕ(p′)‖ and ‖ϕ(p)2−ϕ(p)‖ to be as small as we wish for all
distinct minimal projections p, p′ ∈ A. Thus assuming δ′ to be small enough we can construct
a unital homomorphism Ψ : A → Md such that ‖Ψ(a) − ϕ(a)‖ < δ‖a‖ for all a ∈ A by using
Lemma 3.8 to perturb the images of the minimal projections in A under ϕ to pairwise orthogonal
projections in Md and defining Ψ(p) for a minimal projection p ∈ A to be the perturbation of
ϕ(p). Take a maximal commutative subalgebra B of Md containing Ψ(A). By recoordinatizing
via an automorphism of Md, we may assume B to be the diagonal subalgebra of Md.

In view of condition (3) above, for each k = 1, . . . , r we can define the unitary vk =

ϕ(uk)/
√
ϕ(uk)ϕ(uk)∗ in Md and we may arrange that ‖ϕ(uk) − vk‖ < δ by taking δ′ to be

small enough. For i = 1, . . . ,m and k = 1, . . . , r we have

‖ϕ(uk)ϕ(pi)ϕ(uk)
∗ − vkΨ(pi)v

∗
k‖

≤ ‖(ϕ(uk)− vk)ϕ(pi)ϕ(uk)
∗‖+ ‖vk(ϕ(pi)−Ψ(pi))ϕ(uk)

∗‖
+ ‖vkΨ(pi)(ϕ(uk)− vk)∗‖

≤ (1 + δ)2‖ϕ(uk)− vk‖+ (1 + δ)‖ϕ(pi)−Ψ(pi)‖+ ‖ϕ(uk)− vk‖

≤ ((1 + δ)2 + (1 + δ) + 1)δ <
1

4

in which case

‖Ψ(ukpiu
∗
k)− vkΨ(pi)v

∗
k‖

≤ ‖Ψ(ukpiu
∗
k)− ϕ(ukpiu

∗
k)‖+ ‖ϕ(ukpiu

∗
k)− ϕ(uk)ϕ(piu

∗
k)‖

+ ‖ϕ(uk)‖‖ϕ(piu
∗
k)− ϕ(pi)ϕ(u∗k)‖+ ‖ϕ(uk)ϕ(pi)ϕ(uk)

∗ − vkΨ(pi)v
∗
k‖

< δ + δ + (1 + δ)δ +
1

4
< 1.



14 DAVID KERR AND PIOTR W. NOWAK

It follows that Ψ(ukpiu
∗
k) and vkΨ(pi)v

∗
k are homotopic projections, and thus have the same

trace. But the trace of vkΨ(pi)v
∗
k is the same as the trace of Ψ(pi). Thus for all i = 1, . . . ,m

and k = 1, . . . , r the projections Ψ(ukpiu
∗
k) and Ψ(pi) have the same trace. It follows that for

each k = 1, . . . , r we can find a permutation matrix wk ∈Mk such that wkΨ(pi)w
∗
k = Ψ(ukpiu

∗
k)

for all i = 1, . . . ,m. Note that since wk is a permutation matrix we have wkBw
∗
k = B.

Write P (B) for the pure state space of B, which has d elements. Let ω ∈ P (B). Since
A is a unital C∗-subalgebra of C(X), by Gelfand theory there exists a point xω ∈ X which,
when viewed as a pure state x̂ω on C(X), restricts to ω ◦ Ψ on A. Set ζ(ω) = xω. This
defines a map ζ : P (B) → X. Now for each i = 1, . . . ,m the projection Φ(pi) is nonzero since
‖Φ(pi)‖ ≥ ‖ϕ(pi)‖− δ ≥ ‖pi‖− 2δ > 0, and so there is an ω ∈ P (B) such that ω(Φ(pi)) = 1 and
hence pi(xω) = x̂ω(pi) = 1. It follows that the image of ζ is ε-dense in X since the supports of
the projections p1, . . . , pm all have diameter less than ε.

Let Fr act on P (B) so that for each k = 1, . . . , r the generator sk acts as the bijection
ω 7→ ω ◦Adw∗k. Then for ω ∈ P (B), k = 1, . . . , r, and i = 1, . . . ,m we have

(skx̂ω)(pi) = x̂ω(α−1
sk

(pi)) = x̂ω(u∗kpiuk)

= (ω ◦Ψ)(u∗kpiuk) = (ω ◦Adw∗k)(Ψ(pi))

= x̂skω(pi).

so that (skx̂ω)(qi) = x̂skω(qi) for i = 1, . . . , n and hence

d(skζ(ω), ζ(skω)) = d(skx̂ω, x̂skω) =
∞∑
i=1

2−i|(skx̂ω)(qi)− x̂skω(qi)| ≤
1

2n−1
< ε.

Since ε was an arbitrary positive number we conclude that the action is residually finite. �

Theorem 3.10. Let r ∈ {2, 3, . . . ,∞}. Let X be a zero-dimensional compact metrizable space
and Fr y X a continuous action. Then the action is residually finite if and only if C(X)oλ Fr
is an MF algebra.

Proof. Suppose that the action is residually finite. Then by Proposition 3.3 the action is qua-
sidiagonal, and since C∗λ(Fr) is an MF algebra [21] we infer by Theorem 3.4 that C(X)oλ Fr is
an MF algebra. The other direction is Lemma 3.9. �

Note that for r = 1 the conclusion of Theorem 3.10 is valid without the zero-dimensionality
hypothesis by Pimsner’s result from [31] (see Section 7).

4. Paradoxical decompositions

For a compact Hausdorff space X we write CX for the collection of clopen subsets of X and
BX for the collection of Borel subsets of X.

