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Abstract. We say that two free p.m.p. actions of countable groups are Shannon orbit equiv-
alent if there is an orbit equivalence between them whose associated cocycle partitions have
finite Shannon entropy. We show that if the acting groups are sofic and each has a w-normal
amenable subgroup which is neither locally finite nor virtually cyclic then Shannon orbit equiv-
alence implies that the actions have the same maximum sofic entropy. This extends a result
of Austin beyond the finitely generated amenable setting and has the consequence that two
Bernoulli actions of a group with the properties in question are Shannon orbit equivalent if and
only if they are measure conjugate. Our arguments apply more generally to actions satisfying a
sparse connectivity condition which we call property SC, and yield an entropy inequality under
the assumption that one of the actions has this property.
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1. Introduction

One of the remarkable features of the notion of amenability for groups is that its fundamental
characterizations in terms of nonparadoxicality on the one hand and approximate invariance
on the other lead to two very different and in many ways incompatible conceptions of what
its opposite should be, namely freeness and property (T) (i.e., universal spectral gap).1 While
noncyclic free groups distill the idea of paradoxicality to its starkest form and represent the
simplest and most venerable obstruction to amenability, the fact that approximate invariance
affords so much technical leverage has meant that amenability is frequently contrasted instead
with property (T), even sometimes in the form of a direct counterpositioning that exploits the
tension between them, as in Margulis’s proof of his celebrated normal subgroup theorem.2

In the theory of orbit equivalence, the dichotomy between approximate invariance and spec-
tral gap plays out with particularly dramatic consequences. Here a sharp wedge is already driven
between amenability and nonamenability: while the Ornstein–Weiss tiling theorem establishes
that any two free ergodic p.m.p. actions of countably infinite amenable groups are orbit equiv-
alent [30], Epstein showed, completing a line of development in [39, 5, 18, 16, 19], that every
countable nonamenable group admits uncountably many orbit inequivalent free ergodic p.m.p.
actions [12]. At the more extreme end of spectral anti-amenability, a theorem of Popa shows
that Bernoulli actions (and, more generally, weakly mixing malleable actions) of property (T)
groups are in fact superrigid for cocycles taking values in a countable group, which implies, in
the case that the group contains no nontrivial finite normal subgroups, that the action is orbit
equivalence superrigid (i.e., an orbit equivalence with any p.m.p. action of any group implies
that the groups are isomorphic and the actions measure conjugate) [32]. In this sense free groups
exhibit more of an affinity with amenable groups, for all nontrivial Bernoulli actions of a given
free group are orbit equivalent (Bowen [7]) and all nontrivial Bernoulli actions of all noncyclic
free groups are stably orbit equivalent (Bowen [8]), despite the fact that free ergodic p.m.p.
actions of free groups of different ranks are never orbit equivalent (Gaboriau [15]).

Paradoxically enough, as one ventures further into the theory of Bernoulli superrigidity it is
precisely around this alignment of amenability with freeness that the general picture seems to
coalesce. Indeed what one discovers is that superrigidity is governed less by spectral gap per
se than by certain expressions of anti-freeness or anti-treeability. To begin with, Popa’s cocycle
superrigidity theorem in [32] actually covers a broader class of groups, namely those containing
a w-normal subgroup with relative property (T), and was augmented in [33] by a second cocycle
superrigidity theorem that gives the same conclusion for groups that contain two commuting
infinite subgroups at least one of which is nonamenable. Peterson and Sinclair then demonstrated
in [31] that L2-rigidity is sufficient to imply Bernoulli cocycle superrigidity, which enlarges the
menu of groups to include those which are nonamenable but have property Gamma, while Ioana
and Tucker-Drob subsequently observed that nonamenable inner amenable groups can also be

1This bifurcation is also reflected in the two logically independent ways in which the ideas of amenability and
nonamenability have been adapted to operator algebras, on the one hand through the notions of finiteness and
pure infiniteness and on the other through injectivity and finite-dimensional approximation. All of this traces
back to the basic Dedekindian alternative for defining what it means for a set to be finite, either as the property
that every injection from the set to itself is surjective, or by the existence of a bijection between the set and
{1, . . . , n} for some positive integer n.

2Again this is consistent with operator algebra theory, where amenability has become synonymous with certain
kinds of finite-dimensional approximation.
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added to the list [36]. Orbit equivalence superrigidity results were also established for a variety
of p.m.p. actions and groups in earlier groundbreaking papers of Furman on lattices in Lie groups
[14] and of Monod and Shalom on bounded cohomology [29] as well as in work of Kida on mapping
class groups [26]. One common feature of the groups that effectuate Bernoulli cocycle or orbit
equivalence superrigidity in all of these cases, a feature which notably distinguishes them from
noncyclic free groups, is that their first `2-Betti number vanishes. Indeed Peterson and Sinclair
showed in [31] that this is a necessary condition for the cocycle superrigidity of Bernoulli actions
with atomless base, which has led to the speculation that it might also be sufficient within the
class of nonamenable groups. The funny thing here is that amenable groups also have vanishing
first `2-Betti number and thus have to be explicitly ruled out. This reflects the fact a group
can have vanishing first `2-Betti number for two very different and incompatible reasons: either
because of anti-tree-like behaviour (as viewed through the coarse lens of measure equivalence) or
because of tree-like behaviour of a degenerate rank-one kind (accordingly understood in the sense
of being measure equivalent to Z, a property that characterizes amenability among countably
infinite groups).

One may nevertheless wonder whether, as Robin Tucker-Drob has half-jokingly mused to us,
there may be a way of reconceptualizing the idea of Bernoulli cocycle superrigidity so that it
naturally extends to amenable groups. That this is not so far-fetched is suggested by the recent
paper [11], which in the case of L2-rigidity explains how amenability can be smuggled in through
a perturbative maneuver. What we show in the present paper is that if we shift gears in the
study of Bernoulli rigidity to the setting of what we call Shannon orbit equivalence, in which
the cocycle partitions have finite Shannon entropy (as happens in a bounded or integrable orbit
equivalence), then amenable groups truly do lose their exceptional status and can be reunited
for the most part with some of their nonamenable brethren under the kind of common umbrella
that remains a chimera in the framework of general orbit equivalence. Amenability in this case
becomes largely realigned in opposition to tree-like behaviour, which is now to be understood
in a much stricter sense. One must still exclude the virtually cyclic groups, which remain too
strongly tree-like, and the locally finite groups (but not the locally virtually cyclic groups which
fall outside of these two classes, like the rational numbers).

The basic geometric principle behind this was first identified and exploited by Austin to show
that measure entropy is an invariant of integrable orbit equivalence for ergodic p.m.p. actions of
finitely generated amenable groups, and more generally that there is an entropy scaling formula
for stable versions of both integrable and bounded orbit equivalence [2]. In the non-virtually-
cyclic case, Austin’s arguments also give the same conclusions for Shannon orbit equivalence,
as one can easily verify. One corollary of Austin’s work, given the Ornstein–Weiss entropy
classification for Bernoulli actions of countably infinite amenable groups, is that if two Bernoulli
actions of a finitely generated infinite amenable group are integrably orbit equivalent (or even
just Shannon orbit equivalent if the group is not virtually cyclic) then they must be measure
conjugate.

Our main result, stated next and obtained as a direct consequence of Theorems 4.1 and 3.29,
is a generalization of Austin’s entropy invariance result to a wider class of groups and represents
an initial step towards answering his Question 1.2 in [2]. Here hµ(·) denotes the maximum sofic
measure entropy (see Section 2.5). W-normality is a weakening of normality which is recalled
in Definition 3.21.
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Theorem A. Let G be a countable group containing a w-normal amenable subgroup which is
neither locally finite nor virtually cyclic. Let H be a countable group. Let G y (X,µ) and
H y (Y, ν) be free p.m.p. actions which are Shannon orbit equivalent. Then

hν(H y Y ) ≥ hµ(Gy X).

This result is also new in the case that G and H are amenable and G is not finitely generated.
For amenable groups, the maximum sofic measure entropy is equal to the amenable measure
entropy and is realized by every sofic approximation sequence [10, 24].

Note that many measure conjugacy invariants like mixing and completely positive entropy
can be destroyed even under a bounded orbit equivalence, as shown by Fieldsteel and Friedman
in the case of ergodic p.m.p. Zd-actions when d ≥ 2 [13]. On the other hand, by a theorem of
Belinskaya two ergodic p.m.p. Z-actions are integrably orbit equivalent if and only if they are
measure conjugate up to an isomorphism of the group (“flip conjugate”) [4]. We don’t know
however whether one can substitute “Shannon” for “integrably” in Belinskaya’s theorem.

Our proof of Theorem A is based on the key geometric idea of [2] involving the construction
of connected subgraphs which are sparse but nevertheless dense at a certain coarse scale. This
accounts for the exclusion of both local finiteness and virtual cyclicity. In fact the conclusion
of the theorem can fail even for bounded orbit equivalence when G and H are locally finite,
as discovered by Vershik [37, 38] and discussed further below, and while Austin was able to
conjure away the second restriction by an auxiliary argument, we don’t see a way to remove it
here (we also note that the argument in [2] for handling virtually cyclic groups does not seem to
work for Shannon orbit equivalence because of its use of an ergodic theorem). While our more
general application of the sparse connectivity principle from [2] permits us to cross the threshold
into nonamenability, it still imposes restrictions on the group which, surely without coincidence,
continue to bind us to the realm of vanishing first `2-Betti number (see Theorem 7.2 of [27]).
Indeed our strategy can be seen to fail for free groups (see Theorem 3.20). There remains
however the question of whether Theorem A can be extended to other classes of groups with
vanishing first `2-Betti number or related anti-tree-like geometric properties, in particular the
classes of groups for which Bernoulli cocycle superrigidity is known to hold. Our argument still
relies heavily on amenability, but in contrast to [2] we apply it in the form of Ornstein–Weiss
tiling technology.

We obtain from Theorem A the following consequence for Bernoulli actions. By the base
entropy of a Bernoulli action G y (XG, µG) we mean the Shannon entropy of µ, i.e., the
supremum of the Shannon entropies of all finite partitions of X. When G is sofic this coincides
with the sofic entropy for every sofic approximation sequence [6, 23].

Theorem B. Let G and H be countable sofic groups containing a w-normal amenable subgroup
which is neither locally finite nor virtually cyclic. Let G y (XG, µG) and H y (Y H , νH) be
Bernoulli actions which are Shannon orbit equivalent. Then these actions have the same base
entropy.

The Ornstein–Weiss entropy classification of Bernoulli actions of countably infinite amenable
groups [30] and a coinduction argument of Stepin [35] together show that if a countably infinite
group contains an infinite amenable subgroup then any two of its Bernoulli actions are measure
conjugate whenever they have the same base entropy (in fact this statement holds for any
countably infinite group by [9, 34]). Theorem B thus specializes to the case G = H as follows.
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Theorem C. Let G be a countable sofic group containing a w-normal amenable subgroup which
is neither locally finite nor virtually cyclic. Then two Bernoulli actions of G are Shannon orbit
equivalent if and only if they are measure conjugate.

Many of the groups G satisfying the hypothesis of Theorem C have the much stronger prop-
erty that their Bernoulli actions are orbit equivalence superrigid, for example if G satisfies
Bernoulli cocycle superigidity and in addition has no nontrivial finite normal subgroups (see [32]
or Theorem 6.16 of [25]). As mentioned above, G will satisfy Bernoulli cocycle superigidity if
it has property (T), is the product of an infinite group and a nonamenable group, or is inner
amenable and nonamenable, and each of these three possibilities can occur within the class of
groups in Theorem C. In particular, examples of property (T) groups whose centre is not lo-
cally virtually cyclic can be constructed by taking products of copies of the group appearing in
Example 1.7.13(iii) of [3]. On the other hand, it remains an open question whether Bernoulli
orbit equivalence superrigidity holds for wreath products of the form Z oH with H nonamenable,
which are also covered by the above theorems.

To establish Theorem A, we abstract the graph-theoretic argument from [2] into a geometric
condition on the dynamics to yield what we call property SC for both free p.m.p. actions and
(by universally quantifying over such actions) groups. Given that the argument in [2] hinges
on a localization to Følner sets, it might seem more natural here to follow the usual recipe and
instead localize to sofic approximations, which one can do successfully in the case of topological
entropy, but in testing such an approach in the measure setting we have found ourselves unable
to control the empirical distribution of the sofic dynamical models (“microstates”) except under
special circumstances, and even then we could only derive a result for bounded orbit equivalence
(one does however get some extra mileage in such circumstances, as we will show in another
paper). We prove Theorem A by showing that its conclusion is valid assuming that the action of
G has property SC (Theorem 4.1) and that this hypothesis is automatic for the groups G in the
statement of the theorem by virtue of these G having themselves property SC (Theorem 3.29).

In the case of amenable groups, we show in Proposition 3.28 that property SC is equivalent
to the group being neither locally finite nor virtually cyclic. As mentioned above, the exclusion
of local finiteness cannot be removed from Theorem A, as a theorem from Vershik’s thesis
demonstrates [37] (see the presentation in [38]). Indeed suppose that G and H are infinite
locally finite groups and suppose that there are nested finite subgroups G1 ⊆ G2 ⊆ . . . of G
with

⋃∞
n=1Gn = G and nested finite subgroups H1 ⊆ H2 ⊆ . . . of H with

⋃∞
n=1Hn = H

such that |Gn| = |Hn| for all n. Then for any two free ergodic p.m.p. actions G y (X,µ) and
H y (Y, ν) there are integers 1 ≤ n1 < n2 < . . . and an orbit equivalence Ψ : X → Y such
that Ψ(Gnkx) = HnkΨ(x) for all x ∈ X and k ∈ N (this is a special type of bounded orbit
equivalence). To see this, for every n consider the σ-algebra ξn of Gn-invariant Borel subsets of
X. Then {ξn} is an ergodic homogeneous sequence in the terminology of [38]. Similarly, one has
the ergodic homogeneous sequence {ξ′n} whose nth term is the σ-algebra of Hn-invariant Borel
subsets of Y . Again using terminology from [38], the sequences {ξn} and {ξ′n} have the same
type {rn}, in this case given by rn = [Gn : Gn−1] = [Hn : Hn−1] with G0 and H0 denoting the
trivial subgroups of G and H, respectively. Now Corollary 1 on page 723 of [38] says that any
two ergodic homogeneous sequences of the same type are lacunary isomorphic in the sense that
there are integers 1 ≤ n1 < n2 < . . . and a measure isomorphism Ψ : X → Y which for every
k sends ξnk to ξ′nk , so that Ψ(Gnkx) = HnkΨ(x), as desired. We thus see in particular that if
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G is a countably infinite locally finite group then all of the free ergodic p.m.p. actions of G are
boundedly orbit equivalent to each other. This includes all of the nontrivial Bernoulli actions
of G, which exhaust the possible nonzero values of measure entropy.

We begin in Section 2 by setting up notation and reviewing basic concepts and terminology
concerning orbit equivalence and sofic measure entropy (for general references on these topics
see [25, 21]). In Section 3.1 we define property SC and establish two permanence properties.
In Sections 3.2 and 3.3 we introduce a shrinking property and two variants of property SC
which will be of subsequent technical use. In Section 3.4 we prove that property SC passes
from a normal subgroup to the ambient group. In Section 3.5 we identify two classes of groups
without property SC (Theorem 3.20), while Section 3.6 is dedicated to showing that the groups
satisfying the hypothesis of Theorem A have property SC (Theorem 3.29). In Section 3.7 we
derive a result on property SC that concerns product groups. Finally, we devote Section 4 to
the proof of Theorem 4.1, which together with Theorem 3.29 yields Theorem A.
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was affiliated with Texas A&M University while this work was done. Preliminary stages were
carried out during his six-month stay in 2017-2018 at the ENS de Lyon, during which time he
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1900746. We thank Robin Tucker-Drob for comments. We also thank one of the referees for
pointing out that our original version of Lemma 3.9 is valid in a stronger purely Borel form and
follows as such from results of [22], and that this lemma additionally yields an elementary proof
of Lemma 3.30.

2. Preliminaries

2.1. Basic notation and terminology. Throughout the paper G and H denote countably
infinite discrete groups, with identity elements eG and eH (many of our results are also valid
for finite groups, usually for trivial reasons, but we make this exclusion for the convenience of
forcing the measure in a free probability-measure-preserving action to be atomless, as reiterated
below). We denote by F(G) the set of all nonempty finite subsets of G, and by F(G) the set of
symmetric finite subsets of G containing eG.

A left Følner sequence for the group G is a sequence {Fn} of nonempty finite subsets of G
such that limn→∞ |gFn∆Fn|/|Fn| = 0 for all g ∈ G. If G admits a left Følner sequence then it
is said to be amenable.

If P is a property then one says that a group is virtually P if it has a subgroup of finite index
with property P, and locally P if each of its finitely generated subgroups has property P.

For a nonempty finite set V , we denote by PV the algebra of all subsets of V , by Sym(V ) the
group of all permutations of V , and by m the uniform probability measure on V .

By a standard probability space we mean a standard Borel space (i.e., a Polish space with
its Borel σ-algebra) equipped with a probability measure. By a partition of such a space we
will always mean one that is Borel (and also, if occasion demands, one that is really only a
partition of a conull subset of the space). By a p.m.p. (probability-measure preserving) action of
G we mean an action G y (X,µ) of G on a standard probability space by measure-preserving
transformations. We express such an action using the concatenation (g, x) 7→ gx for g ∈ G and
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x ∈ X (in principle this will result in an ambiguity when two actions of the same group on
the same space are at play, but in context the notation chosen for group elements will make
the distinction clear). Two such actions G y (X,µ) and G y (Y, ν) are measure conjugate
or isomorphic if there exist G-invariant conull sets X0 ⊆ X and Y0 ⊆ Y and a G-equivariant
measure isomorphism X0 → Y0.

A Bernoulli action is a p.m.p. action of the form G y (Y G, νG) where (Y, ν) is a standard
probability space and (gy)h = yg−1h for y ∈ Y G and g, h ∈ G. It is nontrivial if ν does not have
an atom with full measure.

A p.m.p. action G y (X,µ) is free if the set X0 of all x ∈ X such that sx 6= x for all
s ∈ G \ {eG} has measure one. For the purposes of this paper there is never any harm in
replacing X by a G-invariant conull subset and so we will always assume that X0 = X for the
purposes of argumentation, even if theorem statements themselves do not require it.

Given a p.m.p. action G y (X,µ) and a set S ⊆ G, we define an S-path in X to be a finite
tuple (x0, x1, . . . , xn) of points in X such that for every i = 1, . . . , n there is a g ∈ S for which
xi = gxi−1, in which case we call n the length of the path and say that the path connects x0 and
xn. When n = 1 we also speak of an S-edge.

As indicated above, our reason for making the blanket assumption that the groups G and H
be infinite is that for any of their free p.m.p. actions on a standard probability space (X,µ) the
measure µ is forced to be atomless, a fact which we will often tacitly rely on. It is required for
instance in our various applications of Ornstein–Weiss tiling technology.

2.2. Shannon orbit equivalence. We say that two free p.m.p. actions Gy (X,µ) and H y
(Y, ν) are orbit equivalent if there are a G-invariant conull set X0 ⊆ X, an H-invariant conull
set Y0 ⊆ Y , and a measure isomorphism Ψ : X0 → Y0 such that Ψ(Gx) = HΨ(x) for all x ∈ X0.
Such a Ψ is called an orbit equivalence.

Associated to a Ψ as in the above definition are the cocycles κ : G×X0 → H and λ : H×Y0 →
G determined by

Ψ(gx) = κ(g, x)Ψ(x),

Ψ−1(ty) = λ(t, y)Ψ−1(y)

for all g ∈ G, x ∈ X0, t ∈ H, and y ∈ Y0. The defining property of a cocycle, referred to as the
cocycle identity, is expressed in the case of κ by

κ(fg, x) = κ(f, gx)κ(g, x)

for all f, g ∈ G and x ∈ X0. Note also that

κ(λ(t, y),Ψ−1(y)) = t,

λ(κ(g, x),Ψ(x)) = g

for all t ∈ H, y ∈ Y0, g ∈ G, and x ∈ X0.
The Shannon entropy of a countable Borel partition P of X is defined by

Hµ(P) =
∑
P∈P

−µ(P ) logµ(P ).

with −x log x being interpreted as 0 when x = 0. We say that the actions are Shannon orbit
equivalent if the sets X0 and Y0 and the measure isomorphism Ψ can be chosen so that for each
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g ∈ G the countable Borel partition of X0 consisting of the sets

Xg,t := {x ∈ X0 : Ψ(gx) = tΨ(x)}
for t ∈ H has finite Shannon entropy and, likewise, for each t ∈ H the countable partition of X0

consisting of the sets Xg,t for g ∈ G has finite Shannon entropy. In this case we refer to Ψ as a
Shannon orbit equivalence.

In general, we say that a map f : X → H is Shannon if the countable partition {f−1(t) : t ∈
H} of X has finite Shannon entropy. A cocycle κ : G×X → H is Shannon if κ(g, ·) is Shannon
for every g ∈ G.

2.3. Bounded and integrable orbit equivalence. Let G y (X,µ) and H y (Y, ν) be free
p.m.p. actions which are orbit equivalent, with X0, Y0, and Ψ witnessing the orbit equivalence
as above, and κ and λ denoting the associated cocycles.

We say that the cocycle κ : G×X0 → H is bounded if κ(g,X0) is finite for every g ∈ G, and
define boundedness for λ likewise. If X0, Y0, and Ψ can be chosen so that each of the cocycles
κ and λ is bounded then we say that the actions are boundedly orbit equivalent, and refer to Ψ
as a bounded orbit equivalence.