Definition 4.1. Suppose that G acts on a set X. Let S be a collection of subsets of X. Let k
and l be integers with k > l > 0. We say that a set A ⊆ X is (G,S , k, l)-paradoxical (or simply
(G,S )-paradoxical when k = 2 and l = 1) if there exist A1, . . . , An ∈ S and s1, . . . , sn ∈ G
such that

∑n
i=1 1Ai ≥ k · 1A and

∑n
i=1 1siAi ≤ l · 1A. The set A is said to be completely

(G,S )-nonparadoxical if it fails to be (G,S , k, l)-paradoxical for all integers k > l > 0.
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Remark 4.2. Suppose that S is actually a subalgebra of the power set PX , which will always
be the case in our applications. Then we can express the (G,S , k, l)-paradoxicality of a set
A in S by partitioning copies of A instead of merely counting multiplicities. More precisely,
A is (G,S , k, l)-paradoxical if and only if for each i = 1, . . . , k there exist an ni ∈ N and
Ai,1, . . . , Ai,ni ∈ S , si,1, . . . , si,ni ∈ G, and mi,1, . . . ,mi,ni ∈ {1, . . . , l} so that

⋃ni
j=1Ai,j = A for

each i = 1, . . . , k and the sets si,jAi,j ×{mi,j} ⊆ A×{1, . . . , l} for j = 1, . . . , ni and i = 1, . . . , k
are pairwise disjoint. For the nontrivial direction, observe that if A1, . . . , An and s1, . . . , sn are
as in the definition of (G,S , k, l)-paradoxicality then the sets of the form

A ∩
(( ⋂

i∈P
Ai

)
\

⋃
i∈{1,...,n}\P

Ai

)
∩ s−1

j

(( ⋂
i∈Q

siAi

)
\

⋃
i∈{1,...,n}\Q

siAi

)
,

where P and Q are nonempty subsets of {1, . . . , n} with |P | ≤ k and |Q| ≤ l and j ∈ P , can be
relabeled so as to produce the desired Ai,j .

Suppose that G acts on a set X. Let S be a G-invariant subalgebra of the power set PX of
X. The type semigroup S(X,G,S ) of the action with respect to S is the preordered semigroup{⋃

i∈I
Ai × {i} : I is a finite subset of N and Ai ∈ S for each i ∈ I

}/
∼

where ∼ is the equivalence relation under which P =
⋃
i∈I Ai×{i} is equivalent to Q =

⋃
i∈J Bi×

{i} if there exist ni,mi ∈ N, Ci ∈ S , and si ∈ G for i = 1, . . . , k such that P =
⊔k
i=1Ci × {ni}

and Q =
⊔k
i=1 siCi × {mi}. Addition is defined by[⋃
i∈I

Ai × {i}
]

+

[ ⋃
i∈J

Bi × {i}
]

=

[(⋃
i∈I

Ai × {i}
)
∪
( ⋃
i∈J+max I

Bi × {i}
)]
,

and for the preorder we declare that a ≤ b if b = a+ c for some c.
The following is a standard observation.

Lemma 4.3. Let X be a compact Hausdorff space and G y X a continuous action. Let B be
a nonempty Borel subset of X. Suppose that there is a G-invariant Borel probability measure µ
on X with µ(B) > 0. Then B is completely (G,BX)-nonparadoxical.

Proof. Let µ be a G-invariant Borel probability measure on X with µ(B) > 0. Suppose that B
fails to be completely (G,BX)-nonparadoxical. Then there are k, l ∈ N with k > l and, for each
i = 1, . . . , k, an ni ∈ N, Bi,1, . . . , Bi,ni ∈ BX , si,1, . . . , si,ni ∈ G, and m1,1, . . . ,mi,ni ∈ {1, . . . , l}
such that

⋃ni
j=1Bi,j = B for every i and the sets si,jBi,j × {mi,j} are pairwise disjoint subsets

of B × {1, . . . , l}. Since µ is G-invariant we have

kµ(B) ≤
k∑
j=1

n∑
i=1

µ(Bi,j) =

k∑
j=1

n∑
i=1

µ(si,jBi,j) = µ

( k⋃
j=1

n⋃
i=1

µ(si,jBi,j)

)
≤ lµ(B),

and dividing by µ(B) yields k ≤ l, a contradiction. We conclude that B is completely (G,BX)-
nonparadoxical. �

Lemma 4.4. Let G y X be a continuous action on a zero-dimensional compact metrizable
space. Let A be a completely (G,CX)-nonparadoxical clopen subset of X such that G · A = X.
Then there exists a G-invariant Borel probability measure µ on X such that µ(A) > 0.
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Proof. We claim that there is a state σ on S(X,G,CX) such that σ([A]) > 0. Indeed suppose
that this is not the case. Since G · A = X, by compactness there is a finite set F ⊂ G such
that F ·A = X and hence [X] ≤ |F |[A]. By the Goodearl-Handelman theorem [18, Lemma 4.1]
we can find n,m ∈ N such that m > n|F | and m[A] ≤ n[X], in which case m[A] ≤ n|F |[A],
contradicting the complete (G,CX)-nonparadoxicality of A. Thus the desired σ exists.

By Lemma 5.1 of [34] there is a G-invariant Borel measure ν on X such that ν(B) = σ([B])
for all clopen sets B ⊆ X. Since ν(X) ≥ ν(V ) > 0 and

ν(X) = ν(F ·A) ≤
⋃
s∈F

ν(sA) = |F |ν(A) <∞,

we can set µ(·) = ν(·)/ν(X) to obtain a G-invariant Borel probability measure on X. �

Proposition 4.5. Let G y X be a minimal continuous action on a zero-dimensional compact
metrizable space. Then the following are equivalent:

(1) there is a G-invariant Borel probability measure on X,
(2) X is completely (G,CX)-nonparadoxical,
(3) there is a nonempty clopen subset of X which is completely (G,CX)-nonparadoxical.

Proof. Lemma 4.3 yields (1)⇒(2), while (2)⇒(3) is trivial. Since for any clopen set A ⊆ X we
have G ·A = X by minimality, we obtain (3)⇒(1) from Lemma 4.4. �

Proposition 4.6. Let α be a continuous action of G on a zero-dimensional compact metrizable
space X such that C(X) oλ G is stably finite. Then every nonempty clopen subset of X is
completely (G,CX)-nonparadoxical.

Proof. Write A = C(X) oλ G for economy. Suppose that there is a nonempty clopen subset V
of X which fails to be completely (α,CX)-nonparadoxical. Then there are k, l ∈ N with k > l,
a clopen partition {V1, . . . , Vn} of V , and si,j ∈ G and mi,j ∈ {1, . . . , l} for i = 1, . . . , n and
j = 1, . . . , k such that the sets si,jVi × {mi,j} ⊆ V × {1, . . . , l} for i = 1, . . . , n and j = 1, . . . , k
are pairwise disjoint. For i = 1, . . . , n and j = 1, . . . , k set

ai,j = emi,j ,j ⊗ usi,j1Vi ∈Mk ⊗A

where the first component in the elementary tensor is a standard matrix unit in Mk. Then aij
is a partial isometry with

(ai,j)
∗ai,j = ejj ⊗ 1Vi ,

ai,j(ai,j)
∗ = emi,jmi,j ⊗ 1si,jVi .

Now since
k∑
j=1

n∑
i=1

(ai,j)
∗ai,j =

k∑
j=1

ejj ⊗ 1V = 1⊗ 1V ,

in K0(A) we have
∑k

j=1

∑n
i=1[(ai,j)

∗ai,j ] = k[1V ]. On the other hand,

k∑
j=1

n∑
i=1

ai,j(ai,j)
∗ ≤

( l∑
j=1

ejj

)
⊗ 1V ,
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so that in K0(A) we have k[1V ] ≤ l[1V ] and hence −[1V ] ≥ (l−k−1)[1V ] ≥ 0. Thus there exists
a projection p in some matrix algebra over A such that [p] + [1V ] = 0. We can thus find a d ∈ N
and pairwise orthogonal projections p′, q, r ∈Md ⊗A such that

(1) p′ and q are Murray-von Neumann equivalent to p and 1V , respectively, in some matrix
algebra over A (viewing 1V and p as sitting in arbitrarily large matrix algebras over A
as consistent with the definition of K0), and

(2) p′ + q + r is Murray-von Neumann equivalent to r in Md ⊗A.

Since 1V 6= 0 the projection q is not equal to zero, and so p′ + q + r is an infinite projection.
This means that C(X) oλ G fails to be stably finite, contradicting (1). �

Finally we discuss the relation between residual finiteness and complete nonparadoxicality in
the zero-dimensional setting.

Proposition 4.7. Let G y X be a residually finite continuous action on a zero-dimensional
compact metrizable space. Then every nonempty clopen subset of X is completely (G,CX)-
nonparadoxical.

Proof. Suppose to the contrary that there is a nonempty clopen set A ⊆ X which is (G,CX , k, l)-
nonparadoxical for some integers k > l > 0. Then there exist nonempty clopen sets A1, . . . , An ⊆
A and s1, . . . , sn ∈ G such that

∑n
i=1 1Ai ≥ k ·1A and

∑n
i=1 1siAi ≤ l ·1A. Let d be a compatible

metric on X. Take an ε > 0 which is smaller than the Hausdorff distance between Ai and X \Ai
for each i = 1, . . . , n and smaller that the Hausdorff distance between siAi and X \ siAi for
each i = 1, . . . , n. By residual finiteness there is a finite set E, an action of G on E, and a map
ζ : E → X such that ζ(E) is ε-dense in X and d(ζ(siz), siζ(z)) < ε for all z ∈ E and i = 1, . . . , n.
Since ζ(E) is ε-dense in X, ζ−1(A) is nonempty. For each i = 1, . . . , n set Ei = ζ−1(Ai).

Each element of ζ−1(A) is contained in ζ−1(siAi) for at most l values of i, and thus, since
ζ(siEi) ⊆ siAi for i = 1, . . . , n by our choice of ε,

l|ζ−1(A)| ≥
n∑
i=1

|ζ−1(siAi)| ≥
n∑
i=1

|siEi| =
n∑
i=1

|Ei|.

On the other hand, each element of ζ−1(A) is contained in ζ−1(Ai) for at least k values of i, so
that

∑n
i=1 |Ei| ≥ k|ζ−1(A)|. Therefore l ≥ k, a contradiction. �

Residual finiteness is not a necessary condition for the conclusion in Proposition 4.7, as can
be seen for G = Z as follows. Recall that the group G is said to be supramenable if for every
nonempty set A ⊆ G there is a finitely additive left-invariant measure µ : PX → [0,+∞] with
µ(A) = 1 [33] (see Chapter 10 of [40]). Every group of polynomial growth, in particular Z, is
supramenable [33]. Supramenability is easily seen to be equivalent to the property that for every
action of G on a set X and every nonempty set A ⊆ X there is a finitely additive G-invariant
measure µ : PX → [0,+∞] with µ(A) = 1. It follows by a standard observation as in the
proof of Lemma 4.3 that, for every action of a supramenable G on a set X, every subset of X is
completely (G,PX)-nonparadoxical, where PX is the power set of X. On the other hand, for
Z-actions residual finiteness is the same as chain recurrence (see the beginning of Section 7), and
one can easily construct a continuous Z-action on the Cantor set which fails to be chain recurrent
using Lemma 2 of [31], which shows that if X a compact Haudorff space and T : X → X is a
homeomorphism then T is chain recurrent if and only if there does not exist an open set U ⊆ X
such that U \ T (U) 6= ∅ and T (U) ⊆ U .
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5. Minimal actions of Fr

Here we give several characterizations of residual finiteness for minimal actions of the free
group Fr where r ∈ N∪{∞}. This is done by stringing together a variety of known results with
a few of the observations from the previous sections.

The following lemma is essentially extracted from the proof of Proposition 2.3 in [27]. Note
that in that proof it is claimed that, given a continuous action of Fr on compact metric space
X preserving a Borel probability measure, for every ε one can partition X into finitely many
measurable subsets of equal (and hence rational) measure and diameter less than ε. This is false
in general, as X could contain a clopen subset A of irrational measure and such an A would be
equal to a union of sets in the partition whenever ε is smaller than the distance between x and
y for every x ∈ A and y ∈ X \ A. The argument can be modified to take of this problem, but
we will instead give a simpler proof that was supplied to us by Hanfeng Li.

Lemma 5.1. Let X be a compact metrizable space and Fr y X a continuous action. Suppose
there exists an Fr-invariant Borel probability measure µ on X with full support. Then the action
is residually finite.