Suppose now that G and H are finitely generated and write `G and `H for the word length
functions with respect to some symmetric finite generating sets for G and H, respectively. We
say that the cocycle κ : G×X0 → H is integrable if for every g ∈ G one has∫

X
`H(κ(g, x)) dµ(x) <∞,

and define integrability for λ likewise. If X0, Y0, and Ψ can be chosen so that each of the cocycles
κ and λ is integrable then we say that the actions are integrably orbit equivalent, and refer to Ψ
as an integrable orbit equivalence.

Obviously every bounded orbit equivalence is integrable. Lemma 2.1 of [2] shows that every
integrable orbit equivalence is Shannon.

2.4. Sofic approximations. On the set V V of maps from a nonempty finite set V to itself we
define the normalized Hamming distance by

ρHamm(T, S) =
1

|V |
|{v ∈ V : Tv 6= Sv}|.

By a sofic approximation for G we mean a (not necessarily multiplicative) map σ : G→ Sym(V )
for some nonempty finite set V . Given a finite set F ⊆ G and an δ > 0, we say that such a σ is
an (F, δ)-approximation if

(i) ρHamm(σst, σsσt) ≤ δ for all s, t ∈ F , and
(ii) ρHamm(σs, σt) ≥ 1− δ for all distinct s, t ∈ F .

By a sofic approximation sequence for G we mean a sequence Σ = {σk : G → Sym(Vk)}∞k=1 of
sofic approximations for G such that for every finite set F ⊆ G and δ > 0 there is a k0 ∈ N such
that σk is an (F, δ)-approximation for every k ≥ k0.

By saying that a sofic approximation σ : G → Sym(V ) is good enough we mean that it is an
(F, δ)-approximation for some finite set F ⊆ G and δ > 0 and that this condition is sufficient
for the purpose at hand.

The group G is said to be sofic if it admits a sofic approximation sequence. This is the case
when G is amenable or residually finite, and indeed soficity can be regarded in a natural way
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as a simultaneous generalization of these two properties (see Section 10.2 of [25]). In particular,
free groups are sofic. It remains unknown whether nonsofic groups exist.

2.5. Sofic measure entropy. Let Gy (X,µ) be a p.m.p. action. Let C be a finite partition of
X, F a finite subset of G containing eG, and δ > 0. We write alg(C ) for the algebra generated
by C , consisting of all unions of members of C , and denote by CF the join

∨
s∈F sC . Let

σ : G → Sym(V ) be a sofic approximation for G. We define Homµ(C , F, δ, σ) to be the set of
homomorphisms ϕ : alg(CF )→ PV satisfying

(i)
∑

A∈C m(σgϕ(A)∆ϕ(gA)) < δ for all g ∈ F , and
(ii)

∑
A∈CF

|m(ϕ(A))− µ(A)| < δ.

For a finite partition P ≤ C we define |Homµ(C , F, δ, σ)|P to be the cardinality of the set of
restrictions of elements of Homµ(C , F, δ, σ) to P.

Suppose now that G is sofic and let Σ = {σk : G → Sym(Vk)}∞k=1 be a sofic approximation
sequence for G. For a finite partition P of X we write, notationally omitting the action for
brevity,

hΣ,µ(P,C , F, δ) = lim sup
k→∞

1

|Vk|
log |Homµ(C , F, δ, σk)|P ,

hΣ,µ(P) = inf
C≥P

inf
F

inf
δ>0

hΣ,µ(C ,P, F, δ)

where the first infimum is over all finite partitions C of X refining P and the second is over
all finite sets F ⊆ G containing eG. We also write hΣ,µ(G y X,P) for hΣ,µ(P) when it is
necessary to explicitly indicate the action. We define the sofic measure entropy of the action
Gy (X,µ) with respect to Σ by

hΣ,µ(Gy X) = sup
P

hΣ,µ(P),

where P ranges over all finite partitions of X.
For a p.m.p. action G y (X,µ) of an arbitrary G we define the maximum sofic measure

entropy by

hµ(Gy X) = max
Σ

hΣ,µ(Gy X)

where Σ ranges over all sofic approximation sequences for G (in the case that G is nonsofic we
interpret this maximum to be −∞). The following proposition shows that the maximum does
indeed exist.

Proposition 2.1. Suppose that G is sofic. Let Gy (X,µ) be a p.m.p. action. Then there is a
sofic approximation sequence Π for G such that hΠ,µ(G y X) ≥ hΠ′,µ(G y X) for every sofic
approximation sequence Π′ for G.

Proof. Put M = supΠ′ hΠ′,µ(Gy X) where Π′ ranges over all sofic approximation sequences Π′

for G. Take a sequence {Πn = {πn,k}k∈N}n∈N of sofic approximation sequences for G such that
hΠn,µ(Gy X)→M as n→∞.

Choose an increasing sequence F1 ⊆ F2 ⊆ . . . of finite subsets of G with union G. For
each n ∈ N there exists a Kn ∈ N such that for every k ≥ Kn the map πn,k is an (Fn, 1/n)-
approximation for G. Put W = {(n, k) ∈ N2 : k ≥ Kn}. Then W is countably infinite, and so
we can take a bijection ϕ : N→ W . Put πk = πϕ(k) for every k ∈ N and Π = {πk}k∈N. Then Π
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is a sofic approximation sequence for G. For any n ∈ N, any finite Borel partitions C � U of
X, any L ∈ F(G) containing eG, and any δ > 0, we have

hΠ,µ(C ,U , L, δ) ≥ hΠn,µ(C ,U , L, δ).

Thus hΠ,µ(Gy X) ≥ hΠn,µ(Gy X) for every n ∈ N. Therefore hΠ,µ(Gy X) = M . �

The measure entropy hΣ,µ(Gy X) is known not to depend on the choice of sofic approxima-
tion sequence Σ in the following cases:

(i) the group G is amenable, in which case we always recover the amenable measure entropy
[24, 10],

(ii) the action is Bernoulli [6, 23],

(iii) the action is an algebraic action of the form G y ( ̂(ZG)n/(ZG)nA,µ) where A ∈
Mn(ZG) is injective as an operator on `2(G)⊕n and µ is the normalized Haar measure
[17].

3. Property SC

A reminder that G and H throughout the paper are countably infinite groups, which in
particular forces the measure in any of their free p.m.p. actions to be atomless.

3.1. Definition and two permanence properties.

Definition 3.1. Let Y be a class of free p.m.p. actions of a fixed G. We say that Y has property
SC (“sparsely connected”) if for any function Υ : F(G)→ [0,∞) there exists an S ∈ F(G) such
that for any T ∈ F(G) there are C, n ∈ N, and S1, . . . , Sn ∈ F(G) so that for any Gy (X,µ) in
Y there are Borel sets W,V1, . . . ,Vn ⊆ X satisfying the following conditions:

(i)
∑n

j=1 Υ(Sj)µ(Vj) ≤ 1,

(ii) SW = X,
(iii) if w1, w2 ∈ W satisfy gw1 = w2 for some g ∈ T then w1 and w2 are connected by a

path of length at most C in which each edge is an Sj-edge with both endpoints in Vj
for some 1 ≤ j ≤ n.

We say that a free p.m.p. action G y (X,µ) has property SC if the singleton class containing
it has property SC. We say that G itself has property SC if the class of all free p.m.p actions
Gy (X,µ) has property SC.

Remark 3.2. When Y consists of either a single free p.m.p. action or all free p.m.p. actions of
a fixed G, one can omit the bound C since its existence is automatic, as we will verify in the
paragraph following Proposition 3.5.

We now record a couple of permanence properties. We will also later see in Section 3.4 that
if G has a normal subgroup with property SC then G itself has property SC (Proposition 3.16)
and that a prescribed finite-index subgroup of G has property SC if and only if G does (Propo-
sition 3.17).

Proposition 3.3. Let G y (X,µ) and H y (Y, ν) be free p.m.p. actions which are boundedly
orbit equivalent. Suppose that Gy (X,µ) has property SC. Then H y (Y, ν) has property SC.
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Proof. We may assume that (X,µ) = (Y, ν) and that the identity map of X provides a bounded
orbit equivalence between the actions G y (X,µ) and H y (X,µ). We may also assume that
both Gy X and H y X are free. Then we have the cocycles κ and λ as in Section 2.2.

Let ΥH be a function F(H) → [0,∞). Define a function ΥG : F(G) → [0,∞) by ΥG(F ) =
ΥH(κ(F,X)). Since Gy (X,µ) has property SC, there exists an SG ∈ F(G) such that for every
TG ∈ F(G) there are CG, nG ∈ N, SG,1, . . . , SG,nG ∈ F(G), and Borel subsets WG and VG,j of X
for 1 ≤ j ≤ nG satisfying the following conditions:

(i)
∑nG

j=1 ΥG(SG,j)µ(VG,j) ≤ 1,

(ii) SGWG = X,
(iii) if w1, w2 ∈ WG satisfy gw1 = w2 for some g ∈ TG then w1 and w2 are connected by a

path of length at most CG in which each edge is an SG,j-edge with both endpoints in
VG,j for some 1 ≤ j ≤ nG.

Set SH = κ(SG, X) ∈ F(H).
Let TH ∈ F(H). Set TG = λ(TH , X) ∈ F(G). Then we have CG, nG, SG,j for 1 ≤ j ≤ nG,

WG, and VG,j for 1 ≤ j ≤ nG as above. Set CH = CG, nH = nG, SH,j = κ(SG,j , X) ∈ F(H) for
1 ≤ j ≤ nH = nG. Also, set WH = WG and VH,j = VG,j for all 1 ≤ j ≤ nH = nG. Then

nH∑
j=1

ΥH(SH,j)µ(VH,j) =

nG∑
j=1

ΥH(κ(SG,j , X))µ(VG,j) =

nG∑
j=1

ΥG(SG,j)µ(VG,j) ≤ 1,

verifying condition (i) in Definition 3.1. Note that X = SGWG ⊆ SHWG = SHWH . Thus
X = SHWH , which verifies condition (ii) in Definition 3.1. Let h ∈ TH and w1, w2 ∈ WH with
hw1 = w2. Then

w2 = hw1 = λ(h,w1)w1 ∈ TGw1.

Thus w1 and w2 are connected by a path of length at most CG in which each edge is an SG,j-edge
with both endpoints in VG,j for some 1 ≤ j ≤ nG. Such an edge is also an SH,j-edge with both
endpoints in VH,j . This verifies condition (iii) in Definition 3.1. �

Recall that a p.m.p. action G y (X,µ) is said to weakly contain another p.m.p. action
Gy (Y, ν) if for every finite set F ⊆ G, finite collection of Borel sets B1, . . . , Bn ⊆ Y , and δ > 0
there exist Borel sets A1, . . . , An ⊆ X such that |µ(sAi ∩ Aj) − ν(sBi ∩ Bj)| < δ for all s ∈ F
and 1 ≤ i, j ≤ n [20, Section 10].

Proposition 3.4. Let G y (Y, ν) be a free p.m.p. action with property SC. Then the class Y
of all free p.m.p. actions Gy (X,µ) which weakly contain Gy (Y, ν) has property SC.

Proof. Let Υ be a function F(G) → [0,∞). Since G y (Y, ν) has property SC, there is an
S ∈ F(G) such that for any T ∈ F(G) there are C, n ∈ N and S1, . . . , Sn ∈ F(G) and Borel sets
W,Vj ⊆ Y for 1 ≤ j ≤ n satisfying the following conditions:

(i)
∑n

j=1 2Υ(Sj)ν(Vj) ≤ 1,

(ii) SW = Y ,
(iii) if w1, w2 ∈W satisfy tw1 = w2 for some t ∈ T then w1 and w2 are connected by a path

of length at most C in which every edge is an Sj-edge with both endpoints in Vj for
some 1 ≤ j ≤ n.
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Let T ∈ F(G). Then we have C, n, S1, . . . , Sn,W,V1, . . . ,Vn as above. Write [n] = {1, . . . , n}
and [C] = {1, . . . , C} for brevity. Denote by Ξ the set of (f, h) such that f is a function [C]→ [n]
and h is a function [C]→ G satisfying h(j) ∈ Sf(j) for all j ∈ [C]. For each t ∈ T , denote by Ξt
the set of (f, h) ∈ Ξ satisfying h(C)h(C−1) . . . h(1) = t. For each (f, h) ∈ Ξ, denote by Yf,h the
set of y ∈ Y satisfying h(j − 1) . . . h(1)y, h(j)h(j − 1) . . . h(1)y ∈ Vf(j) for all j ∈ [C]. Then the

above condition (iii) means that for every t ∈ T the set W ∩ t−1W is contained in
⋃

(f,h)∈Ξt
Yf,h.

Put Sn+1 = T ∈ F(G). Take 0 < δ < 1 such that δ(Υ(T )|T |(2|T |+ 2C|Ξ|) +
∑n

j=1 Υ(Sj)) ≤
1/2.

Let Gy (X,µ) be an action in Y. Because it weakly contains Gy (Y, ν), there are Borel sets
W ′ ⊆ X, V′j ⊆ X for j ∈ [n], and Xf,h ⊆ X for (f, h) ∈ Ξ satisfying the following conditions:

(i) |µ(SW ′)− ν(SW )| < δ,
(ii) |µ(V′j)− ν(Vj)| < δ for all j ∈ [n],

(iii) µ(h(j − 1) . . . h(1)Xf,h \V′f(j)), µ(h(j)h(j − 1) . . . h(1)Xf,h \V′f(j)) < δ for all (f, h) ∈ Ξ

and j ∈ [C],
(iv) µ((W ′ ∩ t−1W ′) \

⋃
(f,h)∈Ξt

Xf,h) < δ for each t ∈ T .

Put W ′′ = W ′ ∪ (X \ SW ′). Then SW ′′ = X, verifying condition (ii) in Definition 3.1.
For each (f, g) ∈ Ξ, denote by X ′f,h the set of x ∈ Xf,h satisfying h(j − 1) . . . h(1)x, h(j)h(j −

1) . . . h(1)x ∈ V′f(j) for all j ∈ [C]. Then µ(Xf,h \X ′f,h) < 2Cδ.

For each t ∈ T , put W †t = (W ′ ∩ t−1W ′) \
⋃

(f,h)∈Ξt
X ′f,h. Then

µ

( ⋃
t∈T

W †t

)
≤
∑
t∈T

µ(W †t )

≤
∑
t∈T

µ

(
(W ′ ∩ t−1W ′) \

⋃
(f,h)∈Ξt

Xf,h

)
+
∑
t∈T

∑
(f,h)∈Ξt

µ(Xf,h \X ′f,h)

< |T |δ + 2C|Ξ|δ.

Put V′n+1 = T (T (X \ SW ′) ∪
⋃
t∈T W

†
t ) ⊆ X. Then

n+1∑
j=1

Υ(Sj)µ(V′j) ≤ Υ(Sn+1)µ(V′n+1) +
n∑
j=1

Υ(Sj)(ν(Vj) + δ)

≤ Υ(T )|T |(|T |δ + |T |δ + 2C|Ξ|δ) +
1

2
+ δ

n∑
j=1

Υ(Sj) ≤ 1,

verifying condition (i) in Definition 3.1.
Let t ∈ T and w1, w2 ∈ W ′′ with tw1 = w2. If w1 ∈ X ′f,h for some (f, h) ∈ Ξt, then w1 and

w2 are connected by the path w1, h(1)w1, . . . , h(C) . . . h(1)w1 = tw1 = w2 of length C whose jth
edge is an Sf(j)-edge with both endpoints in V′f(j) for all 1 ≤ j ≤ C. Thus we may assume that

w1 ∈ (W ′′ ∩ t−1W ′′) \
⋃

(f,h)∈Ξt
X ′f,h ⊆ (X \SW ′)∪ t−1(X \SW ′)∪W †t . It follows that (w1, w2)

is an Sn+1-edge with both endpoints in V′n+1. This verifies condition (iii) in Definition 3.1. �

Using the above proposition we derive the following.



ENTROPY, SHANNON ORBIT EQUIVALENCE, AND SPARSE CONNECTIVITY 13

Proposition 3.5. The following conditions are equivalent:

(i) G has property SC,
(ii) every free p.m.p. action Gy (X,µ) has property SC,

(iii) there exists a nontrivial Bernoulli action of G with property SC.

Proof. (i)⇒(ii)⇒(iii). Trivial.
(iii)⇒(i). Combine Proposition 3.4 with the theorem of Abért and Weiss that every free

p.m.p. action of G weakly contains every nontrivial Bernoulli action of G [1]. �

We can now verify that the existence of the bound C in Definition 3.1 is automatic when Y
consists of either a single free p.m.p. action or all free p.m.p. actions of a fixed G. It suffices
to check the case of a single free p.m.p. action G y (X,µ) in view of the implication (iii)⇒(i)
in Proposition 3.5. Suppose then that the action G y (X,µ) satisfies the weaker formulation
that omits the C and suppose that we are given S, T , n, Sj for 1 ≤ j ≤ n, and W and Vj for
1 ≤ j ≤ n satisfying the weaker condition with respect to the function 2Υ. For each g ∈ T
and C ∈ N we define Wg,C to be the set of all w1 ∈ W ∩ g−1W such that w1 and gw1 can be
connected by a path of length at most C in which each edge is an Sj-edge with both endpoints
in Vj for some 1 ≤ j ≤ n. Then W ∩ g−1W is the increasing union of the sets Wg,C for C ∈ N.
Thus given τ > 0 we can find some C ∈ N such that µ((W ∩ g−1W ) \Wg,C) < τ for all g ∈ T .

Set W † = W \
⋃
g∈T ((W ∩ g−1W ) \Wg,C), Sn+1 = T , and Vn+1 = T (W \W †). Provided that τ

is small enough so that Υ(T )|T |2τ ≤ 1/2, we then have

n+1∑
j=1

Υ(Sj)µ(Vj) ≤
1

2
+ Υ(Sn+1)µ(Vn+1) ≤ 1

2
+ Υ(T )|T |2τ ≤ 1.

Let g ∈ T and w1, w2 ∈ W with gw1 = w2. If w1 ∈ W † then w1 ∈ Wg,C , in which case w1

and w2 are connected by a path of length at most C in which each edge is an Sj-edge with

both endpoints in Vj for some 1 ≤ j ≤ n. If on the other hand w1 6∈ W †, then (w1, w2) is an
Sn+1-edge with both endpoints in Vn+1.

3.2. The shrinking property. The shrinking property introduced here will be of technical
value in the proofs of Proposition 3.16 and Lemma 3.26 (both via Proposition 3.15) as well as
Lemma 3.30 and Proposition 3.32. For the purpose of these applications we provide a charac-
terization of when it holds in Proposition 3.11. Notice that, within the chain of quantification,
the position of the sets S1 (acting as the generator of a graph in which the path in (iii) lives)
and S (expressing the “scale” at which the set V is dense in X) is a reversal of what occurs in
the definition of property SC. The proof of Proposition 3.16 gives an illustration of how this can
be leveraged in direct conjunction with property SC.

Definition 3.6. We say that G has the shrinking property if there is an S1 ∈ F(G) such that
for every ε > 0 there is an S ∈ F(G) so that for every δ > 0 there is a C ∈ N such that given
any free p.m.p. action G y (X,µ) we can find Borel sets Z ⊆ V ⊆ X satisfying the following
conditions:

(i) SV = X,
(ii) µ(V) ≤ ε and µ(Z) ≤ δ,
(iii) every point of V is connected to some point of Z by an S1-path of length at most C

whose points all belong to V.
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Lemma 3.7. Suppose that s ∈ G generates an infinite subgroup G1 such that G/G1 is finite.
Let B be a subset of G containing eG such that G =

⊔
b∈B G1b. For each n ∈ N set Fn = {sj :

−n ≤ j ≤ n}B. Then {Fn}n∈N is a left Følner sequence for G.

Proof. Since G1 has finite index in G and G is finitely generated, G1 has a subgroup G0 such
that G0 is normal and has finite index in G. Then G0 is generated by sN for some N ∈ N.

For each n ∈ N, put An = {sNj : −n ≤ j ≤ n} ∈ F(G0). For each g ∈ G, the map x 7→ gxg−1

is an automorphism of G0
∼= Z and hence either gxg−1 = x for all x ∈ G0 or gxg−1 = x−1 for

all x ∈ G0, which implies that gAng
−1 = An for every n ∈ N.

Let K ∈ F(G). Then we can find some M ∈ N such that KFNB ⊆ FMN . For any n ∈ N
satisfying n ≥ N , writing n as kN +m for some 0 ≤ m ≤ N − 1 and k ∈ N we have

KFn ⊆ KFNAkB = AkKFNB ⊆ AkFMN = F(M+k)N ,

and hence |KFn| ≤ |F(M+k)N | =
2(M+k)N+1

2kN+1 |FkN | ≤ 2(M+k)N+1
2kN+1 |Fn|. As n→∞ we have k →∞,

whence 2(M+k)N+1
2kN+1 → 1. Therefore {Fn}n∈N is a left Følner sequence for G. �

Lemma 3.8. Suppose that G is locally virtually cyclic but neither locally finite nor virtually
cyclic. Then G has both property SC and the shrinking property.

Proof. Since G is not locally finite, it has a finitely generated infinite subgroup G2. As G is
locally virtually cyclic, G2 is virtually cyclic and hence contains a subgroup G1 such that G1 is
isomorphic to Z and has finite index in G2.

Take an increasing sequence {Un}n∈N of finite subsets of G with union G. Let n ≥ 3. Denote
by Gn the subgroup of G generated by G2 and Un. Then Gn is finitely generated, and hence
has a finite-index cyclic subgroup G′n. Since G1 is infinite and G′n has finite index in Gn, the
intersection G1 ∩G′n must be nontrivial and hence have finite index in G′n. Then G1 ∩G′n has
finite index in Gn, whence G1 has finite index in Gn.