Proof. We may assume that r is finite in view of the definition of residual finiteness. Write S
for the standard generating set for Fr. Let ε > 0. Take a finite measurable partition P of X
whose elements have nonzero measure and diameter less than ε. Write Q for the collection of
sets in the join

∨
s∈S sP which have nonzero measure. Consider, for each P ∈ P and s ∈ S, the

homogeneous linear equation
∑

Q∈Q,Q⊆P xQ =
∑

Q∈Q,Q⊆sP xQ in the variables xQ for Q ∈ Q.

This system of equations has the solution xQ = µ(Q) for Q ∈ Q, and, since the rational solutions
are dense in the set of real solutions by virtue of the rationality of the coefficients, we can find a
solution consisting of rational xQ which are close enough to the corresponding quantities µ(Q)
to be all nonzero. Pick a positive integer M such that MxQ is an integer for every Q ∈ Q. For
each Q ∈ Q take a set EQ of cardinality MxQ and define E to be the disjoint union of these
sets. Take a map ζ : E → X which sends EQ into Q for each Q ∈ Q. Now for every P ∈ P

and s ∈ S the sets
⋃
Q∈Q,Q⊆P EQ and

⋃
Q∈Q,Q⊆sP EQ have the same cardinality and so we can

define an action of Fr on E by having a generator s send
⋃
Q∈Q,Q⊆P EQ to

⋃
Q∈Q,Q⊆sP EQ in

some arbitrarily chosen way for each P ∈ P. Then ζ and this action on E witness the definition
of residual finiteness with respect to ε and the generating set S. �

In [13] Cuntz and Pedersen introduced, for an action α of G on a C∗-algebra A, a notion of
G-finiteness, which means that there do not exist distinct elements a, b ∈ A such that (i) a ≤ b
and (ii) a and b are G-equivalent in the sense that there exist a collection of elements ui,si ∈ A,
where i ranges in an arbitrary index set I and each si is an element of G, such that

a =
∑
i∈I

u∗i,siui,si and b =
∑
i∈I

αsi(ui,siu
∗
i,si)

where the sums are norm convergent. Theorem 8.1 of [13] asserts that A is G-finite if and only
if it has a separating family of G-invariant tracial states, which is equivalent to the existence of
a faithful G-invariant tracial state if A is separable. We will say that a continuous action of G
on a compact Hausdorff space X is G-finite (in the Cuntz-Pedersen sense) if the induced action
on C(X) is G-finite.
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Theorem 5.2. Let X be a compact metrizable space and Fr y X a minimal continuous action.
Then the following are equivalent:

(1) the action is residually finite,
(2) there is an Fr-invariant Borel probability measure on X,
(3) C(X) oλ Fr is an MF algebra,
(4) C(X) oλ Fr is stably finite,
(5) the action is Fr-finite in the Cuntz-Pedersen sense,

If moreover X is zero-dimensional then we can add the following conditions to the list:

(6) every nonempty clopen subset of X is completely (Fr,CX)-nonparadoxical.
(7) there exists a nonempty clopen subset of X which is completely (Fr,CX)-nonparadoxical.

Proof. (1)⇒(2). By Proposition 2.3.
(2)⇒(1). By minimality every G-invariant Borel probability measure on X has full support,

and so Lemma 5.1 applies.
(1)⇒(3). By Theorem 3.4.
(3)⇒(4). By Proposition 3.3.8 of [6].
(4)⇒(2). Stable finiteness implies the existence of a quasitrace (see Section V.2 of [2]) and

restricting a quasitrace on C(X) oλ Fr to C(X) yields a G-invariant Borel probability measure
on X.

(2)⇔(5). Apply Theorem 8.1 of [13] as quoted above, using the fact that every Borel proba-
bility measure on X has full support by the minimality of the action.

Finally, in the case thatX is zero-dimensional (2)⇔(6)⇔(7) is a special case of Proposition 4.5.
�

The hypotheses in the above theorem actually imply conditions (1) to (5) in the case of Z,
i.e., when r = 1. When r ≥ 2 these conditions may fail, as the action on the Gromov boundary
(or any amenable minimal action) shows.

Problem 5.3. Suppose in the above theorem that the action is topologically free and X is
Cantor set. It then follows by Theorem 5.4 of [34] that if every nonempty clopen subset of X
is (Fr,CX)-paradoxical then C(X) oλ Fr is purely infinite. We therefore ask whether there is
a dichotomy between the MF property and pure infiniteness within this class of actions. This
would be the case if for any such action (Fr,CX)-nonparadoxicality implies complete (Fr,CX)-
nonparadoxicality for every nonempty clopen subset of X, i.e., if the type semigroup S(X,G,CX)
is almost unperforated in the sense of Section 5 of [34].

Example 5.4. Let α be a minimal continuous action of Fr on T. Then the following are
equivalent.

(1) α is residually finite,
(2) there is a G-invariant Borel probability measure on T,
(3) C(T) oλ Fn is an MF algebra,
(4) C(T) oλ Fn is stably finite,
(5) αs is residually finite for every s ∈ G.

The equivalences (1)⇔(2)⇔(3)⇔(4) are by Theorem 5.2, (1)⇒(5) is trivial, and (5)⇒(2) is
a consequence of a result of Margulis [28]. Note that, by Theorem 2 of [28], if a minimal
action of a countable group on the circle has an invariant Borel probability measure then it is
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conjugate to an isometric action with respect to the standard metric and thus factors through a
group containing a commutative subgroup of index at most two. Therefore there are no faithful
residually finite continuous actions of F2 on the circle.

6. Actions on spaces of probability measures

In this section we will use spaces of probability measures in order to construct an example,
for every nonamenable G, of a continuous action of G on a compact metrizable space such that
α is not residually finite but its restriction to every cyclic subgroup of G is residually finite.
The crossed product of such an action fails to be stably finite, but, unlike in the case of integer
actions, one cannot witness this failure by using the compression of an open set by a single group
element to construct a nonunitary isometry. See the discussion after Proposition 6.4.

For a compact Hausdorff space X we will view the space MX of Borel probability measures
on X with its weak∗ topology as a topological subspace of MX via the point mass identification.

Proposition 6.1. Let X be a compact metrizable space and Gy X a residually finite continuous
action. Then the induced action GyMX is residually finite.

Proof. Let Ω be a finite subset of the unit ball of C(X), and equip MX with the continuous
pseudometric dΩ(σ, ω) = maxf∈Ω |σ(f) − ω(f)|. Let ε > 0. By residual finiteness there are a
finite set Y , an action of G on Y , and a map ζ : Y → X such that (i) dΩ(sζ(y), ζ(sy)) < ε
for all y ∈ Y and s ∈ F and (ii) ζ(Y ) is ε-dense in X with respect to dΩ. Let m ∈ N. Let E
be the finite subset of MY consisting of all convex combinations of the form

∑
y∈Y cyδy where

cy ∈ {0, 1/m, 2/m, . . . , (m − 1)/m, 1} for each y ∈ Y . The the action of G on Y extends to an
action of G on E by setting

s

(∑
y∈Y

cyδy

)
=
∑
y∈Y

cyδsy

for s ∈ G. Define ζ̃ : E →MX as the restriction of the push-forward map MY →MX associated
to ζ. Then for z =

∑
y∈Y cyδy ∈ E and s ∈ F we have

dΩ(sζ̃(z), ζ̃(sz)) = sup
f∈Ω

∣∣∣∣f(∑
y∈Y

cysζ(y)

)
− f

(∑
y∈Y

cyζ(sy)

)∣∣∣∣
≤ sup

f∈Ω

∑
y∈Y

cy|f(sζ(y))− f(ζ(sy))| < ε.

Since the set of convex combinations of point masses is weak∗ dense in MX , given any η > 0 we
can take ε sufficiently small and m sufficiently large to guarantee that the image of ζ̃ is η-dense
in MX with respect to dΩ. Since the pseudometrics of the form dΩ generate the uniformity on
MX , we conclude that the action GyMX is residually finite. �

Proposition 6.2. Let K be a compact convex subset of a locally convex topological vector space
and let T : K → K be a homeomorphism. Then the action of Z generated by T is residually
finite.

Proof. Let ε > 0. Let Ω be a finite set of continuous affine real-valued functions on K, and
equip K with the continuous pseudometric dΩ(x, y) = maxf∈Ω |f(x)− f(y)|. Let ε > 0. Take a
finite set V ⊆ K which is ε-dense for dΩ. Choose an m ∈ N such that 2m−1 maxf∈Ω ‖f‖ < ε.
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Set E = {(v, k) : v ∈ V and k = −m, . . . ,m} and define the bijection S : E → E by setting
S(v, k) = (v, k + 1) for v ∈ V and k = −m, . . . ,m− 1 and S(v,m) = −m for v ∈ V .

Since Z is amenable there is a T -fixed point w ∈ K. Define a map ζ : E → K by setting, for
each v ∈ V and k = −m,−m+ 1, . . . ,m,

ζ(v, k) =

(
1− |k|

m

)
T kv +

|k|
m
w.

Then for v ∈ V and k = −m, . . . ,m− 1 we have

dΩ(ζ(S(v, k)), T ζ(v, k)) = dΩ(ζ(v, k + 1), T ζ(v, k))

= max
f∈Ω

1

m

∣∣f(T k+1v)− f(w)
∣∣

≤ 2

m
max
f∈Ω
‖f‖ < ε,

while ζ(S(v,m)) = w = Tζ(v,m) so that dΩ(ζ(S(v,m)), T ζ(v,m)) = 0. Observe that by the
uniform continuity of T we can enlarge m to obtain the same kind of estimates for finitely many
powers of T at a time. Since the continuous pseudometrics of the form dΩ generate the topology
on K, we conclude that T is residually finite. �

Proposition 6.3. Let G y X be a continuous action on a compact metrizable space. Suppose
that the induced action G y MX is residually finite. Then there exists a G-invariant Borel
probability measure on X.

Proof. By Proposition 2.3 there is a G-invariant Borel probability measure µ on MX . Consider
the barycentre bµ of µ, i.e., the unique element of K satisfying bµ(f) = µ(f) for all f ∈ CR(MX),
with f viewed on the right side of the equality as an affine function on MK under the canonical
identification. Then bµ is a fixed point for the action GyMX , that is, bµ is a G-invariant Borel
probability measure on X. �

Proposition 6.4. Suppose that G is nonamenable. Then there exists a continuous action α of
G on a compact metrizable space such that α is not residually finite but its restriction to every
cyclic subgroup of G is residually finite.

Proof. Since G is nonamenable there is a continuous action α of G on a compact metrizable
space X which does not admit an invariant Borel probability measure. By Proposition 6.3, the
induced action α̃ of G on MX is not residually finite. However, for every cyclic subgroup H of
G the restriction of α̃ to H is residually finite, which is obvious if |H| < ∞ and follows from
Proposition 6.2 otherwise. �

Note that if G is nonamenable and Gy X is an action as in the statement of Proposition 6.4
then C(X)oλG fails to be stably finite, for otherwise it would admit a quasitrace (see Section V.2
of [2]) and restricting a quasitrace to C(X) would produce a G-invariant Borel probability
measure on X. Therefore Mk(C(X) oλ G) contains a nonunitary isometry for some k ∈ N.
However one cannot verify the existence of such an isometry by using the compression of an
open set by a single group element as in the case of crossed products by Z [31] (see the discussion
preceding Theorem 7.2 in the next section).

Problem 6.5. For an action of the kind just described, exhibit a nonunitary isometry in some
matrix algebra over C(X) oλ G.
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Problem 6.6. In the statement of Proposition 6.4, can the action be taken to be minimal
and/or the space taken to be the Cantor set?

7. Z-systems

Here we specialize our discussion to Z-actions, for which the C∗-algebraic notions of quasidi-
agonality, strong quasidiagonality, and strong NFness all admit direct dynamical interpretations
in terms of residual finiteness. Tacit use will be made of the fact that, due to the amenability of
Z, the reduced crossed product associated to a continuous action of Z on a compact Hausdorff
space is nuclear and coincides canonically with the full crossed product.