Now we have that {Gn}n∈N is an increasing sequence of proper subgroups of G with union
G, G1 is isomorphic to Z, and G1 has finite index in Gn for every n ∈ N. Then [Gn : G1]→∞
as n→∞. Take an s ∈ G1 generating G1.

Put S1 = {s, eG, s−1} ∈ F(G). Let Υ be a function F(G) → [0,∞). Take m ∈ N such that
Υ(S1) ≤ [Gm : G1]/6. Since G1 has finite index in Gm, G1 has a subgroup G0 such that G0 is a
finite-index normal subgroup of Gm. Then G0 is generated by sN for some N ∈ N.

For each n ∈ N, put An = {sNj : −n ≤ j ≤ n} ∈ F(G0). For each g ∈ Gm, the map
x 7→ gxg−1 is an automorphism of G0

∼= Z and hence either gxg−1 = x for all x ∈ G0 or
gxg−1 = x−1 for all x ∈ G0, which implies that gAng

−1 = An for every n ∈ N.
Take a B ∈ F(Gm) containing eG such that Gm =

⊔
b∈B G1b. For each n ∈ N put Kn = {sj :

−n ≤ j ≤ n} ∈ F(G1). Also, put S = (KNB) ∪ (KNB)−1 ∈ F(Gm).
Let T ∈ F(G). Take an M ∈ N bigger than m such that T ⊆ GM . Take a D ∈ F(GM )

containing eG such that GM =
⊔
d∈DGmd. Put S2 = D−1D ∈ F(GM ) and S3 = T ∈ F(GM ).

Take τ > 0 with τ |T |Υ(T ) ≤ 1/3, and take 0 < η < min{1/2, τ/(4|S|+ 1)}.
For F ∈ F(GM ) write ∂TF for the set {g ∈ F : Tg * F}. For each n ∈ N put Fn = KnBD ∈

F(GM ). From Lemma 3.7 we know that {FnN}n∈N is an increasing left Følner sequence for GM .
Then we can find some n0 ∈ N such that Υ(S2)/(2n0N + 1) < 1/6 and for any n ≥ n0 one
has |∂TFnN | ≤ η|FnN |. By the Ornstein–Weiss quasitower theorem [25, Theorem 4.44] there are
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some l ∈ N and n0 < n1 < n2 < · · · < nl in N such that for any free p.m.p. action G y (X,µ)
there are Borel sets Z1, . . . , Zl ⊆ X satisfying the following conditions:

(i) for each 1 ≤ j ≤ l there is a set FnjN,x ⊆ FnjN depending measurably on x ∈ Zj and
satisfying |FnjN,x| ≥ (1 − η/|T |)|FnjN | for each x ∈ Zj so that the sets FnjN,xx for
x ∈ Zj are pairwise disjoint,

(ii) FniNZi ∩ FnjNZj = ∅ for i 6= j,

(iii) µ(
⋃l
j=1 FnjNZj) ≥ 1− η.

Put C = 2nlN + 1.
Now let Gy (X,µ) be a free p.m.p. action. Then we have Z1, . . . , Zl as above. Put

W ′ =

l⋃
j=1

⋃
x∈Zj

(KnjND ∩ (FnjN,x \ ∂TFnjN,x))x,

and W = (X \SW ′)∪W ′. Then W ′ and W are Borel subsets of X. Clearly SW = X, verifying
condition (ii) in Definition 3.1.

Let 1 ≤ j ≤ l. For each x ∈ Zj we have

∂TFnjN,x ⊆ ∂TFnjN ∪ T−1(FnjN \ FnjN,x)

and hence

|KnjND \ (FnjN,x \ ∂TFnjN,x)| ≤ |FnjN \ (FnjN,x \ ∂TFnjN,x)|
= |(FnjN \ FnjN,x) ∪ ∂TFnjN,x|
≤ |∂TFnjN ∪ T−1(FnjN \ FnjN,x)|
≤ |∂TFnjN |+ |T | · |FnjN \ FnjN,x|
≤ 2η|FnjN |.

Set

V1 =

l⋃
j=1

KnjNDZj ⊆ X, V2 =

l⋃
j=1

DZj ⊆ X, and V3 = T (W \W ′) ⊆ X.

Then

Υ(S1)µ(V1) ≤ Υ(S1)

l∑
j=1

|KnjND|µ(Zj)

=
Υ(S1)

[Gm : G1]

l∑
j=1

|KnjNBD|µ(Zj)

=
Υ(S1)

[Gm : G1]

l∑
j=1

|FnjN |µ(Zj)

≤ Υ(S1)

[Gm : G1](1− η)
≤ 1

6(1− η)
≤ 1

3
,
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and

Υ(S2)µ(V2) ≤ Υ(S2)

l∑
j=1

|D|µ(Zj)

≤ Υ(S2)

|Kn0N |

l∑
j=1

|KnjNBD|µ(Zj)

=
Υ(S2)

2n0N + 1

l∑
j=1

|FnjN |µ(Zj)

≤ Υ(S2)

(2n0N + 1)(1− η)
≤ 1

6(1− η)
≤ 1

3
.

For each 1 ≤ j ≤ l, since KNB ⊆ Gm we have

FnjN = KnjNBD = Anj−1KNBD = KNBAnj−1D ⊆ SAnj−1D ⊆ SKnjND.

Thus SV1 ⊇
⋃l
j=1 FnjNZj . Therefore

µ(W \W ′) ≤ µ(X \ SW ′)
≤ µ(X \ SV1) + |S|µ(V1 \W ′)

≤ µ
(
X \

l⋃
j=1

FnjNZj

)
+ |S|µ

( l⋃
j=1

⋃
x∈Zj

(KnjND \ (FnjN,x \ ∂TFnjN,x))x

)

≤ η + 2η|S|
l∑

j=1

|FnjN |µ(Zj)

≤ η +
2η|S|
1− η

≤ η + 4η|S| ≤ τ,

and hence

Υ(S3)µ(V3) ≤ Υ(T )|T |µ(W \W ′) ≤ τΥ(T )|T | ≤ 1

3
.

Combining estimates we obtain
3∑
j=1

Υ(Sj)µ(Vj) ≤ 1,

verifying condition (i) in Definition 3.1.
Next let g ∈ T and w1, w2 ∈ W with gw1 = w2. If w1 6∈ W ′ or w2 6∈ W ′, then (w1, w2) is an

S3-edge with both endpoints in V3. Thus we may assume that w1, w2 ∈ W ′. For each i = 1, 2,
we have wi = hixi for some 1 ≤ ji ≤ l, xi ∈ Zji and hi ∈ KnjiN

D∩ (FnjiN,xi \∂TFnjiN,xi). Write
hi as tidi for some ti ∈ KnjiN

and di ∈ D. Then wi = tidixi is connected to dixi by some S1-path

in V1 of length at most nlN . Since h1 ∈ Fnj1N,x1 \ ∂TFnj1N,x1 , we have w2 = gw1 ∈ Fnj1N,x1x1,

and hence x1 = x2. Then (d1x1, d2x2) is an S2-edge with both endpoints in V2. Thus w1 and
w2 are connected by a path of length at most C in which each edge is an Sj-edge with both
endpoints in Vj for some 1 ≤ j ≤ 3, verifying condition (iii) in Definition 3.1. This proves that
G has property SC.
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To establish the shrinking property, let ε > 0 and consider the function Υ : F(G) → [0,∞)
which takes the constant value 2/ε. Then we have S as above. Take T = {eG}. Let δ > 0.
In the above we can further require that η ≤ min{ε/2, δ/2} and Υ(S2)/(2n0N + 1) ≤ δ/(2ε).
Given a free p.m.p. action G y (X,µ), we have Vj for 1 ≤ j ≤ 3 as above. Put V = V1 ∪
(X \

⋃l
j=1 FnjNZj) and Z = V2 ∪ (X \

⋃l
j=1 FnjNZj) ⊆ V. From SV1 ⊇

⋃l
j=1 FnjNZj we have

SV = X, verifying condition (i) in Definition 3.6. We have

µ(V) ≤ µ(V1) + µ

(
X \

l⋃
j=1

FnjNZj

)
≤ ε

2
Υ(S1)µ(V1) + η ≤ ε

2
+
ε

2
= ε,

and

µ(Z) ≤ µ(V2) + µ

(
X \

l⋃
j=1

FnjNZj

)
≤ ε

2
Υ(S2)µ(V2) + η ≤ εΥ(S2)

2n0N + 1
+
δ

2
≤ δ,

verifying condition (ii) in Definition 3.6. Clearly every point of V is connected to some point
of Z through an S1-path of length at most nlN ≤ C whose points all belong to V, verifying
condition (iii) in Definition 3.6. Thus G has the shrinking property. �

Lemma 3.9. Let Gy X be a Borel action on a standard Borel space. Let F ∈ F(G). Let Y be
a Borel subset of X and E a Borel subset of Y 2 such that E ⊇ ∆Y = {(y, y) : y ∈ Y }, E∗ = E
where E∗ := {(y, x) : (x, y) ∈ E}, and E is contained in the union of the graphs of g ∈ F . Let
M1 ∈ N. Then there is a Borel set W ⊆ Y such that

(i) W is (E,M1)-separated in the sense that no distinct two points of W are connected by
an E-path of length at most 2M1, and

(ii) every point in Y is connected to some point in W by an E-path of length at most 2M1.

Proof. Let Γ be the Borel graph on Y whose edges are the pairs of distinct points which can
be connected by an E-path of length at most 2M1. Each vertex in this graph has finitely
many neighbours, and so by Propositions 4.5 and 4.2 in [22] there exists a maximal Borel set
W ⊆ Y with the property that no two points in W are adjacent in Γ. This W fulfills the
requirements. �

Lemma 3.10. Suppose that G is finitely generated and not virtually cyclic. Let A be a generating
set for G in F(G). Then there is a constant b > 0 such that given any r,M ∈ N and free p.m.p.
action G y (X,µ) there exist Borel sets Z ⊆ V ⊆ X such that A2rV = X, µ(V) ≤ b/r,
µ(Z) ≤ 1/(M + 1), and every point of V is connected to some point of Z by an A-path of length
at most 2M with all points in V.

Proof. As G is not virtually cyclic, we can find a c > 0 such that |An| ≥ cn2 for all n ∈ N
(Corollary 3.5 of [28]). Set b = 5/c. Let r,M , and Gy (X,µ) be as in the lemma statement.

Applying Lemma 3.9 with F taken to be A, Y to be X, E to be the union of the graphs of
g ∈ A, and M1 to be r, we find a Borel set U ⊆ X such that the sets gU for g ∈ Ar are pairwise
disjoint and A2rU = X. Note that

|Ar|µ(U) = µ(ArU) ≤ 1
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whence

µ(U) ≤ 1

|Ar|
≤ 1

cr2
.(1)

Let w ∈ U . Set Tw = U ∩ Gw. Since X = A2rU , we have Gw = A2rTw. In particular, Tw
is infinite. Consider the graph (Tw, E

′
w) whose edges are those pairs of vertices which can be

joined by an A-path of length at most 4r + 1. We claim that (Tw, E
′
w) is connected. It suffices

to show that every v ∈ Tw is connected to w by some path in (Tw, E
′
w). Take an A-path from

w to v. For each point z in this path, we may connect z to some uz ∈ Tw by an A-path pz of
length at most 2r. Inserting pz and the reverse of pz at z, we find an A-path from w to v in
which points of Tw appear in every interval of length 4r+ 1. Thus v is connected to w by some
path in (Tw, E

′
w). This proves our claim.

Consider the graph (U,E′) whose edges are those pairs of vertices which can be joined by an
A-path of length at most 4r + 1. Note that E′ is a Borel subset of U2 and is contained in the
union of the graphs of g ∈ A4r+1.

Applying Lemma 3.9 with F = A4r+1, Y = U , E = E′, and M1 = M , we find an (E′,M)-
separated Borel subset Z ′ of U such that every point in U can be connected to some point in Z ′

by an E′-path of length at most 2M . For each 0 ≤ j ≤ 2M , denote by Uj the set of points in U
which can be connected to some point in Z ′ by an E′-path of length j, but cannot be connected
to any point in Z ′ by an E′-path of length less than j. Then the sets Z ′ = U0, U1, U2, . . . , U2M

form a Borel partition of U .
Denote by Θ the set of finite sequences in A with length at most 4r + 1. Let 1 ≤ j ≤ 2M .

Take a Borel map fj : Uj → Uj−1 such that (v, fj(v)) ∈ E′ for all v ∈ Uj . Also take a Borel
map hj : Uj → Θ such that for any v ∈ Uj , say hj(v) = (g1, . . . , gl) with 1 ≤ l ≤ 4r + 1
and gk ∈ A for 1 ≤ k ≤ l, one has glgl−1 . . . g1v = fj(v). Denote by V the union of U and
the set consisting of the points g1v, g2g1v, . . . , gl−1 . . . g1v for all 1 ≤ j ≤ 2M , v ∈ Uj , and
hj(v) = (g1, . . . , gl). Also, denote by E the union of ∆V and the set consisting of all pairs of
the form (gkgk−1 . . . g1v, gk−1 . . . g1v) or (gk−1 . . . g1v, gkgk−1 . . . g1v) for 1 ≤ j ≤ 2M , v ∈ Uj ,
hj(v) = (g1, . . . , gl), and 1 ≤ k ≤ l. Then V is Borel, and

µ(V) ≤
2M∑
j=0

(4r + 1)µ(Uj) = (4r + 1)µ(U) ≤ 5rµ(U)
(1)

≤ 5r · 1

cr2
=
b

r
.

Since A2rV ⊇ A2rU = X, we have A2rV = X. Note that E ⊆ V2 is Borel and contained in the
union of the graphs of g ∈ A, and that E ⊇ ∆V and E∗ = E. Also note that every point of V is
connected to some point of Z ′ by an E-path of length at most 2M(4r + 1).

Let z ∈ Z ′. Denote by Wz the set of all w ∈ U which can be connected to z by an E′-path
of length at most M . Since Tz is infinite, Tz 6= Wz. Because (Tz, E

′
z) is connected, we conclude

that |Wz| ≥M + 1. Since Z ′ is (E′,M)-separated, the sets Wz for z ∈ Z ′ are pairwise disjoint,
and hence for each z ∈ Z ′ the set Wz is contained in the E-connected component of V containing
z. As every E-connected component of V contains some z ∈ Z ′, it contains Wz and hence has
at least M + 1 points.

Applying Lemma 3.9 with F = A, Y = V, E = E, and M1 = M , we find an (E,M)-separated
Borel subset Z of V such that every point in V can be connected to some point in Z by an
E-path of length at most 2M . Then every point in V can be connected to some point of Z by
an A-path of length at most 2M with all points in V.
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Let z ∈ Z. Denote by Vz the set of w ∈ V which can be connected to z by an E-path of length
at most M . Since the E-connected component of V containing z has at least M + 1 points, we
have |Vz| ≥ M + 1. Note that Vz = Uzz for some subset Uz of AM . Denote by D the set of
all subsets of AM with cardinality at least M + 1. The map ψ from Z to D sending z to Uz is
Borel. Since the sets Vz for z ∈ Z are pairwise disjoint, we get

1 ≥ µ
( ⋃
z∈Z

Vz

)
= µ

( ⋃
z∈Z

Uzz

)
=
∑
D∈D

µ

( ⋃
z∈ψ−1(D)

Dz

)
=
∑
D∈D
|D|µ(ψ−1(D))

≥ (M + 1)
∑
D∈D

µ(ψ−1(D)) = (M + 1)µ(Z),

whence

µ(Z) ≤ 1

M + 1
.

�

Proposition 3.11. G has the shrinking property if and only if it is neither locally finite nor
virtually cyclic.

Proof. If G is not locally virtually cyclic, then G has a finitely generated subgroup G1 which
is not virtually cyclic. By Lemma 3.10 the group G1 has the shrinking property, and hence so
does G. If G is locally virtually cyclic but neither locally finite nor virtually cyclic, then by
Lemma 3.8 the group G has the shrinking property. This proves the “if” part.

To prove the “only if” part, we assume that G has the shrinking property and argue by
contradiction that G cannot be locally finite or virtually cyclic.

Suppose that G is locally finite. Let S1 ∈ F(G) witness the shrinking property for G. Denote
by G1 the finite subgroup of G generated by S1. Put ε = 1. Then we have S ∈ F(G) in
Definition 3.6. Take 0 < δ < 1/|SG1|. Then we have C in Definition 3.6. Let G y (X,µ)
be a free p.m.p. action. Then we have Borel sets Z ⊆ V ⊆ X satisfying conditions (i)-(iii) in
Definition 3.6. Note that V ⊆ G1Z and hence X = SV ⊆ SG1Z. Thus δ ≥ µ(Z) ≥ 1/|SG1|,
which is a contradiction.

Suppose now that G is virtually cyclic but not locally finite. Then G has a finite-index normal
subgroup G1 isomorphic to Z. Take a generator s for G1. For each n ∈ N put Kn := {sj : −n ≤
j ≤ n}. Take a B ∈ F(G) containing eG such that G =

⊔
b∈B G1b. Let S1 ∈ F(G) witness the

shrinking property for G. Take m ∈ N such that BS1 ⊆ KmB. Take 0 < ε < 1/(8|KmB|). Then
we have S ∈ F(G) in Definition 3.6. Take an S′ ∈ F(G1) such that S′B ⊇ S. Then S′ ⊆ KM

for some M ∈ N. Take R ∈ N large enough so that (2R + 2M + 1)/(2R + 1) ≤ 2 and take
0 < δ < 1/(2|S′KRB|). Then we have C ∈ N in Definition 3.6. Let Gy (X,µ) be a free p.m.p.
action. Then we have Borel sets Z ⊆ V ⊆ X satisfying conditions (i)-(iii) in Definition 3.6. Put
V′ = BV, V′′ = KmV

′, and Z ′ = BZ ⊆ V′. Then X = SV ⊆ S′BV = S′V′ and hence X = S′V′.
We claim that every point of V′ can be connected to some point of Z ′ by a K1-path whose

points all belong to V′′. Let w′ ∈ V′. Then w′ = bw for some w ∈ V and b ∈ B. We can find
some 1 ≤ l ≤ C and g1, . . . , gl ∈ S1 such that gj . . . g1w ∈ V for all 1 ≤ j ≤ l and gl . . . g1w ∈ Z.

Put b0 = b. We define bj ∈ B and hj ∈ Km for 1 ≤ j ≤ l inductively by bj−1g
−1
j = h−1

j bj . For
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each 1 ≤ j ≤ l, we have

b−1
j hj . . . h1bw = gjb

−1
j−1hj−1 . . . h1bw = · · · = gjgj−1 . . . g1w ∈ V,

and hence hj . . . h1bw ∈ bjV ⊆ V′. Furthermore, hl . . . h1bw = blgl . . . g1w ∈ blZ ⊆ Z ′. We can
connect hj . . . h1bw and hj−1 . . . h1bw by a K1-path of length at most m with all points in V′′.
This proves our claim.

Put U = X \ S′KRZ
′. Let u ∈ U . Since X = S′V′, we have gu = w′ for some g ∈ S′ ⊆ KM

and w′ ∈ V′. Then w′ 6∈ KRZ
′. By the claim above we can find a K1-path in V′′ from w′ to

some point z′ ∈ Z ′. It follows that either sjw′ ∈ V′′ for all 0 ≤ j ≤ R or s−jw′ ∈ V′′ for all
0 ≤ j ≤ R. Therefore

1

2R+ 1

R+M∑
j=−R−M

χV′′(s
ju) ≥ 1

2R+ 1

R∑
j=−R

χV′′(s
jw′) ≥ 1

2
.

Thus ∫
U

1

2R+ 1

R+M∑
j=−R−M

χV′′(s
ju) dµ(u) ≥

∫
U

1

2
dµ(u)

=
1

2
µ(U)

≥ 1

2
(1− |S′KRB|µ(Z))

≥ 1

2
(1− |S′KRB|δ) >

1

4
,

while ∫
U

1

2R+ 1

R+M∑
j=−R−M

χV′′(s
ju) dµ(u) ≤

∫
X

1

2R+ 1

R+M∑
j=−R−M

χV′′(s
ju) dµ(u)

=
2R+ 2M + 1

2R+ 1
· µ(V′′)

≤ 2|KmB|µ(V)

≤ 2ε|KmB| <
1

4
,

a contradiction. This proves the “only if” part. �

3.3. Variants of property SC. For the purposes of Section 3.5 it will be convenient to formu-
late the following variations on property SC. Proposition 3.15 establishes relationships between
these two properties, property SC itself, and the shrinking property.

Definition 3.12. Let Y be a class of free p.m.p. actions of a fixed G. We say that Y has
property SC ′ if for any function Υ : F(G) → [0,∞) there is some η > 0 such that for any
T ∈ F(G) there are C, n ∈ N, and S1, . . . , Sn ∈ F(G) so that for any G y (X,µ) in Y and any
Borel sets W1,W2 ⊆ X with µ(W1), µ(W2) ≤ η there are Borel sets V1, . . . ,Vn ⊆ X satisfying
the following conditions:

(i)
∑n

j=1 Υ(Sj)µ(Vj) ≤ 1,
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(ii) if w1 ∈W1 and w2 ∈W2 satisfy gw1 = w2 for some g ∈ T then w1 and w2 are connected
by a path of length at most C in which each edge is an Sj-edge with both endpoints in
Vj for some 1 ≤ j ≤ n.

We say that Y has property SC ′′ if the above conditions hold without the bound C.

Lemma 3.13. Suppose that G is locally finite. Then no free p.m.p. action G y (X,µ) has
property SC ′′.