For terminological economy we will conceive of a Z-action as a pair (X,T ) where X is a
compact Hausdorff space and T : X → X is a homeomorphism associated to the generator 1,
and we will call such a pair a Z-system. We will thus speak of residually finite Z-systems. A
Z-system (X,T ) is said to be metrizable if X is metrizable. We write orb(x) for the orbit of the
point x under T , i.e., orb(x) = {Tnx : n ∈ Z}.

For Z-systems, residual finiteness coincides with Conley’s concept of chain recurrence [12],
defined as follows. Let (X,T ) be a Z-system. Let x, y ∈ X and let ε be a neighbourhood of
the diagonal in X × X. An ε-chain from x to y is a finite sequence {x1 = x, x2, . . . , xn = y}
in X such that n > 1 and (Txi, xi+1) ∈ ε for every i = 1, . . . , n − 1. The point x is said to be
chain recurrent if for every neighbourhood of the diagonal in X ×X there is an ε-chain from x
to itself (if X is a metric space then we can quantify instead over all ε > 0, with ε-chain taking
its meaning in relation to the set {(x, y) ∈ X ×X : d(x, y) < ε}). This is equivalent to x being
pseudo-nonwandering in the sense of [31]. We remark that the set of chain recurrent points is a
closed T -invariant subset of X. Finally, the system (X,T ) is said to be chain recurrent if every
point in X is chain recurrent. Note that a Z-system for which there is a dense set of recurrent
points is chain recurrent.

Proposition 7.1. A Z-system (X,T ) is residually finite if and only if it is chain recurrent.

Proof. Suppose first that (X,T ) is chain recurrent. Let F be a finite subset of Z. Let ε and ε′

be neighbourhoods of the diagonal in X × X. Take a finite ε-dense subset D of X. For each
x ∈ D pick an ε′-chain from x to itself and write Cx for the sequence obtained by omitting x at
the end of the ε′-chain. Set E =

⊔
x∈D Cx, and let S : E → E be the bijection which cyclically

permutes the points of each Cx according to the sequential order. Then the map ζ : E → X
defined by taking the inclusion on each Cx has ε-dense image, and by uniform continuity it will
satisfy (ζ(Snz), Tnζ(z)) ∈ ε for every n ∈ F if ε′ is taken fine enough. Thus (X,T ) is residually
finite.

Conversely, suppose that (X,T ) is residually finite. Let x ∈ X and let ε be a neighbourhood
of the diagonal in X ×X. By residual finiteness there is a finite set E, a bijection S : E → E, a
map ζ : E → X such that (ζ(Sz), T ζ(z)) ∈ ε for all z ∈ E, and a z0 ∈ E such that (ζ(z0), x) ∈ ε.
By a simple perturbation argument involving a finer choice of ε, we may assume that ζ(z0) = x.
Then by applying ζ to the S-cycle in which z0 lies we obtain an ε-chain for x. Hence (X,T ) is
chain recurrent. �

In Lemma 2 of [31] (which is also valid in the nonmetrizable case) Pimsner showed that a
Z-system (X,T ) is chain recurrent if and only if there does not exist an open set U ⊆ X which
is compressed by T in the sense that U \ T (U) 6= ∅ and T (U) ⊆ U . From such an open set
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one can construct a nonunitary isometry in the crossed product C(X)oλ Z [31, Prop. 8], which
establishes the implication (3)⇒(1) in the following theorem of Pimsner from [31].

Theorem 7.2. For a Z-system (X,T ) the following are equivalent:

(1) (X,T ) is pseudo-nonwandering (i.e., residually finite),
(2) C(X) oλ Z is quasidiagonal,
(3) C(X) oλ Z is stably finite.

Moreover, if X is metrizable then the following condition can be added to the list:

(4) C(X) oλ Z can be embedded into an AF algebra.

Actually only the metrizable case of the above theorem was treated in [31], but since residual
finiteness passes to factors and quasidiagonality is a local property one can easily derive from
[31] the equivalence of conditions (1), (2), and (3) for general Z-actions by passing through (4)
as applied to metrizable factors. The most involved implication in the theorem is (1)⇒(4), while
(4)⇒(2) follows from the fact that AF algebras are quasidiagonal and quasidiagonality passes
to C∗-subalgebras, and (2)⇒(3) is true for any unital C∗-algebra (see Section V.4 of [2]). Note
that, since crossed products by actions of Z are always nuclear, for metrizable X the crossed
product C(X) oλ Z is quasidiagonal if and only if it is an MF algebra [6, Thm. 5.2.2].

The property of quasidiagonality can be strengthened in certain natural ways, and in view
of the above theorem we may ask whether residual finiteness can also be used to dynamically
characterize the situation in which the crossed product satisfies such a stronger property. Recall
for example that a C∗-algebra is said to be strongly quasidiagonal if all of its representations are
quasidiagonal. By Voiculescu’s theorem [38], every simple separable quasidiagonal C∗-algebra is
strongly quasidiagonal. Hadwin showed in [22, Thm. 25] that, for a compact metric space (X, d)
and a homeomorphism T : X → X, the crossed product C(X) oλ Z is strongly quasidiagonal
if and only if for every x ∈ X there are integers m,n ≥ N such that d(Tnx, T−mx) < ε. It is
easy to verify that the latter condition is equivalent to hereditary residual finiteness, by which
we mean that every subsystem of (X,T ) is residually finite. We also remark that C(X) oλ Z is
residually finite dimensional (i.e., has a separating family of finite-dimensional representations)
if and only if the periodic points are dense in X [37, Thm. 4.6].

The proof of Theorem 25 in [22] can also be used to characterize when the crossed product of
a metrizable Z-system is strong NF in terms of residual finiteness. Following some preliminary
observations we will give this characterization in Theorem 7.5. Recall that a separable C∗-
algebra A is said to be an NF algebra if it can be expressed as the inductive limit of a generalized
inductive system with contractive completely positive connecting maps, and a strong NF algebra
if the connecting maps can be chosen to be complete order embeddings [6]. Theorem 5.2.2 of
[6] gives various characterizations of NF algebras; in particular, the following are equivalent: (i)
A is an NF algebra, (2) A is a nuclear MF algebra, and (iii) A is nuclear and quasidiagonal. In
the strong NF case we have by [6, 4, 5] the equivalence of the following conditions:

(1) A is a strong NF algebra,
(2) for every finite set Ω ⊆ A and ε > 0 there are a finite-dimensional C∗-algebra B and a

complete order embedding ϕ : B → A such that for each x ∈ Ω there is a b ∈ B with
‖x− ϕ(b)‖ < ε,

(3) A is nuclear and inner quasidiagonal,
(4) A is nuclear and has a separating family of irreducible quasidiagonal representations.
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For a λ > 1, we say that a C∗-algebra A is an OL∞,λ space if for every finite set Ω ⊆ A and
ε > 0 there is a finite-dimensional C∗-algebra B and an injective linear map ϕ : B → A with
Ω ⊆ B such that ‖ϕ‖cb‖ϕ−1 : ϕ(B) → B‖cb < λ. We write OL∞(A) for the infimum over all
λ > 1 such that A is an OL∞,λ space. These notions were introduced in [23] as a means to
analyze and quantify the relationships between properties like nuclearity, quasidiagonality, inner
quasidiagonality, and stable finiteness using local operator space structure. If A is a strong NF
algebra then OL∞(A) = 1 by a straightforward perturbation argument. Whether the converse
is true is an open question, although in [16] it was shown to hold under the assumption that
A has a finite separating family of primitive ideals. As part of Theorem 7.5 we will verify that
the converse also holds in our situation, so that we obtain a dynamical characterization of both
strong NFness and the OL∞ invariant equalling 1 for crossed products of metrizable Z-systems.

Lemma 7.3. Let (X,T ) be a transitive metrizable Z-system and let d be a compatible metric

on X. Let x be a point in X such that orb(x) = X. Then the following are equivalent:

(1) (X,T ) is residually finite,

(2) {T kx}k≥0 ∩ {T kx}k<0 6= ∅,
(3) for every ε > 0 and N ∈ N there are integers m,n ≥ N such that d(Tnx, T−mx) < ε,
(4) for every ε > 0 there are m,n ∈ N such that d(Tnx, T−mx) < ε.

Proof. (1)⇒(2). If (2) does not hold then {T kx}k≥0 equals X \ {T kx}k<0 and hence is a clopen

set which is sent to a proper clopen subset of itself under T , so that (X,T ) fails to be residually
finite by Pimsner’s characterization of chain recurrence in Lemma 2 of [31].

(2)⇒(3). Let ε > 0 and N ∈ N. Take a δ > 0 with δ ≤ ε such that if d(y, z) < δ then
d(T ky, T kz) < ε for every k = −N,−N + 1, . . . , N . Whether x is periodic or nonperiodic, it is
clear from (2) that there exist integers m,n ≥ 0 such that m+ n ≥ 2N and d(Tnx, T−mx) < δ.
Set r equal to N − n, m − N , or 0 according to whether n < N , m < N , or m,n ≥ N . Then
m− r, n+ r ≥ N and d(Tn+rx, T−m+rx) < ε, yielding (3).

(3)⇒(4). Trivial.
(4)⇒(1). Given m,n ∈ N, the sequence {x, Tx, . . . , Tn−1x, T−mx, T−m+1x, . . . , T−1x, x}

forms an ε-chain precisely when d(Tnx, T−mx) < ε, and so x is chain recurrent. Since the
chain recurrent set is closed and Z-invariant, we obtain (1). �

The following lemma is a local version of Theorem 25 of [22] and essentially follows by the
same argument using Berg’s technique as in the proof of Lemma 3.6 in [32]. We reproduce this
argument below. For background on induced representations see [41].

Lemma 7.4. Let (X,T ) be a transitive metrizable Z-system, and let x be a point in X such

that orb(x) = X. Then the following are equivalent:

(1) (X,T ) is residually finite,
(2) every irreducible representation of C(X) oλ Z induced from the isotropy group of x is

quasidiagonal,
(3) C(X) oλ Z has a faithful irreducible quasidiagonal representation.

Proof. If orb(x) has finite cardinality n then T is a cyclic permutation. As is well known,
the crossed product C(X) oλ Z in this case is ∗-isomorphic to Mn ⊗ C(T), whose irreducible
representations are all evidently quasidiagonal and, up to unitary equivalence, induced from the
isotropy group of x. We may thus assume that orb(x) is infinite. Then the isotropy group of x
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is trivial and there is only one induced representation, namely the irreducible representation π :
C(X)oλ Z→ B(`2(Z)) defined by π(f)ξn = f(Tnx)ξn and π(u)ξn = ξn+1 for all f ∈ C(X) and
n ∈ Z, where u is the canonical unitary associated to T and {ξn}n∈Z is the canonical orthonormal
basis of `2(Z). Since Z acts freely on orb(x) and subrepresentations of π|C(X) correspond to
subsets of orb(x), it follows that π|C(X) is G-almost free in the sense of Definition 1.12 of [42],
so that π is faithful by Corollary 4.19 of [42]. We thus have (2)⇒(3). Note also that condition
(3) implies that C(X) oλ Z is a quasidiagonal C∗-algebra and thus we get (3)⇒(1) in view of
Theorem 7.2. Let us then assume (1) and show that π is quasidiagonal in order to obtain (2).