Proof. Let G y (X,µ) be a free p.m.p. action. Take a strictly increasing sequence {Gk}k∈N of
finite subgroups of G such that G =

⋃
k∈NGk. For each F ∈ F(G), denote by Φ(F ) the smallest

k ∈ N satisfying F ⊆ Gk. Define Υ : F(G)→ [0,∞) by Υ(F ) = 2|GΦ(F )|.
Suppose that Gy (X,µ) has property SC′′. Then there is an η > 0 satisfying the conditions

in Definition 3.12. Take an m ∈ N with 1/|Gm| < η. Put T = Gm+1 ∈ F(G). Then there are
n ∈ N and S1, . . . , Sn ∈ F(G) satisfying the conditions in Definition 3.12. We may assume that
there is a k such that S1, . . . , Sk ⊆ Gm and none of Sk+1, . . . , Sn is contained in Gm.

As Gm+1 is finite we can find a Borel set Y ⊆ X such that the sets gY for g ∈ Gm+1 form a
partition of X (see Example 6.1 and Proposition 6.4 in [21]). Choose an h ∈ Gm+1 \ Gm. Put
W1 = Y and W2 = hY , and note that µ(W1) = µ(W2) = 1/|Gm+1| < η. Then there are Borel
sets V1, . . . ,Vn ⊆ X satisfying the conditions in Definition 3.12.

Let y ∈ Y . By condition (ii) in Definition 3.12, y and hy are connected by a path each of
whose edges is an Sj-edge with both endpoints in Vj for some 1 ≤ j ≤ n. Since h 6∈ Gm, this
implies that Gmy ∩

⋃n
j=k+1 Vj 6= ∅. We infer that µ(

⋃n
j=k+1 Vj) ≥ µ(Y ) = 1/|Gm+1| and hence

1 ≥
n∑
j=1

Υ(Sj)µ(Vj) ≥
n∑

j=k+1

Υ(Sj)µ(Vj)

≥ 2|Gm+1|
n∑

j=k+1

µ(Vj) ≥ 2|Gm+1|µ
( n⋃
j=k+1

Vj

)
≥ 2,

a contradiction. We conclude that Gy (X,µ) does not have property SC′′. �

Lemma 3.14. Suppose that G is virtually cyclic. Then no free p.m.p. action G y (X,µ) has
property SC ′′.

Proof. By assumption G has a subgroup of finite index isomorphic to Z. Then G has a normal
subgroup G1 of finite index isomorphic to Z. Take a generator s for G1. Take a finite subset B of
G containing eG such that G is the disjoint union of the sets hG1 for h ∈ B. For each m ∈ N put
Km = {sk : −m ≤ k ≤ m}. For each F ∈ F(G), denote by Φ(F ) the smallest m ∈ N satisfying
F ⊆ BKm. Put M = Φ(BB). Define Υ : F(G)→ [0,∞) by Υ(F ) = 3|KM | · |B| · |BKΦ(F )|.

Let G y (X,µ) be a free p.m.p. action and suppose that it has property SC′′. Then there
is an η > 0 satisfying the conditions in Definition 3.12. Take an m ∈ N with 1/(m + 1) < η.
Put T = {sm, eG, s−m} ∈ F(G). Then there are n ∈ N and S1, . . . , Sn ∈ F(G) satisfying the
conditions in Definition 3.12.

Applying the Rokhlin lemma [25, Lemma 4.77] to G1 y (X,µ), we find a Borel set Y ⊆ X
such that the sets skY for k = 0, 1, . . . ,m are pairwise disjoint and µ(

⋃m
k=0 s

kY ) > 1/2. Put
W1 = Y and W2 = smY . We have µ(W1) = µ(W2) = µ(Y ) ≤ 1/(m + 1) < η. Then there are
Borel sets V1, . . . ,Vn ⊆ X satisfying the conditions in Definition 3.12.
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Put V =
⋃n
j=1BKΦ(Sj)Vj . If (v1, v2) is an Sj-edge with both v1 and v2 in Vj for some

1 ≤ j ≤ n, then v1 and v2 are connected by a (B ∪ K1)-path in V. From condition (ii) in
Definition 3.12 we conclude that for each y ∈ Y the points y and smy are connected by a
(B ∪K1)-path in V. Put V′ = B−1V and V′′ = KMV′.

Let x ∈ V′, h ∈ B, and l ∈ N be such that skhx ∈ V for all 0 ≤ k ≤ l. Then either h−1sih = si

for all i ∈ Z or h−1sih = s−i for all i ∈ Z. If h−1sih = si for all i ∈ Z, then x is connected to
slhx by the path x, sx, . . . , slx, hslx, which is the K1-path x, sx, . . . , slx in V′ followed by the
B-edge (slx, hslx) with slx ∈ V′ and hslx ∈ V, since skx = h−1skhx ∈ V′ for all 0 ≤ k ≤ l.
If h−1sih = s−i for all i ∈ Z, then x is connected to slhx by the path x, s−1x, . . . , s−lx, hs−lx,
which is the K1-path x, s−1x, . . . , s−lx in V′ followed by the B-edge (s−lx, hs−lx) with s−lx ∈ V′

and hs−lx ∈ V, since s−kx = h−1skhx ∈ V′ for all 0 ≤ k ≤ l.
Similarly, if x ∈ V′, h ∈ B, and l ∈ N are such that s−khx ∈ V for all 0 ≤ k ≤ l then x

is connected to s−lhx by a path which is a K1-path in V′ followed by a B-edge of the form
(z, s−lhx) with z ∈ V′ and s−lhx ∈ V.

Let x ∈ V′ and h1, h2 ∈ B be such that h2h1x, h1x ∈ V. Then h2h1 = hsk for some h ∈ B
and −M ≤ k ≤ M . When k ≥ 0, x is connected to h2h1x by the path x, sx, . . . , skx, hskx,
which is the K1-path x, sx, . . . , skx in V′′ followed by the B-edge (skx, hskx) with skx ∈ V′ and
hskx ∈ V. When k ≤ 0, x is connected to h2h1x by the path x, s−1x, . . . , skx, hskx, which is the
K1-path x, s−1x, . . . , skx in V′′ followed by the B-edge (skx, hskx) with skx ∈ V′ and hskx ∈ V.

From the above three paragraphs, we conclude that if x ∈ V is connected to y ∈ V by a
(B ∪K1)-path in V, then x is connected to y by a path in V′′ that is a K1-path followed by a
B-edge.

For any y ∈ Y , since y and smy are connected by a (B ∪ K1)-path in V we infer that y is
connected to smy by a K1-path in V′′. Therefore sky ∈ V′′ for all 0 ≤ k ≤ m. Consequently,
µ(V′′) ≥ µ(

⋃m
k=0 s

kY ) ≥ 1/2. On the other hand, we have

µ(V′′) ≤ |KM | · |B|µ(V) ≤
n∑
j=1

|KM | · |B| · |BKΦ(Sj)|µ(Vj) =
1

3

n∑
j=1

Υ(Sj)µ(Vj) ≤
1

3
,

a contradiction. We conclude that Gy (X,µ) does not have property SC′′. �

Proposition 3.15. For a fixed G, let Y be a nonempty class of free p.m.p. actions Gy (X,µ).
Consider the following conditions:

(i) Y has property SC,
(ii) Y has property SC ′,

(iii) Y has property SC ′′,
(iv) G has the shrinking property.

Then (i)⇔(ii)⇒(iii)⇒(iv). Moreover, if Y consists of a single action or of all free p.m.p. actions
of G then (i)⇔(ii)⇔(iii)⇒(iv).

Proof. (i)⇒(ii). Let Υ be a function F(G) → [0,∞). Then we have an S ∈ F(G) witnessing
property SC for Y with respect to the function 2Υ. Take an η > 0 with 2η|S|Υ(S) < 1/2.
Let T1 ∈ F(G). Then we have C, n, S1, . . . , Sn given by Definition 3.1 for T := ST1S ∈ F(G).
Put Sn+1 = S ∈ F(G). Let G y (X,µ) be an action in Y. Then we have W,V1, . . . ,Vn
satisfying conditions (i)-(iii) in Definition 3.1. Let W1,W2 be Borel subsets of X satisfying
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µ(W1), µ(W2) ≤ η. Put

Vn+1 = (Sn+1(W1 ∪W2) ∩W ) ∪ (W1 ∪W2) ⊆ S(W1 ∪W2).

Then

µ(Vn+1) ≤ |S|(µ(W1) + µ(W2)) ≤ 2η|S|
and hence

n+1∑
j=1

Υ(Sj)µ(Vj) ≤
1

2
+ Υ(S)µ(Vn+1) ≤ 1

2
+ 2η|S|Υ(S) ≤ 1

2
+

1

2
= 1,

verifying condition (i) in Definition 3.12. Let g ∈ T1 and w1 ∈ W1, w2 ∈ W2 with gw1 = w2.
For i = 1, 2 take an si ∈ S such that siwi ∈ W . Then (wi, siwi) is an Sn+1-edge with both
endpoints in Vn+1. Note that (s2gs

−1
1 )(s1w1) = s2w2 and s2gs

−1
1 ∈ T . Thus s1w1 and s2w2 are

connected by a path of length at most C in which each edge is an Sj-edge with both endpoints
in Vj for some 1 ≤ j ≤ n. Then w1 and w2 are connected by a path of length at most C + 2
in which each edge is an Sj-edge with both endpoints in Vj for some 1 ≤ j ≤ n + 1, verifying
condition (ii) in Definition 3.12. Thus Y has property SC′.

(ii)⇒(iii). Trivial.
(iii)⇒(iv). This follows from Lemmas 3.13 and 3.14 and Proposition 3.11.
(ii)⇒(i). Since (ii)⇒(iii)⇒(iv), G has the shrinking property. Let S] ∈ F(G) witness the

shrinking property for G. Let Υ be a function F(G)→ [0,∞). Take an η as given by property
SC′ for Y with respect to the function 2Υ. Take an ε] > 0 with ε]Υ(S]) ≤ 1/2. By the shrinking
property for G there is an S ∈ F(G) so that for any δ > 0 there is a C] ∈ N such that given
any free p.m.p. action G y (X,µ) we can find Borel sets Z ⊆ V ⊆ X satisfying the following
conditions:

(a) SV = X,
(b) µ(V) ≤ ε] and µ(Z) ≤ δ,
(c) every point of V is connected to some point of Z by an S]-path of length at most C]

with all points in V.

Put δ = η. Then we have C] as above. Let T ∈ F(G). Then we have C, n, S1, . . . , Sn as

given by property SC′ for T1 := (S])C
]
T (S])C

] ∈ F(G). Put Sn+1 = S] ∈ F(G). Now let
G y (X,µ) be an action in Y. Then we have Z,V satisfying the above conditions (a)-(c). Put
W1 = W2 = Z. Then µ(W1), µ(W2) ≤ δ = η. Thus we have V1, . . . ,Vn satisfying the conditions
in Definition 3.12. Put W = V and Vn+1 = V ⊆ X. Then

n+1∑
j=1

Υ(Sj)µ(Vj) ≤
1

2
+ Υ(S])µ(V) ≤ 1

2
+ Υ(S])ε] ≤ 1

2
+

1

2
= 1,

verifying condition (i) in Definition 3.1. Clearly SW = SV = X, verifying condition (ii) in
Definition 3.1. Let g ∈ T and w1, w2 ∈ W with gw1 = w2. For i = 1, 2, we can connect wi
to a point zi ∈ Z by an Sn+1-path of length at most C] with all points in V = Vn+1. Then

zi = siwi for some si ∈ (S])C
]
. Note that (s2gs

−1
1 )z1 = z2 and s2gs

−1
1 ∈ (S])C

]
T (S])C

]
= T1.

Since zi ∈ Wi, we can connect z1 and z2 by a path of length at most C in which each edge is
an Sj-edge with both endpoints in Vj for some 1 ≤ j ≤ n. Then w1 and w2 are connected by a
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path of length at most C + 2C] in which each edge is an Sj-edge with both endpoints in Vj for
some 1 ≤ j ≤ n+ 1, verifying condition (iii) in Definition 3.1. Thus Y has property SC.

Now assume that Y consists of a single action or of all free p.m.p. actions of G. We just need
to verify (iii)⇒(i). The argument in the above paragraph shows that Y satisfies the definition of
property SC without the bound C. From Remark 3.2 we conclude that Y has property SC. �

3.4. Normal subgroups and property SC.

Proposition 3.16. Suppose that G has a normal subgroup G[ with property SC. Then G has
property SC.

Proof. By Proposition 3.15 the group G[ has the shrinking property. Let S1 ∈ F(G[) witness

the shrinking property for G[.
Let Υ be a function F(G) → [0,∞). Take 0 < ε < 1/(3Υ(S1)). Then there is an S ∈ F(G[)

so that for any δ > 0 there is a C1 ∈ N such that given any free p.m.p. action G[ y (X,µ) we
can find Borel sets Z ⊆ V1 ⊆ X satisfying the following conditions:

(i) SV1 = X,
(ii) µ(V1) ≤ ε and µ(Z) ≤ δ,
(iii) every point of V1 is connected to some point of Z by an S1-path of length at most C1

with all points in V1.

Using the function 3Υ in the definition of property SC for G[, we find an S[ ∈ F(G[) such

that for any T [ ∈ F(G[) there are C[, n[ ∈ N, and S[1, . . . , S
[
n[
∈ F(G[) such that for any free

p.m.p. action Gy (X,µ) there are Borel subsets W [ and V[k of X for 1 ≤ k ≤ n[ satisfying the
following conditions:

(iv) 3
∑n[

k=1 Υ(S[k)µ(V[k) ≤ 1,

(v) S[W [ = X,

(vi) if w1, w2 ∈ W [ satisfy gw1 = w2 for some g ∈ T [ then w1 and w2 are connected by a

path of length at most C[ in which each edge is an S[k-edge with both endpoints in V[k
for some 1 ≤ k ≤ n[.

Let T ∈ F(G). Set

S2 = S[T ∪ (S[T )−1 ∈ F(G),

and take 0 < δ < 1/(3Υ(S2)|S2|). Then we have C1 as above. Set T [ =
⋃
g∈T (S[SC1

1 gSC1
1 g−1S[∪

S[gSC1
1 g−1SC1

1 S[) ∈ F(G[). Then we have C[, n[, and S[k for 1 ≤ k ≤ n[ as above. Set

C = 2C1 + 2 + C[ ∈ N.

Now let G y (X,µ) be a free p.m.p. action. Then we have Borel Z ⊆ V1 ⊆ X satisfying
conditions (i)-(iii) above. Note that

Υ(S1)µ(V1) ≤ Υ(S1)ε <
1

3
.

We also have Borel sets W [ and V[k for 1 ≤ k ≤ n[ as above, and

n[∑
k=1

Υ(S[k)µ(V[k) ≤
1

3
.
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Set V2 = S2Z. Then

Υ(S2)µ(V2) ≤ Υ(S2)|S2|µ(Z) ≤ Υ(S2)|S2|δ <
1

3
.

Combining all of these bounds we obtain

Υ(S1)µ(V1) + Υ(S2)µ(V2) +
n[∑
k=1

Υ(S[k)µ(V[k) ≤ 1,

which verifies condition (i) in Definition 3.1.
Set W = V1. Then SW = SV1 = X, verifying condition (ii) in Definition 3.1.
Let g ∈ T and w1, w2 ∈W with gw1 = w2. For i = 1, 2, we can connect wi to some zi ∈ Z by

an S1-path of length at most C1 with all points in V1. Then wi = tizi for some ti ∈ SC1
1 . Using

the fact that S[W [ = X we have gz1 = a1u1 for some u1 ∈ W [ and a1 ∈ S[, and z2 = a2u2 for
some u2 ∈ W [ and a2 ∈ S[. Note that a−1

1 g and a−1
2 are both in S2. Since (a−1

1 g)z1 = u1, the

pair (z1, u1) is an S2-edge with both endpoints in V2. Also, since a−1
2 z2 = u2, the pair (z2, u2)

is an S2-edge with both endpoints in V2. Note that

(a−1
2 t−1

2 gt1g
−1a1)u1 = a−1

2 t−1
2 gt1z1 = a−1

2 t−1
2 gw1 = a−1

2 t−1
2 w2 = a−1

2 z2 = u2.

Since a−1
2 t−1

2 gt1g
−1a1 ∈ S[SC1

1 gSC1
1 g−1S[ ⊆ T [, this means that u2 ∈ T [u1. Then u1 and u2 are

connected by a path of length at most C[ in which each edge is an S[k-edge with both endpoints

in V[k for some 1 ≤ k ≤ n[. Therefore w1 and w2 are connected by a path of length at most

2C1 + 2 + C[ = C in which each edge is either an Sj-edge with both endpoints in Vj for some

1 ≤ j ≤ 2 or an S[k-edge with both endpoints in V[k for some 1 ≤ k ≤ n[, which verifies condition
(iii) in Definition 3.1. �

In preparation for the next section we record one application of Proposition 3.16. For this we
need the following construction.

Let G[ be a finite-index subgroup of G. Take a B ∈ F(G) such that G =
⊔
b∈B bG

[. Let

G[ y (X,µ) be a p.m.p. action. Put Y =
⊔
b∈B bX and write ν for the probability measure

on Y which for each b ∈ B is 1
[G:G[]

µ on bX under the natural identification of bX and X. For

every g ∈ G and b ∈ B we have gb = b′h for unique b′ ∈ B and h ∈ G[, using which we set

g(bx) = b′(hx)

for all x ∈ X. It is easily checked that this defines a p.m.p. action G y (Y, ν). Furthermore, if

G[ y (X,µ) is free then so is Gy (Y, ν).

Proposition 3.17. Let G[ be a finite-index subgroup of G. Then G has property SC if and only
if G[ does.

Proof. Assume that G has property SC. Take B ∈ F(G) as above containing eG. Let Υ[ be a

function F(G[) → [0,∞). For each F ∈ F(G), denote by ϕ(F ) the smallest element of F(G[)
satisfying F ⊆ Bϕ(F ), and put

Υ(F ) = [G : G[]Υ[(ϕ(FB) ∪ (ϕ(FB))−1) ≥ 0.

Then we have S ∈ F(G) witnessing property SC for G. Put S[ = ϕ(SB) ∪ (ϕ(SB))−1 ∈ F(G[).

Let T [ ∈ F(G[). Put T = BT [B−1 ∈ F(G). Then there are C, n ∈ N and S1, . . . , Sn ∈ F(G)



26 DAVID KERR AND HANFENG LI

satisfying the conditions in Definition 3.1. Put C[ = C, n[ = n, and S[j = ϕ(SjB)∪(ϕ(SjB))−1 ∈
F(G[). Let G[ y (X,µ) be a free p.m.p. action. Define (Y, ν) as above. Then we have the free
action G y (Y, ν) as above. By property SC there exist Borel subsets W and Vj of Y for
1 ≤ j ≤ n satisfying the following conditions:

(i)
∑n

j=1 Υ(Sj)ν(Vj) ≤ 1,

(ii) SW = Y ,
(iii) if w1, w2 ∈ W satisfy gw1 = w2 for some g ∈ T then w1 and w2 are connected by a

path of length at most C in which each edge is an Sj-edge with both endpoints in Vj
for some 1 ≤ j ≤ n.

We can write W as
⊔
b∈B bWb for some Borel sets Wb ⊆ X. Put W [ =

⋃
b∈BWb ⊆ X. Similarly,

for each 1 ≤ j ≤ n we can write Vj as
⊔
b∈B bVj,b for some Borel sets Vj,b ⊆ X, and we put

V[j =
⋃
b∈B Vj,b ⊆ X. We then have

n[∑
j=1

Υ[(S[j)µ(V[j) =
1

[G : G[]

n∑
j=1

Υ(Sj)µ(V[j) ≤
n∑
j=1

Υ(Sj)ν(Vj) ≤ 1,

verifying condition (i) in Definition 3.1. Clearly S[W [ = X, verifying condition (ii) in Defini-
tion 3.1.

Let g ∈ T [ and w1, w2 ∈W [ with gw1 = w2. Then there are b1, b2 ∈ B such that b1w1, b2w2 ∈
W . Note that (b2gb

−1
1 )b1w1 = b2w2, and b2gb

−1
1 ∈ T . Then there are 1 ≤ l ≤ C and 1 ≤

j1, . . . , jl ≤ n, and gi ∈ Sji for 1 ≤ i ≤ l such that gi−1 . . . g1b1w1, gi . . . g1b1w1 ∈ Vji for all

1 ≤ i ≤ l, and gl . . . g1b1w1 = b2w2. Recursively define hi ∈ G[ and di ∈ B for i = 1, . . . , l by
gidi−1 = dihi and d0 = b1. Then hi ∈ S[ji and gi . . . g1b1w1 = dihi . . . h1w1 for all 1 ≤ i ≤ l. Thus

hi−1 . . . h1w1, hi . . . h1w1 ∈ V[ji for all 1 ≤ j ≤ l. Also, from b2w2 = gl . . . g1b1w1 = dlhl . . . h1w1

we get w2 = hl . . . h1w1. Thus w1 and w2 are connected by a path of length at most C[ in which
each edge is an S[j-edge with both endpoints in V[j for some 1 ≤ j ≤ n[, verifying condition (iii)

in Definition 3.1. Therefore G[ has property SC. This proves the “only if” part.
Suppose now that G[ has property SC. Since G[ has finite index in G, we can find a finite-

index normal subgroup G′ of G such that G′ ⊆ G[. By the “only if” part, G′ has property SC.
By Proposition 3.16, the group G has property SC. This establishes the “if” part. �

3.5. Groups without property SC.

Lemma 3.18. Let Γ be a (not necessarily infinite) countable group. Let YG∗Γ be a class of
free p.m.p. actions of G ∗ Γ. Denote by YG the class of restricted actions G y (X,µ) for
G ∗ Γ y (X,µ) ranging over the actions in YG∗Γ. Suppose that YG∗Γ has property SC ′. Then
YG has property SC ′.

Proof. We may assume that Γ is nontrivial. For any A ∈ F(G), B ∈ F(Γ), and k ∈ N we denote
by A ∗k B the subset of G ∗ Γ consisting of all elements of the form akbkak−1bk−1 . . . a1b1 for
a1, . . . , ak ∈ A and b1, . . . , bk ∈ B. For each F ∈ F(G ∗ Γ) we take some k ∈ N, A ∈ F(G), and
B ∈ F(Γ) such that F ⊆ A ∗k B, and we put Φ(F ) = A ∗k B ∈ F(G ∗ Γ).

Let ΥG : F(G) → [0,∞) be a function. Define ΥG∗Γ : F(G ∗ Γ) → [0,∞) by ΥG∗Γ(F ) =
|Φ(F )|ΥG(A), where Φ(F ) = A ∗k B.

Let ηG∗Γ > 0 witness property SC′ for YG∗Γ. Put ηG = ηG∗Γ > 0.
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Let TG ∈ F(G). Put TG∗Γ = TG ∈ F(G∗Γ). Then we have n, CG∗Γ ∈ N, and SG∗Γ,1, . . . , SG∗Γ,n ∈
F(G ∗Γ) witnessing property SC′ for YG∗Γ. For 1 ≤ j ≤ n express Φ(SG∗Γ,j) as Aj ∗kj Bj as per

its definition. Put SG,j = Aj ∈ F(G) for 1 ≤ j ≤ n. Also, put CG = 2CG∗Γ max1≤j≤n kj ∈ N.
Let G ∗ Γ y (X,µ) be an action in YG∗Γ. Let W1 and W2 be Borel subsets of X with

µ(W1), µ(W2) ≤ ηG = ηG∗Γ. Then there are Borel sets VG∗Γ,1, . . . ,VG∗Γ,n ⊆ X satisfying the
following conditions:

(i)
∑n

j=1 µ(VG∗Γ,j)ΥG∗Γ(SG∗Γ,j) ≤ 1,

(ii) if w1 ∈ W1 and w2 ∈ W2 satisfy gw1 = w2 for some g ∈ TG∗Γ then w1 and w2 are
connected by a path of length at most CG∗Γ in which each edge is an SG∗Γ,j-edge with
both endpoints in VG∗Γ,j for some 1 ≤ j ≤ n.

For each 1 ≤ j ≤ n put VG,j = Φ(SG∗Γ,j)VG∗Γ,j ⊆ X. Then

n∑
j=1

µ(VG,j)ΥG(SG,j) ≤
n∑
j=1

µ(VG∗Γ,j)|Φ(SG∗Γ,j)|ΥG(SG,j)

=

n∑
j=1

µ(VG∗Γ,j)ΥG∗Γ(SG∗Γ,j) ≤ 1,

verifying condition (i) in Definition 3.12.
For each 1 ≤ j ≤ n, if h ∈ SG∗Γ,j and x, y ∈ VG∗Γ,j with hx = y then clearly x and y are

connected by an (Aj ∪Bj)-path in VG,j of length at most 2kj .
Let g ∈ TG = TG∗Γ and w1 ∈ W1, w2 ∈ W2 with gw1 = w2. Then w1 and w2 are connected

by a path of length at most CG∗Γ in which each edge is an SG∗Γ,j-edge with both endpoints in
VG∗Γ,j for some 1 ≤ j ≤ n. From the above paragraph we conclude that w1 and w2 are connected
by a path of length at most CG in which each edge is either an Aj-edge or a Bj-edge with both
endpoints in VG,j for some 1 ≤ j ≤ n. We may assume that w1 6= w2. Removing cycles in this
path, we may assume that it contains no cycles. Since g ∈ G and the action G ∗ Γ y (X,µ) is
free, we see that no Bj-edge for any 1 ≤ j ≤ n appears in this path. Thus each edge of this path
is an SG,j-edge with both endpoints in VG,j for some 1 ≤ j ≤ n. This verifies condition (ii) in
Definition 3.12. �

By combining Proposition 3.15 and Lemmas 3.13, 3.14, and 3.18 we obtain the following
proposition, which, with a boost from Proposition 3.17, then yields Theorem 3.20.

Proposition 3.19. Suppose that G is either locally finite or virtually cyclic, and let Γ be a (not
necessarily infinite) countable group. Then no free p.m.p. action G ∗ Γ y (X,µ) has property
SC.

Theorem 3.20. Suppose that G is either locally finite or virtually free. Then G does not have
property SC.

We will see later in Proposition 3.28 that if G is amenable then it has property SC if and only
if it is neither virtually cyclic nor locally finite.

3.6. Groups with property SC. The following notion of w-normality was formulated by
Popa for the purpose of expressing his cocycle superrigidity theorem in [32] and will be similarly
convenient in our setting.
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Definition 3.21. A subgroup G0 of G is w-normal in G if there are a countable ordinal γ and
a subgroup Gλ of G for each ordinal 0 ≤ λ ≤ γ satisfying the following conditions:

(i) for any λ < λ′ ≤ γ one has Gλ ⊆ Gλ′ ,
(ii) G = Gγ ,
(iii) for each λ < γ, Gλ is normal in Gλ+1,
(iv) for each limit ordinal λ′ ≤ γ, Gλ′ =

⋃
λ<λ′ Gλ.

Our goal is to prove, via several lemmas culminating in Theorem 3.29, that if G contains
an amenable w-normal subgroup which is neither locally finite nor virtually cyclic then G has
property SC. This will involve an elaboration of the graph-theoretic arguments from Section 8.1
of [2].

Let S be a symmetric finite subset of G. By an S-path in G we mean a finite tuple
(g0, g1, . . . , gn) of elements of G such that gi−1g

−1
i ∈ S for all i = 1, . . . , n, in which case

we call n the length of the path and say that the path connects g0 and gn (its endpoints). We
say that a set K ⊆ G is S-connected if every pair of distinct elements of K is connected by an
S-path contained in K.

Given an r ∈ N, a set E ⊆ G is said to be (S, r)-separated if for all distinct f, g ∈ E one has
Srf ∩ Srg = ∅. Given a set W ⊆ G and an r ∈ N, a set E ⊆W is said to be (S, r)-spanning for
W if every f ∈W is connected to some g ∈ E by an S-path of length at most r. We also simply
say S-spanning when r = 1. This should not be confused with the graph-theoretic notion of
spanning tree, which we also use below.

For finite sets F,K ⊆ G and δ > 0, we say that K is (F, δ)-invariant if |FK \ K| < δ|K|.
Note that, given an r ∈ N, if F contains eG and satisfies |F | > 1 and K is (F, δ′)-invariant where
δ′ = δ(1− |F |)/(1− |F |r) then K is (F r, δ)-invariant, for using the fact that F contains eG we
have

|F rK \K| =
r∑
j=1

|F jK \ F j−1K| ≤
r∑
j=1

|F |j−1|FK \K| < δ|K|.

The following is a variation on Lemma 8.3 of [2]. For an ε ≥ 0 and a collection T of finite
subsets of G, we say a finite set K ⊆ G is tiled to within ε by T if the members of T are
pairwise disjoint subsets of K and |

⊔
T∈T T | ≥ (1− ε)|K|.

Lemma 3.22. Suppose that G is finitely generated and let S be a finite symmetric generating
set for G containing eG. Let ε > 0. Let F be a finite subset of G and δ > 0. Then there exists
a ζ > 0 such that every (S, ζ)-invariant nonempty finite subset of G is tiled to within ε by a
collection of S2-connected (F, δ)-invariant finite subsets of G.

Proof. Take an r ∈ N such that F ⊆ Sr. Set ζ = min{ε2, (δ(1 − |S|)/(1 − |S|r))2}. Let K be
an (S, ζ)-invariant nonempty finite subset of G. Consider the partition K1 t · · · tKn of K into
maximal S2-connected subsets. Then SKi ∩ SKj = ∅ for i 6= j, and so

n∑
i=1

|Ki|
|K|
· |SKi \Ki|
|Ki|

=
|SK \K|
|K|

< ζ.(2)

Write I for the set of all i ∈ {1, . . . , n} such that |SKi \Ki|/|Ki| <
√
ζ. Then by (2) we must

have
∑

i∈I |Ki| ≥ (1−
√
ζ)|K|, which shows, since

√
ζ ≤ ε, that the collection {Ki}i∈I tiles K to
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within ε. Moreover, since
√
ζ ≤ δ(1− |S|)/(1− |S|r) and F ⊆ Sr we infer from the observation

before the lemma that for each i ∈ I the set Ki is (F, δ)-invariant, completing the proof. �

We next state a version of the Ornstein–Weiss tiling theorem that demands connectedness of
the tiles. It follows from one of the usual forms of the Ornstein–Weiss tiling theorem (Theo-
rem 4.46 of [25]) and Lemma 3.22.

Lemma 3.23. Suppose that G is amenable and finitely generated. Let S be a finite symmetric
generating set for G containing eG. Let E be a finite subset of G and δ > 0. Then there
are (E, δ)-invariant S2-connected sets F1, . . . , Fm ∈ F(G) such that for any free p.m.p. action
G y (X,µ) we can find Borel sets Z1, . . . , Zm ⊆ X such that the collection {Fkz : 1 ≤ k ≤
m and z ∈ Zk} is disjoint and its union has µ-measure at least 1− δ.

The following is essentially Lemma 8.5 of [2].

Lemma 3.24. Suppose that G is finitely generated and not virtually cyclic, and let A be a
generating set for G in F(G). Then there is a constant b > 0 such that given any r ∈ N and
A-connected finite set F ⊆ G satisfying |ArF | ≤ 2|F | there exists an A-connected set T ⊆ ArF
such that T ∩ F is (A, 2r)-spanning for F and |T | ≤ b|F |/r.

Proof. As G is not virtually cyclic, we can find a c > 0 such that |An| ≥ cn2 for all n ∈ N
(Corollary 3.5 of [28]). Let r and F be as in the lemma statement.

Take a maximal (A, r)-separated subset V of F . Then we have

|V ||Ar| =
∣∣∣∣ ⊔
g∈V

Arg

∣∣∣∣ ≤ |ArF | ≤ 2|F |

whence

|V | ≤ 2|F |
|Ar|

≤ 2

cr2
|F |.(3)

The set V is (A, 2r)-spanning for F by maximality. Consider the graph (V,E) whose edges are
those pairs of vertices which can be joined by an A-path within ArF of length at most 4r + 1.
Since F is A-connected, for all v1, v2 ∈ V there is an A-path in F connecting v1 to v2. For each
point z in this path, we may connect z to some vz ∈ V by an A-path pz in ArF of length at
most 2r (using the (A, 2r)-spanningness of V in F and the fact that an A-path of length at most
2r with both endpoints in F must be entirely contained in ArF ). We can thereby construct an
A-path in ArF from v1 to v2 in which points of V appear in every interval of length 4r + 1, by
inserting pz and the reverse of pz at z. This shows that the graph (V,E) is connected.

Applying the standard procedure for producing a spanning tree, we start with (V,E) and
then recursively construct a sequence of graphs with vertex set V by removing one edge at each
stage so as to destroy some cycle in the graph at that stage, until there are no more cycles to
destroy and we arrive at a spanning tree (V,E′). Then (V,E′) is an A4r+1-tree in F which is
(A, 2r)-spanning for F .

For each pair (v, w) in E′, choose an A-path in ArF joining v to w of length at most 4r + 1.
Denote by T the collection of all vertices which appear in one of these paths. Note that T is an
A-connected set in ArF such that T ∩F is (A, 2r)-spanning for F . Moreover, using (3) we have

|T | ≤ |V |+ 4r|E′| ≤ (4r + 1)|V | ≤ 5r · 2

cr2
|F | = 10

cr
|F |.
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We can therefore take b = 10/c. �

If we take G[ = G in Proposition 3.16, then the proof there actually shows the following.

Lemma 3.25. Let G0 be a subgroup of G which has the shrinking property. Then in the defini-
tion of property SC for a class Y of free p.m.p. actions of G (Definition 3.1) it is possible, for
each Υ, to choose S to be a subset of G0 depending only on Υ|F(G0).

Lemma 3.26. Let γ be a countable ordinal, and suppose that for each ordinal λ < γ there is a
subgroup Gλ of G so that the following conditions hold:

(i) for any λ < λ′ < α one has Gλ ⊆ Gλ′,
(ii) Gλ has property SC for every λ < γ.

Then
⋃
λ<γ Gλ has property SC.

Proof. By Proposition 3.15 we know that G0 has the shrinking property. Let Υ be a function
F(
⋃
λ<γ Gλ)→ [0,∞). By Lemma 3.25 there is some S ∈ F(G0) witnessing property SC for Gλ

with respect to Υ|F(Gλ) for all λ < γ. Let T ∈ F(
⋃
λ<γ Gλ). Then T ∈ F(Gλ) for some λ < γ.

Then we have C, n ∈ N and S1, . . . , Sn ∈ F(Gλ) satisfying the conditions in Definition 3.1. �

Lemma 3.27. Suppose that G is amenable and not locally virtually cyclic. Then G has property
SC.

Proof. We consider first the case G is finitely generated. Then G is not virtually cyclic. By
Proposition 3.15 it suffices to show that G has property SC′.

Take an S0 ∈ F(G) generating G. Set S1 = S2
0 ∈ F(G). Let b > 0 be as given by Lemma 3.24

with respect to the generating set S1 for G.
Let Υ be a function F(G)→ [0,∞). Choose an r ∈ N large enough so that

3bΥ(S1) ≤ r.(4)

Set S2 = S2r
1 ∈ F(G). Take η > 0 such that 2η|S2|Υ(S2) < 1/3.

Let T ∈ F(G). Put n = 3 and S3 = T ∈ F(G). Take 0 < δ < 1 such that 2δ|S3|Υ(S3) < 1/3
and put ζ = δ/(1+ |S2| · |S2TS2|) > 0. By Lemma 3.23 there are m ∈ N and (S2TS2, ζ)-invariant
S1-connected sets F1, . . . , Fm ∈ F(G) such that for any free p.m.p. action Gy (X,µ) we can find
Borel sets Z1, . . . , Zm ⊆ X such that the collection {Fkz : 1 ≤ k ≤ m and z ∈ Zk} is disjoint and
its union has µ-measure at least 1− ζ. By our choice of b via Lemma 3.24, for each k = 1, . . . ,m

we can find an S1-connected set T ∗k ⊆ Sr1Fk such that T †k := T ∗k ∩ Fk is (S1, 2r)-spanning for Fk
and |T ∗k | ≤ b|Fk|/r. Put C = 2 + max1≤k≤m |T ∗k | ∈ N. For each 1 ≤ k ≤ m denote by F ′k the
set of all g ∈ Fk satisfying S2TS2g ⊆ Fk, and note that since Fk is (S2TS2, ζ)-invariant we have
|Fk \ F ′k| ≤ |S2TS2|ζ|Fk|.

Now let G y (X,µ) be a free p.m.p. action, and let W1,W2 be Borel subsets of X with
µ(W1), µ(W2) ≤ η. Take Z1, . . . , Zm as above.

For each i = 1, 2 put W ′i = Wi ∩ S2
⋃m
k=1(F ′k ∩ T

†
k )Zk ⊆Wi and observe that

µ(Wi \W ′i ) ≤ µ
(
X \ S2

m⋃
k=1

(F ′k ∩ T
†
k )Zk

)

≤ µ
(
X \

m⋃
k=1

FkZk

)
+

m∑
k=1

µ(FkZk \ S2(F ′k ∩ T
†
k )Zk)
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≤ ζ +

m∑
k=1

µ(Zk)|Fk \ S2(F ′k ∩ T
†
k )|

≤ ζ +

m∑
k=1

µ(Zk)|S2| · |T †k \ F
′
k| (since Fk ⊆ S2T

†
k )

≤ ζ + |S2TS2|ζ
m∑
k=1

µ(Zk)|S2| · |Fk|

≤ ζ + |S2TS2| · |S2|ζ = δ.

Set

V1 =

m⋃
k=1

T ∗kZk, V2 = S2(W1 ∪W2), V3 = S3((W1 \W ′1) ∪ (W2 \W ′2)).

Then

Υ(S1)µ(V1) ≤ Υ(S1)
m∑
k=1

µ(Zk)|T ∗k | ≤ Υ(S1)
m∑
k=1

µ(Zk)
b|Fk|
r
≤ Υ(S1)

b

r

(4)

≤ 1

3

and

Υ(S2)µ(V2) ≤ Υ(S2)|S2|(µ(W1) + µ(W2)) ≤ 2η|S2|Υ(S2) ≤ 1

3
and

Υ(S3)µ(V3) ≤ Υ(S3)|S3|(µ(W1 \W ′1) + µ(W2 \W ′2)) ≤ 2δ|S3|Υ(S3) <
1

3
so that

3∑
j=1

Υ(Sj)µ(Vj) ≤ 1,

which verifies condition (i) in Definition 3.12.
Let g ∈ T and w1 ∈W1, w2 ∈W2 with gw1 = w2. If w1 6∈W ′1 or w2 6∈W ′2, then (w1, w2) is an

S3-edge with both endpoints in V3. Thus we may assume that wi ∈W ′i for i = 1, 2. For i = 1, 2,

we have wi = sitizi for some si ∈ S2, 1 ≤ ki ≤ m, ti ∈ F ′ki ∩ T
†
ki

, and zi ∈ Zki . Then (wi, tizi) is

an S2-edge with both endpoints in V2. Note that s−1
2 gs1 ∈ S2TS2, and hence (s−1

2 gs1)t1 ∈ Fk1 .
Since

t2z2 = s−1
2 w2 = s−1

2 gw1 = (s−1
2 gs1)t1z1,

we get that k1 = k2, t2 = (s−1
2 gs1)t1, and z2 = z1. Then t1z1 and t2z2 are connected by an

S1-path of length at most |T ∗k1 | with all points in V1. Therefore w1 and w2 are connected by a
path of length at most C in which each edge is an Sj-edge with both endpoints in Vj for some
1 ≤ j ≤ 3, verifying condition (ii) in Definition 3.12. Therefore G has property SC′, and hence
has property SC.

Now consider the case G is not finitely generated. By hypothesis we can find an increasing
sequence G0 ⊆ G1 ⊆ . . . of finitely generated subgroups of G with union G such that G0 is not
virtually cyclic. Suppose for a given n ∈ N that Gn is virtually cyclic. Then Gn has a finite-index
subgroup G′n isomorphic to Z. Since G0 is infinite, G0 ∩ G′n is nontrivial. Then G0 ∩ G′n has
finite index in G′n, and hence has finite index in Gn. Thus G0 ∩G′n has finite index in G0. This
shows that G0 is virtually cyclic, a contradiction. Therefore for each n ∈ N the group Gn is not
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virtually cyclic. Since subgroups of amenable groups are amenable, each Gn is amenable. From
the finitely generated case of the lemma we conclude that each Gn has property SC. Then from
Lemma 3.26 we get that G has property SC. �

The following we obtain from Theorem 3.20 and Lemmas 3.8 and 3.27.

Proposition 3.28. An amenable G has property SC if and only if it is neither locally finite nor
virtually cyclic.

From Proposition 3.28 and Lemma 3.26 we finally get:

Theorem 3.29. Suppose that G has a w-normal subgroup G0 which is amenable but neither
locally finite nor virtually cyclic. Then G has property SC.

3.7. Product groups.

Lemma 3.30. For every ε > 0 there is an S ∈ F(G) such that for every free p.m.p. action
Gy (X,µ) there is a Borel set V ⊆ X with SV = X and µ(V) ≤ ε.

Proof. Choose an S0 ∈ F(G) such that |S0| ≥ ε−1. Let V be the set W given by Lemma 3.9
with Y taken to be X, E taken to be the union of the graphs of the elements of S0, and M1 = 1.
Then S2

0V = X and 1 ≥ µ(S0V) = |S0|µ(V) ≥ ε−1µ(V), and so we can take S = S2
0 . �

For two countably infinite groups G and Γ, we say that G × Γ has property SC for product
actions if the class Yprod has property SC, where Yprod consists of all p.m.p. actions of the form
G × Γ y (X × Y, µ) where G y X and G y Y are free actions on standard Borel spaces and
G× Γ y X × Y is the product action, with µ not necessarily being a product measure.

Lemma 3.31. Let G and Γ be countably infinite groups. Suppose that G has the shrinking
property. Then G× Γ has property SC for product actions.

Proof. We have S1,G ∈ F(G) witnessing the shrinking property for G. Put S1 = S1,G × {eΓ} ∈
F(G× Γ). Let Υ be a function F(G× Γ)→ [0,∞). Take ε > 0 such that εΥ(S1) ≤ 1/3.

By our choice of S1,G, there is an SG ∈ F(G) such that for any δ > 0 there is a C1 ∈ N so
that for any free p.m.p. action G y (X,µX) we can find Borel sets ZX ⊆ VX ⊆ X satisfying
the following conditions:

(i) SGVX = X,
(ii) µX(VX) ≤ ε and µX(ZX) ≤ δ,
(iii) every point of VX is connected to some point of ZX by an S1,G-path of length at most

C1 with all points in VX .

Put S = SG × {eΓ} ∈ F(G× Γ).
Let T ∈ F(G × Γ). Take TG ∈ F(G) and TΓ ∈ F(Γ) such that T ⊆ TG × TΓ. Put S2 =

(TG ∪ S1,G)× {eΓ} ∈ F(G× Γ). Take an η > 0 such that ηΥ(S2) ≤ 1/3. By Lemma 3.30 there

is an SΓ ∈ F(Γ) such that for any free p.m.p. action Γ y (Y, µY ) there is a Borel set VY ⊆ Y so
that SΓVY = Y and µY (VY ) ≤ η.

Put S3 = {eG} × (SΓTΓSΓ) ∈ F(G× Γ). Pick a δ > 0 such that δΥ(S3) ≤ 1/3. Then we have
C1 as above. Put C = 4C1 + 3 ∈ N.