Let Ω be a finite subset of C(X) and let n ∈ N. In view of the definition of a quasidiagonal
representation, we need only produce an orthogonal projection p in B(`2(Z)) which dominates
the orthogonal projection onto the subspace spanned by {ξj : −n ≤ j ≤ n} and satisfies
‖[p, π(f)]‖ < 2/n for all f ∈ Ω and ‖[p, π(u)]‖ < 8/n. Fix a compatible metric d on X.
By uniform continuity there exists a δ > 0 such that if x1, x2 ∈ X and d(x1, x2) < δ then
|f(T kx1) − f(T kx2)| < 1/n for each f ∈ Ω and k = 0, . . . , n − 1. By Lemma 7.3 we can find
r > n and s < −2n such that d(T rx, T sx) < δ, so that |f(T r+kx) − f(T s+kx)| < 1/n for each
f ∈ Ω and k = 0, . . . , n− 1. For each f ∈ Ω we define a perturbation af ∈ B(`2(W )) of π(f) by

afξn =

{
f(T s+kx)ξn if n = r + k for some k = 0, . . . , n− 1,
f(Tnx)ξn otherwise,

in which case we have ‖af − π(f)‖ < 1/n.
Next we apply Berg’s technique (see Section VI.4 of [15]) to produce orthogonal unit vectors

ζk, ηk ∈ span(ξr+k, ξs+k) for each k = 0, . . . , n− 1 and a unitary v ∈ B(`2(Z)) such that

(1) vζk = ζk+1 and vηk = ηk+1 for k = 0, . . . , n− 2,
(2) vζn−1 = ξs+n and vηn−1 = ξr+n,
(3) v agrees with π(u) on the orthogonal complement of the span of the vectors ξr, ξr+1, . . . ,

ξr+n−1, ξs, ξs+1, . . . , ξs+n−1, and
(4) ‖π(u)− v‖ < 4/n.

Let p be the orthogonal projection onto the span of the vectors ξr+n, ξr+n+1, . . . , ξs−1, η0, η1, . . . , ηn−1.
Since the unitary v cyclically permutes these vectors we have [p, v] = 0 and hence

‖[p, π(u)]‖ ≤ ‖p(π(u)− v)‖+ ‖(v − π(u))p‖ ≤ 2‖π(u)− v‖ < 8/n.

Also, if f ∈ Ω then span(ξr+k, ξs+k) is an eigenspace for af for every k = 0, . . . , n − 1, so that
[p, af ] = 0 and hence

‖[p, π(f)]‖ ≤ ‖p(π(f)− af )‖+ ‖(af − π(f))p‖ ≤ 2‖af − f‖ < 2/n,

completing the proof. �

Theorem 7.5. Let (X,T ) be a metrizable Z-system and let d be a compatible metric on X.
Then the following are equivalent:

(1) there is a collection {(Xi, T )}i∈I of transitive residually finite subsystems of (X,T ) such
that

⋃
i∈I Xi is dense in X,

(2) there is a dense set D ⊆ X such that for every x ∈ D, ε > 0, and N ∈ N there are
integers m,n ≥ N for which d(Tnx, T−mx) < ε,

(3) C(X) oλ Z is strong NF,
(4) OL∞(C(X) oλ Z) = 1.
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Proof. (1)⇔(2). This is a simple consequence of Lemma 7.3.
(2)⇒(3). Since the set W =

⋃
i∈I Xi is dense in X the canonical quotient maps C(X) oλ

Z → C(Xi) oλ Z for i ∈ I form a separating family. This can be seen by taking the faithful
representation π : C(X) oλ Z→ B(`2(W )⊗ `2(Z)) canonically induced from the multiplication
representation of C(X) on `2(W ) and observing that for each i ∈ I the cut-down of π(C(X)oλZ)
by the orthogonal projection onto `2(Xi)⊗ `2(Z) is ∗-isomorphic to C(Xi) oλ Z. Since for each
i ∈ I the crossed product C(Xi) oλ Z has a faithful irreducible quasidiagonal representation by
Lemma 7.4, we thus conclude using Theorem 4.5 of [4] that C(X) oλ Z is strong NF.

(3)⇒(4). This implication holds for general C∗-algebras, as mentioned prior to the theorem
statement.

(4)⇒(1). By Theorem 5.4 of [16] C(X)oλZ has a separating family Π of irreducible represen-
tations whose images are stably finite C∗-algebras. By [19] every primitive ideal of C(X) oλ Z
is the kernel of an irreducible representation induced from the isotropy group of some point
x ∈ X. Now any two faithful irreducible representations of a separable prime (equivalently,
separable primitive) C∗-algebra are approximately unitarily equivalent. In the antiliminal case
this follows from Voiculescu’s theorem [38] as every faithful irreducible representation will be
essential, while in the non-antiliminal case the C∗-algebra has an essential ideal ∗-isomorphic to
the compact operators and hence has only one faithful irreducible representation up to unitary
equivalence. Consequently we may assume that each π ∈ Π is induced from the isotropy group
of some xπ ∈ X. If this point xπ has nontrivial isotropy group then it is periodic and the
system (orb(xπ), T ) is trivially residually finite. If on the other hand xπ has trivial isotropy
group then, as indicated in the proof of Lemma 7.4, there is a unique induced representation
of C(orb(xπ)) oλ Z and it is faithful, implying that C(orb(xπ)) oλ Z is stably finite and hence

by Theorem 7.2 that (orb(xπ), T ) is residually finite. It remains to observe that
⋃
π∈Π orb(xπ)

is dense in X, which results from the fact that π(f) = 0 for all π ∈ Π and f ∈ C(X) whose

support is contained in the complement of
⋃
π∈Π orb(xπ). �

Example 7.6. Using Theorem 7.5 we can produce by dynamical means many examples of NF
algebras which are not strong NF (cf. Examples 5.6 and 5.19 of [4]). For instance, take two copies
of translation on Z each compactified with two fixed points ±∞ and identify +∞ from each
copy with −∞ of the other copy. This system is residually finite, but the transitive subsystems
generated by each copy of Z fail to be residually finite, so that C(X)oλ Z is NF but not strong
NF. This example is a dynamical analogue of Example 3.2 in [16].

Example 7.7. We can also use Theorem 7.5 to exhibit strong NF crossed products which are not
strongly quasidiagonal. For instance, take translation on Z and compactify it so that it spirals
around to the example from the previous paragraph in both the forward and backward directions,
spending longer and longer intervals near each of the two fixed points in each successive approach.
The crossed product is strong NF since the system is transitive and residually finite, but it is
not strongly quasidiagonal by the discussion in the second paragraph following Theorem 7.2. In
the backward direction we could instead have convergence to one of the fixed points, in which
case we have the additional feature that the backward and forward limit sets of the unique dense
orbit do not coincide.
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