Let G and Γ act freely on standard Borel spaces X and Y , respectively. Let µ be a (G× Γ)-
invariant Borel probability measure on X × Y . Denote by µX and µY the push-forward of µ
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under the projections X × Y → X and X × Y → Y respectively. Then we have ZX ,VX and VY
as above.

Put V1 = VX × Y , V2 = X × VY , and V3 = ZX × Y . Then

3∑
j=1

Υ(Sj)µ(Vj) = Υ(S1)µX(VX) + Υ(S2)µY (VY ) + Υ(S3)µX(ZX) ≤ 1,

verifying condition (i) in Definition 3.1.
Put W = VX × Y . Then SW = X × Y , verifying condition (ii) in Definition 3.1.
Let t = (tG, tΓ) ∈ T and w1, w2 ∈ W with tw1 = w2. Say, wi = (xi, yi) for i = 1, 2. Then xi

is connected to some zi ∈ ZX by an S1,G-path of length at most C1 with all points in VX . Put
w′i = (zi, yi). Then wi is connected to w′i by an S1-path of length at most C1 with all points
in V1. We have sy1 ∈ VY for some s ∈ SΓ. Put w′′1 = (z1, sy1) and w′′2 = (z2, sy1). Note that

sy1 = st−1
Γ y2 ∈ SΓTΓSΓy2. Thus (w′i, w

′′
i ) is an S3-edge with both endpoints in V3 for i = 1, 2.

Also note that z2 ∈ SC1
1,Gx2 ⊆ SC1

1,GTGx1 ⊆ SC1
1,GTGS

C1
1,Gz1. Thus w′′1 and w′′2 are connected by

an S2-path of length at most 2C1 + 1 with all points in V2. We conclude that w1 and w2 are
connected by a path of length at most 4C1 + 3 in which each edge is an Sj-edge with both
endpoints in Vj for some 1 ≤ j ≤ 3, verifying condition (iii) in Definition 3.1. �

Gaboriau showed that if R and S are countable aperiodic Borel equivalence relations on
standard Borel spaces X and Y , respectively, and µ is an (R × S)-invariant Borel probability
measure on X × Y , then the cost of R × S on (X × Y, µ) is equal to 1 [15][21, Theorem 24.9].
The following result is an analogue of Gaboriau’s theorem.

Proposition 3.32. Let G and Γ be countably infinite groups. Then G× Γ has property SC for
product actions if and only if at least one of G and Γ is not locally finite.

Proof. If at least one of G and Γ, say G, has the shrinking property, then G × Γ has property
SC for product actions by Lemma 3.31 and G is not locally finite by Proposition 3.11. Thus
we may assume that neither G nor Γ has the shrinking property. By Proposition 3.11, each
of G and Γ is either locally finite or virtually cyclic. If at least one of G and Γ is not locally
finite, then G × Γ is neither locally finite nor virtually cyclic, and so G × Γ, being amenable,
has property SC by Proposition 3.28. If on the other hand G and Γ are both locally finite then
G×Γ is locally finite, which implies by Theorem 3.20 that G×Γ has no free p.m.p. actions with
property SC and hence does not itself have property SC for product actions. �

4. Measure entropy and Shannon orbit equivalence

We devote ourselves in this section to the proof of the following theorem, which together with
Theorem 3.29 yields Theorem A.

Theorem 4.1. Let G and H be countably infinite groups and let Gy (X,µ) and H y (Y, ν) be
free p.m.p. actions which are Shannon orbit equivalent. Suppose that G y (X,µ) has property
SC . Then

hν(H y Y ) ≥ hµ(Gy X).

For the purpose of proving the theorem we may assume, by conjugating the H-action by a
Shannon orbit equivalence, that (X,µ) = (Y, ν) and that the identity map from X to itself
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provides a Shannon orbit equivalence between the two actions. As usual denote the associated
cocycles G×X → H and H ×X → G by κ and λ, respectively.

For each g ∈ G we write Pg for the countable Borel partition of X consisting of the sets
Xg,t = {x ∈ X : gx = tx} for t ∈ H, and likewise for t ∈ H we write Pt for the countable
Borel partition of X consisting of the sets Xg,t for g ∈ G. For every F in F(G) or F(H), set

FP =
∨
g∈F Pg. Then Hµ(FP) <∞. For every F ∈ F(G) and L ∈ F(H), denote by F,LP the

finite set consisting of all P ∈ FP satisfying κ(g, P ) ∈ L for all g ∈ F and set XF,L =
⋃
F,LP.

Denote by F,LP the finite partition F,LP ∪ {X \ XF,L} of X. Similarly, denote by L,FP the

finite set consisting of all P ∈ LP satisfying λ(t, P ) ∈ F for all t ∈ L, and set XL,F =
⋃
L,FP

and L,FP = L,FP ∪ {X \XL,F }.
Given a finite disjoint collection C of Borel subsets of X and a nonempty finite set V , we

define on the set of all maps with domain some collection of subsets of X containing C and
codomain PV the pseudometric

ρC (ϕ,ψ) =
∑
A∈C

m(ϕ(A)∆ψ(A)).

Lemma 4.2. Let L ∈ F(H) and 0 < τ < 1. Take an F \ ∈ F(G) such that µ(XL2,F \) ≥ 1−τ/30,

and take an F ∈ F(G) such that F \ ⊆ F and µ(XL2,F ) ≥ 1−τ/(30|F \|). Let 0 < τ ′ ≤ τ/(60|F |2).
Let π : G → Sym(V ) be an (F, τ ′)-approximation for G. Let ϕ ∈ Homµ(L2,FP, F, τ ′, π). Take

σ′ : L2 → V V such that

σ′tv = πλ(t,A)v

for all t ∈ L2, A ∈ L2,FP and v ∈ ϕ(A). Then there is an (L, τ)-approximation σ : H →
Sym(V ) for H such that ρHamm(σt, σ

′
t) ≤ τ/5 for all t ∈ L2.

Proof. Denote by VF the set of all v ∈ V satisfying πgπhv = πghv for all g, h ∈ F and πgv 6= πhv
for all distinct g, h ∈ F . Then

m(V \ VF ) ≤ 2|F |2τ ′ ≤ τ

30
.

Set

V ′ =
⋃
g∈F

⋃
B∈L2,FP

(ϕ(g−1B)∆πg−1ϕ(B)) ⊆ V.

Then

m(V ′) ≤ |F |τ ′ ≤ τ

60
.

Set V ∗ = VF \ V ′. Then

m(V ∗) ≥ m(VF )−m(V ′) ≥ 1− τ

30
− τ

60
= 1− τ

20
.

For each t ∈ L2 set V ]
t =

⊔
A,B∈L2,FP ϕ(A ∩ λ(t, A)−1B). Then

m(V ]
t ) ≥ µ

( ⊔
A,B∈L2,FP

(A ∩ λ(t, A)−1B)

)
− τ ′
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≥ µ
( ⊔
A∈

L2,F\
P

⊔
B∈L2,FP

(A ∩ λ(t, A)−1B)

)
− τ ′

≥ µ(XL2,F \)− |F \|(1− µ(XL2,F ))− τ ′

≥ 1− τ

30
− τ

30
− τ

60
= 1− τ

12
.

Let s, t ∈ L2 with st ∈ L2. Let v ∈ V ∗ ∩ V ]
t . Then v ∈ ϕ(A ∩ λ(t, A)−1B) = ϕ(A) ∩ ϕ(g−1B)

for some A,B ∈ L2,FP, where g = λ(t, A) ∈ F . Since v /∈ V ′, we have v ∈ ϕ(A) ∩ πg−1ϕ(B).

Using the fact that v ∈ VF , we get v ∈ ϕ(A) ∩ π−1
g (ϕ(B)). Put h = λ(s,B) ∈ F . Note that

σ′tv = πgv ∈ ϕ(B). Thus

σ′sσ
′
tv = σ′sπgv = πhπgv = πhgv.

For every x ∈ A ∩ g−1B we have tx = gx ∈ B and hence

λ(st, x) = λ(s, tx)λ(t, x) = hg.

Since st ∈ L2 and A ∈ L2,FP, we have hg = λ(st, A) ∈ F . Thus σ′stw = πhgw for all

w ∈ ϕ(A ∩ g−1B), and so

σ′sσ
′
tv = πhgv = σ′stv.

We conclude that

ρHamm(σ′sσ
′
t, σ
′
st) ≤ 1−m(V ∗ ∩ V ]

t ) ≤ τ

20
+

τ

12
=

2τ

15
.(5)

Note that σ′eH = πeG on ϕ(XL2,F ). Since π is an (F, τ ′)-approximation for G we have
ρHamm(πeG , idV ) = ρHamm(πeGπeG , πeG) ≤ τ ′ and hence

ρHamm(σ′eH , idV ) ≤ ρHamm(σ′eH , πeG) + ρHamm(πeG , idV )

≤ 1−m(ϕ(XL2,F )) + τ ′

≤ 1− µ(XL2,F ) + 2τ ′

≤ τ

30
+

τ

30
=

τ

15
.

For each t ∈ L2 pick a σt ∈ Sym(V ) such that σtv = σ′tv for all v ∈ V satisfying σ′t−1σ
′
tv = v.

For each t ∈ L2, taking s = t−1 in (5) we conclude that

ρHamm(σt, σ
′
t) ≤ ρHamm(σ′t−1σ

′
t, idV )

≤ ρHamm(σ′t−1σ
′
t, σ
′
eH

) + ρHamm(σ′eH , idV )

≤ 2τ

15
+

τ

15
=
τ

5
.

For any s, t ∈ L we then have

ρHamm(σsσt, σst) ≤ ρHamm(σs, σ
′
s) + ρHamm(σt, σ

′
t) + ρHamm(σ′sσ

′
t, σ
′
st) + ρHamm(σst, σ

′
st)

≤ τ

5
+
τ

5
+

2τ

15
+
τ

5
< τ.
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Let s, t ∈ L2 be distinct. Let A ∈ L2,FP. Say, g = λ(t, A) ∈ F and h = λ(s,A) ∈ F . Take
x ∈ A. Then gx = tx 6= sx = hx, and hence g 6= h. Thus for any v ∈ ϕ(A) ∩ VF we have
σ′tv = πgv 6= πhv = σ′sv. This shows that σ′tv 6= σ′sv for all v ∈ VF ∩ ϕ(XL2,F ). Therefore

ρHamm(σs, σt) ≥ ρHamm(σ′s, σ
′
t)− ρHamm(σs, σ

′
s)− ρHamm(σt, σ

′
t)

≥ m(VF ∩ ϕ(XL2,F ))− τ

5
− τ

5

≥ m(ϕ(XL2,F ))− τ

30
− 2τ

5

≥ µ(XL2,F )− τ ′ − 13τ

30

≥ 1− τ

30
− τ

60
− 13τ

30
> 1− τ. �

Lemma 4.3. Let C be a finite Borel partition of X, L ∈ F(H), and 0 < τ < 1. Take an
F ∈ F(G) such that µ(XL2,F ) ≥ 1 − τ/30. Let 0 < τ ′ ≤ τ/(60|F |2). Let π : G → Sym(V ) be a

sofic approximation for G. Let ϕ ∈ Homµ(CL ∨ L2,FP, F, τ ′, π). Take a σ′ : L2 → V V such that

σ′tv = πλ(t,A)v

for all t ∈ L2, A ∈ L2,FP and v ∈ ϕ(A). Let σ : H → Sym(V ) be a sofic approximation for

H such that ρHamm(σt, σ
′
t) ≤ τ/5 for all t ∈ L2. Then the restriction of ϕ to alg(CL) lies in

Homµ(C , L, τ, σ).

Proof. We have∑
A∈CL

|m(ϕ(A))− µ(A)| ≤
∑

A∈(CL∨L2,FP)F

|m(ϕ(A))− µ(A)| ≤ τ ′ ≤ τ,

while for each t ∈ L we have∑
A∈C

m(ϕ(tA)∆σtϕ(A))

≤
∑
A∈C

m(ϕ(tA)∆σ′tϕ(A)) +
∑
A∈C

m(σ′tϕ(A)∆σtϕ(A))

≤
∑
A∈C

∑
B∈L2,FP

m(ϕ(t(A ∩B))∆σ′tϕ(A ∩B))

+
∑
A∈C

m(ϕ(t(A \XL2,F ))∆σ′tϕ(A \XL2,F )) + 2ρHamm(σ′t, σt)

≤
∑
A∈C

∑
B∈L2,FP

m(ϕ(λ(t, B)(A ∩B))∆πλ(t,B)ϕ(A ∩B))

+ m(ϕ(t(X \XL2,F ))) + m(ϕ(X \XL2,F )) +
2τ

5

≤
∑
g∈F

∑
A∈C

∑
B∈L2,FP

m(ϕ(g(A ∩B))∆πgϕ(A ∩B))
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+ µ(t(X \XL2,F )) + µ(X \XL2,F ) + 2τ ′ +
2τ

5

≤ |F |τ ′ + τ

15
+

τ

30
+

2τ

5
≤ τ

60
+
τ

2
< τ. �

For a finite family C of Borel subsets of X, a finite Borel partition P of X, and τ ≥ 0 we

write C
τ
⊆ alg(P) if there is a B ∈ alg(P) such that µ(B) ≥ 1 − τ and A ∩ B ∈ alg(P) for

every A ∈ C .

Lemma 4.4. Let C be a finite Borel partition of X. Let F ∈ F(G) and L ∈ F(H). Then

CF
τ
⊆ alg((C ∨ F,LP)L) for τ = µ(X \XF,L)|F |.

Proof. Put B =
⋂
g∈F gXF,L ∈ alg((C ∨ F,LP)F ). Then µ(X \B) ≤ τ .

Let A ∈ (C ∨ F,LP)F . Then A =
⋂
g∈F gAg for some Ag ∈ C ∨ F,LP. If Ag 6⊆ XF,L for

some g ∈ F , then A ∩ B = ∅. If Ag ⊆ XF,L for all g ∈ F , then A ⊆ B and A =
⋂
g∈F gAg =⋂

g∈F κ(g,Ag)Ag ∈ alg((C ∨ F,LP)L). Thus

(C ∨ F,LP)F
τ
⊆ alg((C ∨ F,LP)L).

Since CF ⊆ alg((C ∨ F,LP)F ), we conclude that CF
τ
⊆ alg((C ∨ F,LP)L). �

Lemma 4.5. Let C be a finite Borel partition of X. Let S ∈ F(G) and let W be a Borel
subset of X such that SW = X. Let L be a set in F(H) containing eH . Set C ′ = {W,X \W}
and C ′′ = C ∨ C ′ ∨ S2,LP. Then there are a finite Borel partition Q of W contained in
alg((C ∨ C ′)S2) and a map Θ : Q → F(S) such that eG ∈ Θ(B) for every B ∈ Q and the sets
gB for B ∈ Q and g ∈ Θ(B) form a partition R of X finer than C . Furthermore, for any such
Q and R and any sofic approximations π : G→ Sym(V ), σ : H → Sym(V ), any δ, δ′ > 0, any

ϕ,ψ ∈ Homµ(R, S, δ′, π), and any ϕ̃, ψ̃ ∈ Homµ(R ∨ C ′′, L, δ, σ) satisfying

(i) ϕ̃(B) = ϕ(B) and ψ̃(B) = ψ(B) for all B ∈ Q,
(ii) ϕ(W ) = ψ(W )

one has

ρC (ϕ,ψ) ≤ 2(δ + δ′)|S|+ 2δ|S| · |L|+ 2|S|3µ(X \XS2,L) + |S| · |L|ρC∨S2,LP(ϕ̃, ψ̃).

Proof. We prove the existence of Q first. Note that (C ′)S is the partition of X generated by
gW for g ∈ S. Since SW = X, every member of (C ′)S is contained in gW for some g ∈ S.
Each member A of C ∨ (C ′)S is contained in some member of (C ′)S , and hence is contained in
g−1
A W for some gA ∈ S. We shall choose gA = eG when A ⊆ W . Denote by Q the partition

of W generated by gAA for A ∈ C ∨ (C ′)S . Then Q ⊆ alg((C ∨ (C ′)S)S). Note that if A is
a member of C ∨ (C ′)S then it can be written as g−1

A (gAA) and hence is the disjoint union of

sets of the form g−1
A B with B belonging to Q. Thus we can find a map Θ : Q → F(S) such

that eG ∈ Θ(B) for every B ∈ Q and such that the sets gB for B ∈ Q and g ∈ Θ(B) form a
partition R of X finer than C ∨ (C ′)S . Note that

(C ∨ (C ′)S)S � ((C ∨ C ′)S)S = (C ∨ C ′)S2 .

Thus

Q ⊆ alg((C ∨ (C ′)S)S) ⊆ alg((C ∨ C ′)S2).
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Now let Q,R, π, σ, δ, δ′, ϕ, ψ, ϕ̃, ψ̃ be as in the lemma statement. For any partitions C1 and
C2 of X coarser than (R ∨ C ′′)L, we have

ρC1∨C2(ϕ̃, ψ̃) =
∑

A1∈C1, A2∈C2

m((ϕ̃(A1) ∩ ϕ̃(A2))∆(ψ̃(A1) ∩ ψ̃(A2)))

≤
∑

A1∈C1, A2∈C2

m((ϕ̃(A1) ∩ ϕ̃(A2))∆(ψ̃(A1) ∩ ϕ̃(A2))

+
∑

A1∈C1, A2∈C2

m((ψ̃(A1) ∩ ϕ̃(A2))∆(ψ̃(A1) ∩ ψ̃(A2)))

= ρC1(ϕ̃, ψ̃) + ρC2(ϕ̃, ψ̃).

For each t ∈ L, we have

ρtC ′′(ϕ̃, ψ̃) = ρC ′′(ϕ̃ ◦ t, ψ̃ ◦ t)(6)

≤ ρC ′′(ϕ̃ ◦ t, σt ◦ ϕ̃) + ρC ′′(σt ◦ ϕ̃, σt ◦ ψ̃) + ρC ′′(σt ◦ ψ̃, ψ̃ ◦ t)

≤ 2δ + ρC ′′(ϕ̃, ψ̃).

By Lemma 4.4 we have (C ∨C ′)S2

τ
⊆ alg((C ′′)L) for τ = µ(X\XS2,L)|S2|. Then Q

τ
⊆ alg((C ′′)L).

Thus

ρQ(ϕ̃, ψ̃) ≤ ρ(C ′′)L(ϕ̃, ψ̃) + 2τ + 2δ

≤
∑
t∈L

ρtC ′′(ϕ̃, ψ̃) + 2τ + 2δ

(6)

≤ 2δ|L|+ |L|ρC ′′(ϕ̃, ψ̃) + 2τ + 2δ

≤ 2δ|L|+ |L|ρC∨S2,LP(ϕ̃, ψ̃) + |L|ρC ′(ϕ̃, ψ̃) + 2τ + 2δ

= 2δ|L|+ |L|ρC∨S2,LP(ϕ̃, ψ̃) + 2τ + 2δ.

As in (6), for each g ∈ S we have

ρgQ(ϕ,ψ) ≤ 2δ′ + ρQ(ϕ,ψ).

Thus

ρC (ϕ,ψ) ≤ ρR(ϕ,ψ)

≤
∑
g∈S

ρgQ(ϕ,ψ)

≤ 2δ′|S|+ |S|ρQ(ϕ,ψ)

= 2δ′|S|+ |S|ρQ(ϕ̃, ψ̃)

≤ 2δ′|S|+ 2δ|S| · |L|+ |S| · |L|ρC∨S2,LP(ϕ̃, ψ̃) + 2|S|τ + 2|S|δ

≤ 2(δ + δ′)|S|+ 2δ|S| · |L|+ 2|S|3µ(X \XS2,L) + |S| · |L|ρC∨S2,LP(ϕ̃, ψ̃). �

Lemma 4.6. Let S be a set in F(G) containing eG and let W be a Borel subset of X such
that SW = X. Let Q be a finite Borel partition of W and Θ a function Q → F(S) such that
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eG ∈ Θ(B) for every B ∈ Q and such that the sets gB for B ∈ Q and g ∈ Θ(B) form a partition
of X. Also, let D be a finite Borel partition of X. Then there is a finite Borel partition Q1 of
W satisfying the following conditions:

(i) Q � Q1,
(ii) defining Θ(D) = Θ(B) for D ∈ Q1 and B ∈ Q satisfying D ⊆ B and denoting by R1

the partition of X consisting of gD for D ∈ Q1 and g ∈ Θ(D), one has D � R1.

Proof. Denote by Q1 the partition of W generated by the sets B ∩ g−1D for B ∈ Q, g ∈ Θ(B),
and D ∈ D . It is easily checked that Q1 satisfies the conditions. �

Lemma 4.7. Let C be a Borel finite partition of X, L ∈ F(H), and 0 < δ < 1. Let S ∈
F(G) and let W be a Borel subset of X such that SW = X. Take an L• ∈ F(H) such that
µ(X \ XS,L•) ≤ δ/(20|S|) and an L ∈ F(H) containing L•. Let Q1 � Q2 be finite Borel
partitions of W and let Θ : Q1 ∪Q2 → F(S) be such that

(i) eG ∈ Θ(B2) = Θ(B1) for all B2 ∈ Q2 and B1 ∈ Q1 with B2 ⊆ B1,
(ii) for j = 1, 2 the sets gB for B ∈ Qj and g ∈ Θ(B) form a partition Rj of X,

(iii) R1 � D := CL ∨ S,LP, and

(iv) R2 � (R1)LL.

Denote by Q′1 the set of all B ∈ Q1 satisfying B ⊆ XS,L• and by Q′2 the set of all B ∈ Q2

satisfying B ⊆ XS,L. Denote by Λ the set consisting of all (B, g) for B ∈ Q′2 and g ∈ Θ(B)\{eG}.
Take 0 < δ′ ≤ δ/(20|S|). Let A be a finite Borel partition of X refining R2. Let V be a nonempty
finite set and ϕ a homomorphism alg(A ) → PV such that

∑
A∈A |m(ϕ(A)) − µ(A)| ≤ δ′. Let

0 < τ̄ ≤ δ/(20|L•|). Let σ : H → Sym(V ) be an (L ∪ L•, τ̄)-approximation for H. Define a
map ϕ̃′ : R2 → PV by ϕ̃′(B) = ϕ(B) for all B ∈ Q2, ϕ̃′(gB) = ∅ for all B ∈ Q2 \ Q′2 and
g ∈ Θ(B) \ {eG}, and

ϕ̃′(gB) = σκ(g,B)ϕ(B)

for all (B, g) ∈ Λ, and extend ϕ̃′ to a map alg(R2)→ PV by setting ϕ̃′(D) =
⋃
A∈R2,A⊆D ϕ̃

′(A)

for D ∈ alg(R2). Suppose that ∑
(B,g)∈Λ

m(ϕ̃′(gB) ∩ ϕ(W )) ≤ δ

40
,(7)

∑
(B,g),(B′,g′)∈Λ,(B,g)6=(B′,g′)

m(ϕ̃′(gB) ∩ ϕ̃′(g′B′)) ≤ δ

40
,(8)

and ∑
B∈Q′1

∑
t∈LL•

m(ϕ̃′(tB)∆σtϕ(B)) ≤ δ

20
.(9)

Then there is a homomorphism ϕ̃ : alg(R2) → PV such that ϕ̃(B) = ϕ(B) for every B ∈ Q2

and
∑

A∈R2
m(ϕ̃(A)∆ϕ̃′(A)) ≤ δ/5. Furthermore, the restriction of any such ϕ̃ to alg(CL) lies

in Homµ(C , L, δ, σ).
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Proof. Note that

µ

(
X \

(
W ∪

⋃
(B,g)∈Λ

gB

))
= µ

( ⋃
B∈Q2\Q′2

⋃
g∈Θ(B)\{eG}

gB

)
(10)

≤ (|S| − 1)µ(X \XS,L•) ≤
δ

20
.

We prove the existence of ϕ̃ first. If W = X, then we may take ϕ̃(A) = ϕ(A) for all
A ∈ alg(R2). Thus we may assume that W 6= X. Consider the case that Λ is nonempty. List
the elements of Λ as (B1, g1), . . . , (B|Λ|, g|Λ|). We set ϕ̃(B) = ϕ(B) for all B ∈ Q2, ϕ̃(gB) = ∅
for all B ∈ Q2 \Q′2 and g ∈ Θ(B) \ {eG},

ϕ̃(gkBk) = ϕ̃′(gkBk) \
(
ϕ(W ) ∪

k−1⋃
j=1

ϕ̃′(gjBj)

)
for all 1 ≤ k < |Λ|, and

ϕ̃(g|Λ|B|Λ|) = V \
(
ϕ(W ) ∪

|Λ|−1⋃
j=1

ϕ̃′(gjBj)

)
.

Then the sets ϕ̃(A) for A ∈ R2 form a partition of V , and hence ϕ̃ extends uniquely to a
homomorphism alg(R2)→ PV . We have

m(ϕ(W )) +

|Λ|∑
j=1

m(ϕ̃′(gjBj)) = m(ϕ(W )) +

|Λ|∑
j=1

m(ϕ(Bj))

= m(ϕ(W )) +
∑

g∈S\{eG}

∑
1≤j≤|Λ|,gj=g

m(ϕ(Bj))

= m(ϕ(W )) +
∑

g∈S\{eG}

m

(
ϕ

( ⋃
1≤j≤|Λ|,gj=g

Bj

))

≥ µ(W )− δ′ +
∑

g∈S\{eG}

(
µ

( ⋃
1≤j≤|Λ|,gj=g

Bj

)
− δ′

)

= µ

(
W ∪

⋃
(B,g)∈Λ

gB

)
− |S|δ′

(10)

≥ 1− δ

20
− |S|δ′ ≥ 1− δ

10
,

and hence

m

(
V \

(
ϕ(W ) ∪

|Λ|⋃
j=1

ϕ̃′(gjBj)

))

= 1−m

(
ϕ(W ) ∪

|Λ|⋃
j=1

ϕ̃′(gjBj)

)
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≤ δ

10
+ m(ϕ(W )) +

|Λ|∑
j=1

m(ϕ̃′(gjBj))−m

(
ϕ(W ) ∪

|Λ|⋃
j=1

ϕ̃′(gjBj)

)

=
δ

10
+

|Λ|∑
k=1

m

(
ϕ̃′(gkBk) ∩

(
ϕ(W ) ∪

k−1⋃
j=1

ϕ̃′(gjBj)

))
.

Therefore

∑
A∈R2

m(ϕ̃(A)∆ϕ̃′(A)) =

|Λ|∑
k=1

m(ϕ̃(gkBk)∆ϕ̃
′(gkBk))

= m

(
V \

(
ϕ(W ) ∪

|Λ|⋃
j=1

ϕ̃′(gjBj)

))

+

|Λ|∑
k=1

m

(
ϕ̃′(gkBk) ∩

(
ϕ(W ) ∪

k−1⋃
j=1

ϕ̃′(gjBj)

))

≤ δ

10
+ 2

|Λ|∑
k=1

m

(
ϕ̃′(gkBk) ∩

(
ϕ(W ) ∪

k−1⋃
j=1

ϕ̃′(gjBj)

))

≤ δ

10
+ 2

|Λ|∑
k=1

m
(
ϕ̃′(gkBk) ∩ ϕ(W ))

+ 2
∑

1≤j<k≤|Λ|

m(ϕ̃′(gkBk) ∩ ϕ̃′(gjBj))

(7),(8)

≤ δ

10
+

δ

20
+

δ

20
=
δ

5
.

This proves the existence of ϕ̃ when Λ is nonempty. Next consider the case that W 6= X and
Λ = ∅. Choose a B0 ∈ Q2 \ Q′2 and a g0 ∈ Φ(B) \ {eG}. Set ϕ̃(B) = ϕ(B) for all B ∈ Q2,
ϕ̃(g0B0) = V \ ϕ(W ), and ϕ̃(gB) = ∅ for all B ∈ Q2 \ Q′2 and g ∈ Φ(B) \ {eG} satisfying
(B, g) 6= (B0, g0). Then the sets ϕ̃(A) for A ∈ R2 form a partition of V , and hence ϕ̃ extends
uniquely to a homomorphism alg(R2)→ PV . We have∑

A∈R2

m(ϕ̃(A)∆ϕ̃′(A)) = m(ϕ̃(g0B0))

= m(V \ ϕ(W ))

≤ µ(X \W ) + δ′

(10)

≤ δ

20
+

δ

20
<
δ

5
.

This proves the existence of ϕ̃.
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Now let ϕ̃ be any homomorphism alg(R2) → PV satisfying
∑

A∈R2
m(ϕ̃(A)∆ϕ̃′(A)) ≤ δ/5.

We have ∑
A∈R2

|m(ϕ̃′(A))− µ(A)|(11)

=
∑

B∈Q2,g∈Θ(B)

|m(ϕ̃′(gB))− µ(gB)|

≤
∑
B∈Q2

|m(ϕ(B))− µ(B)|+
∑

(B,g)∈Λ

|m(ϕ(B))− µ(B)|+
∑

B∈Q2\Q′2,
g∈Θ(B)\{eG}

µ(B)

≤ δ′ +
∑

g∈S\{eG}

∑
1≤j≤|Λ|,gj=g

|m(ϕ(Bj))− µ(Bj)|+ (|S| − 1)µ(X \XS,L•)

≤ |S|δ′ + δ

20
≤ δ

20
+

δ

20
=

δ

10
,

and hence∑
A∈CL

|m(ϕ̃(A))− µ(A)| ≤
∑
A∈R2

|m(ϕ̃(A))− µ(A)|

≤
∑
A∈R2

|m(ϕ̃(A))−m(ϕ̃′(A))|+
∑
A∈R2

|m(ϕ̃′(A))− µ(A)|

(11)

≤
∑
A∈R2

m(ϕ̃(A)∆ϕ̃′(A)) +
δ

10
≤ δ

5
+

δ

10
< δ.

Let t ∈ L. Since R2 refines R1 and hence also CL, it refines C and tC . Thus∑
A∈C

m(ϕ̃(A)∆ϕ̃′(A)) ≤
∑
A∈R2

m(ϕ̃(A)∆ϕ̃′(A)) ≤ δ

5
(12)

and ∑
A∈C

m(ϕ̃(tA)∆ϕ̃′(tA)) ≤
∑
A∈R2

m(ϕ̃(A)∆ϕ̃′(A)) ≤ δ

5
.(13)

For every B ∈ Q′1 and g ∈ Θ(B) \ {eG}, we have

ϕ̃′(gB) = ϕ̃′
( ⋃
B′∈Q′2,B

′⊆B

gB′
)

=
⋃

B′∈Q′2,B
′⊆B

ϕ̃′(gB′)(14)

=
⋃

B′∈Q′2,B
′⊆B

σκ(g,B)ϕ(B′)

= σκ(g,B)ϕ(B).

Note that∑
B∈Q1\Q′1,
g∈Θ(B)

m(ϕ̃′(tgB)∆σtϕ̃
′(gB))(15)
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≤
∑

B∈Q1\Q′1,
g∈Θ(B)

m(ϕ̃′(tgB)) +
∑

B∈Q1\Q′1

m(ϕ(B)) +
∑

B∈Q1\Q′1,B⊆XS,L,
g∈Θ(B)\{eG}

m(σκ(g,B)ϕ(B))

(11)

≤ δ

10
+

∑
B∈Q1\Q′1,
g∈Θ(B)

µ(tgB) +
∑

B∈Q1\Q′1

m(ϕ(B)) +
∑

B∈Q1\Q′1,B⊆XS,L,
g∈Θ(B)\{eG}

m(ϕ(B))

≤ δ

10
+ |S|µ(X \XS,L•) + |S|m(ϕ(X \XS,L•))

≤ δ

10
+ |S|µ(X \XS,L•) + |S|µ(X \XS,L•) + |S|δ′

≤ δ

10
+

δ

20
+

δ

20
+

δ

20
=
δ

4
.

Thus ∑
A∈C

m(ϕ̃′(tA)∆σtϕ̃
′(A))

=
∑
A∈C

m

(( ⋃
D∈R1,D⊆A

ϕ̃′(tD)

)
∆

( ⋃
D∈R1,D⊆A

σtϕ̃
′(D)

))
≤
∑
A∈C

∑
D∈R1,D⊆A

m(ϕ̃′(tD)∆σtϕ̃
′(D))

=
∑
D∈R1

m(ϕ̃′(tD)∆σtϕ̃
′(D))

=
∑

B∈Q1,g∈Θ(B)

m(ϕ̃′(tgB)∆σtϕ̃
′(gB))

=
∑

B∈Q′1,g∈Θ(B)

m(ϕ̃′(tκ(g,B)B)∆σtϕ̃
′(gB)) +

∑
B∈Q1\Q′1,
g∈Θ(B)

m(ϕ̃′(tgB)∆σtϕ̃
′(gB))

(15)

≤
∑

B∈Q′1,g∈Θ(B)

m(ϕ̃′(tκ(g,B)B)∆σtκ(g,B)ϕ(B))

+
∑

B∈Q′1,g∈Θ(B)

m(σtκ(g,B)ϕ(B)∆σtσκ(g,B)ϕ(B))

+
∑

B∈Q′1,g∈Θ(B)

m(σtσκ(g,B)ϕ(B)∆σtϕ̃
′(gB)) +

δ

4

(14)

≤
∑

B∈Q′1,t1∈LL•
m(ϕ̃′(t1B)∆σt1ϕ(B)) + 2

∑
t1∈L•

ρHamm(σtt1 , σtσt1)

+
∑
B∈Q′1

m(σtσeHϕ(B)∆σtϕ(B)) +
δ

4
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(9)

≤ δ

20
+ 2τ̄ |L•|+

∑
B∈Q′1

m(σeHϕ(B)∆ϕ(B)) +
δ

4

≤ δ

20
+ 2τ̄ |L•|+ 2ρHamm(σeH , idV ) +

δ

4

=
δ

20
+ 2τ̄ |L•|+ 2ρHamm(σeHσeH , σeH ) +

δ

4

≤ δ

20
+ 4τ̄ |L•|+ δ

4
≤ δ

20
+
δ

5
+
δ

4
=
δ

2
,

and hence∑
A∈C

m(ϕ̃(tA)∆σtϕ̃(A)) ≤
∑
A∈C

m(ϕ̃(tA)∆ϕ̃′(tA)) +
∑
A∈C

m(ϕ̃′(tA)∆σtϕ̃
′(A))

+
∑
A∈C

m(σtϕ̃
′(A)∆σtϕ̃(A))

(13)

≤ δ

5
+
δ

2
+
∑
A∈C

m(ϕ̃′(A)∆ϕ̃(A))

(12)

≤ δ

5
+
δ

2
+
δ

5
< δ.

Therefore the restriction of ϕ̃ to alg(CL) lies in Homµ(C , L, δ, σ). �

Lemma 4.8. Let C be a Borel finite partition of X, L ∈ F(H), and 0 < δ < 1. Let S ∈ F(G)
and L•, L ∈ F(H) be such that L• ⊆ L and

µ(X \XS,L) ≤ γ := δ/(200|S| · |LL•|).

Set L] := LLL ∈ F(H) and let T ∈ F(G) be such that

µ(X \XL],T ) ≤ κ := δ/(104|L|2 · |LL•|).

Let C ∈ N and S1, . . . , Sn ∈ F(G), and let W,V1, . . . ,Vn be Borel subsets of X such that
SW = X, and for every g ∈ T and w ∈ W ∩ g−1W the points w and gw are connected by a
path of length at most C in which each edge is an Sj-edge with both endpoints in Vj for some

1 ≤ j ≤ n. Let L† ∈ F(H) be such that

µ(X \X⋃n
j=1 Sj ,L

†) ≤ ζ := κ/(100|
⋃n
j=1 Sj |C).

Let 0 ≤ τ̄ ≤ κ/(10C|
⋃n
j=1 Sj |C · |L†|3C). Let F ∈ F(G) be such that T ∪ (

⋃n
j=1 Sj)

C ⊆ F

and µ(X \ X(L]∪(L†)C)2,F ) ≤ min{ζ, τ̄/30}. Denote by D ′ the partition of X generated by

W,V1, . . . ,Vn. Let Q1 � Q2 be finite Borel partitions of W and let Θ : Q1 ∪ Q2 → F(S)
be such that

(i) eG ∈ Θ(B2) = Θ(B1) for all B2 ∈ Q2 and B1 ∈ Q1 with B2 ⊆ B1,
(ii) for i = 1, 2 the sets gB for B ∈ Qi and g ∈ Θ(B) form a partition Ri of X,

(iii) R1 � D := CL ∨ (D ′)T ∨ (
∨n
j=1 Sj ,L†P) ∨ ⋃n

j=1 Sj ,L
†P ∨ L],TP, and

(iv) R2 � (R1)LL.
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Denote by Q′1 the set of all B ∈ Q1 satisfying B ⊆ XS,L•, and denote by Q′2 the set of all B ∈ Q2

satisfying B ⊆ XS,L. Denote by Λ the set consisting of all (B, g) for B ∈ Q′2 and g ∈ Θ(B)\{eG}.
Let 0 < τ ′ ≤ min{κ/(100|F |3), τ̄ /(60|F |2)} and 0 < δ′ ≤ min{τ ′, κ/(10n|F |), δ/(50|LL•|(|S| +
1))}. Let A be a finite Borel partition of X refining (R2)(L]∪(L†)C)2∨(L]∪(L†)C)2,FP∨D(

⋃n
j=1 Sj)

C .

Let π : G → Sym(V ) be an (F, τ ′)-approximation for G and ϕ,ϕ0 ∈ Homµ(A , F, δ′, π). Let

σ : H → Sym(V ) be an (L] ∪ (L†)C , τ̄)-approximation for H such that ρHamm(σt, σ
′
t) ≤ τ̄ /5 for

all t ∈ (L] ∪ (L†)C)2, where σ′t ∈ V V for t ∈ (L] ∪ (L†)C)2 satisfies

σ′tv = πλ(t,A)v

for all A ∈ (L]∪(L†)C)2,FP and v ∈ ϕ0(A). Define ϕ̃′ : R2 → PV by ϕ̃′(B) = ϕ(B) for all

B ∈ Q2, ϕ̃′(gB) = ∅ for all B ∈ Q2 \Q′2 and g ∈ Θ(B) \ {eG}, and

ϕ̃′(gB) = σκ(g,B)ϕ(B)

for all (B, g) ∈ Λ, and extend ϕ̃′ to a map alg(R2)→ PV by setting ϕ̃′(D) =
⋃
A∈R2,A⊆D ϕ̃

′(A)

for D ∈ alg(R2). Assume that ϕ(W ) = ϕ0(W ) and ϕ(Vj ∩D) = ϕ0(Vj ∩D) for all 1 ≤ j ≤ n
and D ∈ Sj ,L†P. Then (7), (8), and (9) hold.

Proof. Denote by V1 the set of all v ∈ V satisfying πg1g2v 6= πg1πg2v for some g1, g2 ∈ (
⋃n
j=1 Sj)

C .

Then m(V1) ≤ |F |2τ ′ ≤ τ̄ /60. Denote by V2 the set of all v ∈ V satisfying σ′tv 6= σtv for some
t ∈ L†. Then m(V2) ≤ |L†|τ̄ /5. Set V3 =

⋃
g∈(

⋃n
j=1 Sj)

C πg(V1 ∪ V2). Then

m(V3) ≤
∣∣∣ n⋃
j=1

Sj

∣∣∣C(m(V1) + m(V2)) ≤ 2
∣∣∣ n⋃
j=1

Sj

∣∣∣C · |L†|τ̄
5
≤ κ

25
.

Denote by V4 the set of all v ∈ V satisfying σt1t2v 6= σt1σt2v for some t1, t2 ∈ (L†)C . Then

m(V4) ≤ |L†|2C τ̄ . Set V5 =
⋃C
l=1

⋃
t1,...,tl∈L† σtl . . . σt1V4. Then

m(V5) ≤ C|L†|Cm(V4) ≤ C|L†|3C τ̄ ≤ κ

10
.

Denote by V6 the union of the sets ϕ(g(Vj ∩D))∆πgϕ(Vj ∩D) for g ∈ (
⋃n
i=1 Si)

C , 1 ≤ j ≤ n,
and D ∈ Sj ,L†P. Then m(V6) ≤ n|F |δ′ ≤ κ/10. Also, denote by V7 the union of the sets

ϕ(gA)∆πgϕ(A) for A ∈ A and g ∈ T . Then m(V7) ≤ |T |δ′ ≤ κ/10. Put

V8 =
⋃

g∈(
⋃n
j=1 Sj)

C

πgϕ0(X \ (X⋃
1≤j≤n Sj ,L

† ∩X(L]∪(L†)C)2,F )).

Then m(V8) ≤ |(
⋃n
j=1 Sj)

C |(2ζ + δ′) ≤ κ/5. Set V ′ = V \ (V3 ∪ V5 ∪ V6 ∪ V7 ∪ V8). We then have

m(V \ V ′) ≤ m(V3) + m(V5) + m(V6) + m(V7) + m(V8) ≤ κ.

Denote by Q′′2 the set of all B ∈ Q2 satisfying B ⊆ XL],T . Let t ∈ L] and B ∈ Q′′2 . We claim
that

V ′ ∩ ϕ(W ∩ tB) ⊆ ϕ(W ) ∩ σtϕ(B).(16)

Set g = λ(t, B) ∈ T . Denote by Ξt,B the set consisting of all tuples ξ = (k1, . . . , kl, g1, . . . , gl, D1, . . . , Dl)
such that 1 ≤ l ≤ C, 1 ≤ k1, . . . , kl ≤ n, gj ∈ Skj for all 1 ≤ j ≤ l, g = gl . . . g1, andDj ∈ Skj ,L

†P
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for all 1 ≤ j ≤ l and such that the set

Ωξ := B ∩ g−1W ∩
l⋂

j=1

((gj · · · g1)−1Vkj ∩ (gj−1 . . . g1)−1(Vkj ∩Dj)) ∈ alg(A )

consisting of all x ∈ B∩t−1W = B∩g−1W satisfying gj . . . g1x ∈ Vkj and gj−1 . . . g1x ∈ Vkj ∩Dj

for all 1 ≤ j ≤ l is nonempty. Then

B ∩ g−1W =
⋃

ξ∈Ξt,B

Ωξ.

Denote by Ξ′t,B the set of all ξ = (k1, . . . , kl, g1, . . . , gl, D1, . . . , Dl) ∈ Ξt,B such that Dj ∈ Skj ,L
†P

for all 1 ≤ j ≤ l. For each ξ = (k1, . . . , kl, g1, . . . , gl, D1, . . . , Dl) ∈ Ξt,B, we have

V ′ ∩ ϕ(gΩξ)

= V ′ ∩ ϕ
(
gB ∩W ∩

l⋂
j=1

((gl · · · gj+1Vkj ) ∩ (gl . . . gj(Vkj ∩Dj)))

)

= V ′ ∩ ϕ(gB ∩W ) ∩
l⋂

j=1

(ϕ(gl . . . gj+1Vkj ) ∩ ϕ(gl . . . gj(Vkj ∩Dj)))

= V ′ ∩ ϕ(gB ∩W ) ∩
l⋂

j=1

(πgl...gj+1ϕ(Vkj ) ∩ πgl...gjϕ(Vkj ∩Dj))

= V ′ ∩ ϕ(gB ∩W ) ∩
l⋂

j=1

(πgl...gj+1ϕ0(Vkj ) ∩ πgl...gjϕ0(Vkj ∩Dj))

= V ′ ∩ ϕ(gB ∩W ) ∩
l⋂

j=1

(πgl . . . πgj+1ϕ0(Vkj ) ∩ πgl . . . πgj+1πgjϕ0(Vkj ∩Dj))

= V ′ ∩ ϕ(gB ∩W ) ∩
l⋂

j=1

πgl . . . πgj+1(ϕ0(Vkj ) ∩ πgjϕ0(Vkj ∩Dj)).

If ξ ∈ Ξt,B \ Ξ′t,B, then Dj = X \ XSkj ,L
† ⊆ X \ X⋃n

i=1 Si,L
† for some 1 ≤ j ≤ l and hence

V ′ ∩ ϕ(gΩξ) = ∅. Thus

V ′ ∩ ϕ(W ∩ tB) = V ′ ∩ ϕ(gB ∩W ) = V ′ ∩ ϕ
( ⋃
ξ∈Ξt,B

gΩξ

)
=

⋃
ξ∈Ξt,B

(V ′ ∩ ϕ(gΩξ)) =
⋃

ξ∈Ξ′t,B

(V ′ ∩ ϕ(gΩξ)).

Now let ξ ∈ Ξ′t,B. Let w ∈ V ′ ∩ ϕ(gΩξ). For each 1 ≤ j ≤ l one has w = πgl...gj+1wj =

πgl . . . πgj+1wj for some wj ∈ ϕ0(Vkj ) ∩ πgjϕ0(Vkj ∩ Dj). We can also find some w0 ∈ V such
that w = πgl . . . πg1w0 = πgw0. Note that

w0 = π−1
g w ∈ π−1

g (V ′ ∩ ϕ(gΩξ)) ⊆ ϕ(Ωξ) ⊆ ϕ(B).
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We have wj = πgjwj−1 for all 1 ≤ j ≤ l, and hence wj−1 ∈ ϕ0(Vkj ∩Dj)∩ϕ0(X(L]∪(L†)C)2,F ) for

all 1 ≤ j ≤ l. Set tj = κ(gj , Dj) ∈ L† for 1 ≤ j ≤ l. Then wj = πgjwj−1 = σ′tjwj−1 = σtjwj−1

for all 1 ≤ j ≤ l. Therefore w = σtl . . . σt1w0 = σtl...t1w0. Take x ∈ Ωξ. We have

t = κ(g, x) = κ(gl . . . g1, x) = κ(gl . . . g2, g1x)κ(g1, x)

= κ(gl . . . g2, g1x)t1 = · · · = tl . . . t1.

Thus w = σtw0 ∈ σtϕ(B) and hence V ′ ∩ ϕ(gΩξ) ⊆ ϕ(W ) ∩ σtϕ(B). Therefore

V ′ ∩ ϕ(W ∩ tB) =
⋃

ξ∈Ξ′t,B

(V ′ ∩ ϕ(gΩξ)) ⊆ ϕ(W ) ∩ σtϕ(B).

This proves our claim (16).
Now let t ∈ L]. Applying Lemma 4.3 with C = R2, L = L]∪(L†)C , τ = τ̄ , F = F , τ ′ = τ ′, π =

π, σ = σ, σ′ = σ′, and ϕ being the restriction of ϕ0 to alg(((R2)(L]∪(L†)C)2 ∨ (L]∪(L†)C)2,FP)F ),

we have that the restriction of ϕ0 to alg((R2)L]∪(L†)C ) lies in Homµ(R2, L
] ∪ (L†)C , τ̄ , σ). Thus

m((ϕ0(W ) ∩ σtϕ0(W ))∆(ϕ0(W ) ∩ ϕ0(tW )) ≤ m(σtϕ0(W )∆ϕ0(tW )) ≤ τ̄ .

Therefore

m(ϕ0(W ) ∩ σtϕ0(W )) ≤ m(ϕ0(W ) ∩ ϕ0(tW )) + τ̄(17)

= m(ϕ0(W ∩ tW )) + τ̄

≤ µ(W ∩ tW ) + δ′ + τ̄

≤ m(ϕ(W ∩ tW )) + 2δ′ + τ̄

≤ m(V ′ ∩ ϕ(W ∩ tW )) + κ+ 2δ′ + τ̄ .

Also note that

m((V ′ ∩ ϕ(W ∩ tW )) \ (V ′ ∩ ϕ(W ∩ t(W ∩XL],T ))))

≤ m(ϕ(W ∩ tW ) \ ϕ(W ∩ t(W ∩XL],T )))

= m(ϕ((W ∩ tW ) \ (W ∩ t(W ∩XL],T ))))

≤ m(ϕ(t(X \XL],T )))

≤ δ′ + µ(t(X \XL],T )) ≤ δ′ + κ,

and hence

m(V ′ ∩ ϕ(W ∩ tW )) ≤ m(V ′ ∩ ϕ(W ∩ t(W ∩XL],T ))) + δ′ + κ.(18)

Then ∑
B∈Q2

m((ϕ(W ) ∩ σtϕ(B)) \ ϕ(W ∩ tB))(19)

≤
∑

B∈Q2\Q′′2

m(ϕ(W ) ∩ σtϕ(B)) +
∑
B∈Q′′2

m((ϕ(W ) ∩ σtϕ(B)) \ ϕ(W ∩ tB))

≤
∑

B∈Q2\Q′′2

m(ϕ(B)) +
∑
B∈Q′′2

m((ϕ(W ) ∩ σtϕ(B)) \ (V ′ ∩ ϕ(W ∩ tB)))
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(16)
= m(ϕ(W \XL],T ))

+ m((ϕ(W ) ∩ σtϕ(W ∩XL],T )) \ (V ′ ∩ ϕ(W ∩ t(W ∩XL],T ))))

≤ m(ϕ(X \XL],T )) + m(ϕ(W ) ∩ σtϕ(W ))−m(V ′ ∩ ϕ(W ∩ t(W ∩XL],T )))

(18)

≤ µ(X \XL],T ) + δ′ + m(ϕ0(W ) ∩ σtϕ0(W ))

−m(V ′ ∩ ϕ(W ∩ tW )) + δ′ + κ

(17)

≤ κ+ δ′ + κ+ 2δ′ + τ̄ + δ′ + κ = 3κ+ 4δ′ + τ̄ ≤ 8κ,

and ∑
B∈Q2

m(ϕ(W ∩ tB) \ (ϕ(W ) ∩ σtϕ(B)))(20)

≤
∑

B∈Q2\Q′′2

m(ϕ(W ∩ tB)) +
∑
B∈Q′′2

m(ϕ(W ∩ tB) \ (ϕ(W ) ∩ σtϕ(B)))

(16)

≤ m(ϕ(W ∩ t(W \XL],T ))) + m(V \ V ′)
≤ m(ϕ(t(X \XL],T ))) + κ

≤ µ(t(X \XL],T )) + δ′ + κ ≤ 2κ+ δ′.

For each (B, g) ∈ Λ, we have ϕ̃′(gB) = σκ(g,B)ϕ(B), κ(g,B) ∈ L, and W ∩ κ(g,B)B =
W ∩ gB = ∅. Thus∑

(B,g)∈Λ

m(ϕ̃′(gB) ∩ ϕ(W )) =
∑

(B,g)∈Λ

m(σκ(g,B)ϕ(B) ∩ ϕ(W ))

≤
∑
t∈L

∑
B∈Q′2,
tB∩W=∅

m(σtϕ(B) ∩ ϕ(W ))

(19)

≤ |L|8κ

≤ δ

40
,

verifying (7).
For distinct (B1, g1), (B2, g2) in Λ, we have κ(g1, B1)B1 ∩ κ(g2, B2)B2 = ∅, and hence B1 ∩

κ(g1, B1)−1κ(g2, B2)B2 = ∅. For any t1, t2 ∈ LL, we have

ρHamm(σ−1
t1
σt2 , σt−1

1 t2
) ≤ ρHamm(σ−1

t1
, σt−1

1
) + ρHamm(σt−1

1
σt2 , σt−1

1 t2
)(21)

≤ ρHamm(idV , σt1σt−1
1

) + τ̄

≤ ρHamm(idV , σeH ) + ρHamm(σeH , σt1σt−1
1

) + τ̄

= ρHamm(σeH , σeHσeH ) + ρHamm(σeH , σt1σt−1
1

) + τ̄

≤ 3τ̄ .
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Thus ∑
(B1,g1),(B2,g2)∈Λ,

(B1,g1)6=(B2,g2)

m(ϕ̃′(g1B1) ∩ ϕ̃′(g2B2))

=
∑

(B1,g1),(B2,g2)∈Λ,
(B1,g1)6=(B2,g2)

m(σκ(g1,B1)ϕ(B1) ∩ σκ(g2,B2)ϕ(B2))

≤
∑

t1,t2∈L

∑
B1,B2∈Q′2,

B1∩t−1
1 t2B2=∅

m(σt1ϕ(B1) ∩ σt2ϕ(B2))

=
∑

t1,t2∈L

∑
B1,B2∈Q′2,

B1∩t−1
1 t2B2=∅

m(ϕ(B1) ∩ σ−1
t1
σt2ϕ(B2))

≤
∑

t1,t2∈L

[
ρHamm(σ−1

t1
σt2 , σt−1

1 t2
) +

∑
B1,B2∈Q′2,

B1∩t−1
1 t2B2=∅

m(ϕ(B1) ∩ σt−1
1 t2

ϕ(B2))

]

(21)

≤ 3|L|2τ̄ +
∑

t1,t2∈L

∑
B1,B2∈Q′2,

B1∩t−1
1 t2B2=∅

m(ϕ(B1) ∩ ϕ(W ) ∩ σt−1
1 t2

ϕ(B2))

(19)

≤ 3|L|2τ̄ + |L|28κ+
∑

t1,t2∈L

∑
B1,B2∈Q′2,

B1∩t−1
1 t2B2=∅

m(ϕ(B1) ∩ ϕ(W ∩ t−1
1 t2B2))

= |L|2(3τ̄ + 8κ) ≤ δ

40
,

verifying (8).
For each t ∈ LL•, we have∑

B∈Q′1

m(σtϕ(B) \ ϕ̃′(tB))(22)

=
∑
B∈Q′1

m(ϕ(B) \ σ−1
t ϕ̃′(tB))

=
∑
B∈Q′1

[
m(ϕ(B))−m(ϕ(B) ∩ σ−1

t ϕ̃′(tB))
]

=
∑
B∈Q′1

[
m(ϕ(B))−m

(
ϕ(B) ∩ σ−1

t ϕ̃′
( ⋃
B1∈Q2,g1∈Θ(B1),

g1B1⊆tB

g1B1

))]

=
∑
B∈Q′1

[
m(ϕ(B))−m

( ⋃
B1∈Q2,g1∈Θ(B1),

g1B1⊆tB

(ϕ(B) ∩ σ−1
t ϕ̃′(g1B1))

)]
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=
∑
B∈Q′1

[
m(ϕ(B))−m

( ⋃
B1∈Q2,B1⊆tB

(ϕ(B) ∩ σ−1
t ϕ(B1))

)

−m

( ⋃
(B1,g1)∈Λ,
g1B1⊆tB

(ϕ(B) ∩ σ−1
t σκ(g1,B1)ϕ(B1))

)]

≤
∑
B∈Q′1

[
m(ϕ(B))−m

( ⋃
B1∈Q′2,B1⊆tB

(ϕ(B) ∩ σ−1
t σeHϕ(B1))

)

−m

( ⋃
(B1,g1)∈Λ,
g1B1⊆tB

(ϕ(B) ∩ σ−1
t σκ(g1,B1)ϕ(B1))

)]
+ ρHamm(σeH , idV )

=
∑
B∈Q′1

[
m(ϕ(B))−m

( ⋃
t1∈L

⋃
B1∈Q′2,

λ(t1,B1)∈Θ(B1),
t1B1⊆tB

(ϕ(B) ∩ ϕ(W ) ∩ σ−1
t σt1ϕ(B1))

)]

+ ρHamm(σeHσeH , σeH )

≤
∑
B∈Q′1

[
m(ϕ(B))−m

( ⋃
t1∈L

⋃
B1∈Q′2,

λ(t1,B1)∈Θ(B1),
t1B1⊆tB

(ϕ(B) ∩ ϕ(W ) ∩ σt−1t1ϕ(B1))

)]

+
∑
t1∈L

ρHamm(σ−1
t σt1 , σt−1t1) + τ̄

(20),(21)

≤
∑
B∈Q′1

[
m(ϕ(B))−m

( ⋃
t1∈L

⋃
B1∈Q′2,

λ(t1,B1)∈Θ(B1),
t1B1⊆tB

(ϕ(B) ∩ ϕ(W ∩ t−1t1B1))

)]

+ |L|(2κ+ δ′) + 3|L|τ̄ + τ̄

≤
∑
B∈Q′1

[
m(ϕ(B))−m

( ⋃
t1∈L,B1∈Q′2,

λ(t1,B1)∈Θ(B1),
t1B1⊆tB

ϕ(B ∩ t−1t1B1)

)]
+ |L|(2κ+ δ′ + 4τ̄)

=
∑
B∈Q′1

m

(
ϕ

(
B ∩

⋃
B1∈Q2\Q′2,
g1∈Θ(B1)

t−1g1B1

))
+ |L|(2κ+ δ′ + 4τ̄)

≤ m

(
ϕ

( ⋃
B1∈Q2\Q′2,
g1∈Θ(B1)

t−1g1B1

))
+ |L|(2κ+ δ′ + 4τ̄)
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≤ µ
( ⋃
B1∈Q2\Q′2,
g1∈Θ(B1)

t−1g1B1

)
+ δ′ + |L|(2κ+ δ′ + 4τ̄)

≤ |S|µ(X \XS,L) + |L|(2κ+ 2δ′ + 4τ̄)

≤ |S|γ + |L|8κ ≤ δ

100|LL•|
,

and also ∑
B∈Q′1

m(ϕ̃′(tB)) ≤
∑
B∈Q′1

∑
B1∈Q2,g1∈Θ(B1),

g1B1⊆tB

m(ϕ̃′(g1B1))(23)

≤
∑
B∈Q′1

∑
B1∈Q2,g1∈Θ(B1),

g1B1⊆tB

m(ϕ(B1))

≤ |S|δ′ +
∑
B∈Q′1

∑
B1∈Q2,g1∈Θ(B1),

g1B1⊆tB

µ(B1)

= |S|δ′ +
∑
B∈Q′1

∑
B1∈Q2,g1∈Θ(B1),

g1B1⊆tB

µ(g1B1)

= |S|δ′ +
∑
B∈Q′1

µ(B)

≤ (|S|+ 1)δ′ +
∑
B∈Q′1

m(ϕ(B)).

Thus ∑
B∈Q′1

∑
t∈LL•

m(σtϕ(B)∆ϕ̃′(tB))

=
∑
B∈Q′1

∑
t∈LL•

[
2m(σtϕ(B) \ ϕ̃′(tB)) + m(ϕ̃′(tB))−m(σtϕ(B))

]
(22)

≤ δ

50
+
∑
B∈Q′1

∑
t∈LL•

[
m(ϕ̃′(tB))−m(ϕ(B))

]
(23)

≤ δ

50
+ |LL•|(|S|+ 1)δ′ ≤ δ

20
,

verifying (9). �

For F ∈ F(G) and L ∈ F(H) we denote by F,LW the countable Borel partition of X consisting
of XF,L and P ∈ FP \ F,LP. For any F ∈ F(G), the fact that FP has finite Shannon entropy
means that for every ε > 0 we can find a Γ(F, ε) ∈ F(H) such that Hµ(F,Γ(F,ε)W ) < ε.

Proof of Theorem 4.1. We may assume that hµ(Gy X) 6= −∞, which means in particular that
G is sofic.
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By Stirling’s formula there is a function Ψ : (0, 1)→ (0, 1) such that for any nonempty finite
set V and any 0 < ε < 1 the number of subsets V ′ of V satisfying |V ′|/|V | ≤ Ψ(ε) is at most

eε|V |.
Let Π = {πk : G → Sym(Vk)}∞k=1 be a sofic approximation sequence for G and C a finite

Borel partition of X with hΠ,µ(G y X,C ) ≥ 0. Let 0 < ε < 1. To establish the theorem it
is enough to show the existence of a sofic approximation sequence Σ for H and a finite Borel
partition C [ of X such that hΣ,µ(H y X,C [) ≥ hΠ,µ(Gy X,C )− 6ε.

Enumerate the elements of F(G) as F̄1, F̄2, . . . . Take two decreasing sequences 1 > δ1 >
δ2 > . . . and 1 > τ1 > τ2 > . . . converging to 0, an increasing sequence {Lk}k∈N in F(H)
with union H, and an increasing sequence {Uk}k∈N of finite Borel partitions of X such that
the algebra generated by

⋃
k∈N Uk is dense in the Borel σ-algebra of X with respect to the

pseudometric d(A,B) = µ(A∆B) (such a sequence can be found in view of the fact that every
atomless standard probability space is measure isomorphic to the unit interval equipped with
the Lebesgue measure on its Borel σ-algebra [25, Theorem A.20]).

We define Υ : F(G)→ [0,∞) by Υ(F̄`) = 2/(Ψ(ε)Ψ(ε/(2`|F̄`,Γ(F̄`,ε/2`)
P|))) for all ` ∈ N.

Since G y (X,µ) has property SC, there is an S ∈ F(G) such that for any Tk ∈ F(G) there
are nk, Ck ∈ N, Sk,1, . . . , Sk,nk ∈ F(G), and Borel sets Wk,Vk,1, . . . ,Vk,nk ⊆ X satisfying the
following conditions:

(i)
∑nk

j=1 Υ(Sk,j)µ(Vk,j) ≤ 1,

(ii) SWk = X,
(iii) if w1, w2 ∈ Wk satisfy gw1 = w2 for some g ∈ Tk then w1 and w2 are connected by a

path of length at most Ck in which each edge is an Sk,j-edge with both endpoints in
Vk,j for some 1 ≤ j ≤ nk.

We may assume that the sets Sk,1, . . . , Sk,nk are distinct. From (iii) we have the inclusion

Wk ⊆
⋃nk
j=1 Vk,j . Take an L[ ∈ F(H) such that µ(X \XS2,L[) ≤ Ψ(ε/|C |)/(10|S|3).

Fix k ∈ N. Put L∗k = Lk ∪ L[ ∈ F(H). Take 0 < δ∗k ≤ min{δk,Ψ(ε/|C |)/(10|S| · |L∗k|)}.
Take also an L•k ∈ F(H) such that µ(X \ XS,L•k

) ≤ δ∗k/(20|S|) and an Lk ∈ F(H) such that

L•k ⊆ Lk and µ(X \XS,Lk
) ≤ γk := δ∗k/(200|S| · |L∗kL•k|). Put L]k = LkL

∗
kLk ∈ F(H). Choose a

Tk ∈ F(G) such that µ(X \X
L]k,Tk

) ≤ κk := δ∗k/(104|Lk|2 · |L∗kL•k|). Then we have nk, Ck, Sk,j

for 1 ≤ j ≤ nk, Wk, and Vk,j for 1 ≤ j ≤ nk as above.

Say Sk,j = F̄`k,j for 1 ≤ j ≤ nk. Take an L†k ∈ F(H) such that
⋃nk
j=1 Γ(Sk,j , ε/2

`k,j ) ⊆ L†k and

µ
(
X \X⋃nk

j=1 Sk,j ,L
†
k

)
≤ ζk := κk/(100|

⋃nk
j=1 Sk,j |Ck),

and take 0 < τ̄k ≤ min{τk, κk/(10Ck|
⋃nk
j=1 Sk,j |Ck · |L

†
k|

3Ck)}. Take an F \k ∈ F(G) such that

µ(X \X
(L]k∪(L†k)Ck )2,F \k

) ≤ τ̄k/30, and take an Fk ∈ F(G) containing F \k ∪ Tk ∪ (
⋃nk
j=1 Sk,j)

Ck ∪ S

such that µ(X \X
(L]k∪(L†k)Ck )2,Fk

) ≤ min{ζk, τ̄k/(30|F \k|)}.
Set C ′k = {Wk, X \Wk} and C ′′k = C ∨C ′k∨S2,L[P. Applying Lemma 4.5 with C = C , S = S,

W = Wk, and L = L[ we find a finite Borel partition Qk of Wk contained in alg((C ∨C ′k)S2) and
a map Θk : Qk → F(S) such that eG ∈ Θk(B) for every B ∈ Qk and the sets gB for B ∈ Qk

and g ∈ Θk(B) form a partition Rk of X finer than C . Set C ∗k = Rk ∨ C ′′k ∨Uk.
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Denote by D ′k the partition of X generated by Wk,Vk,1, . . . ,Vk,nk . Put

Dk = (C ∗k )L∗k ∨ (D ′k)Tk ∨
( nk∨
j=1

Sk,j ,L
†
k
P

)
∨ ⋃nk

j=1 Sk,j ,L
†
k
P ∨

L]k,Tk
P ∨ S,Lk

P.

Applying Lemma 4.6 first with S = S, W = Wk, Θ = Θk, Q = Qk, and D = Dk to get partitions
Qk,1 and Rk,1 and then again with S = S, W = Wk, Θ = Θk, Q = Qk,1, and D = (Rk,1)L∗kLk

,

we find finite Borel partitions Qk,1 and Qk,2 of Wk such that Qk � Qk,1 � Qk,2, and Dk � Rk,1

and (Rk,1)L∗kLk
� Rk,2, where for i = 1, 2 we set Θk(Bi) = Θk(B) for B ∈ Q and Bi in Qk,i

satisfying Bi ⊆ B, and Rk,i is the partition of X consisting of the sets gBi for Bi ∈ Qk,i and
g ∈ Θk(Bi). Denote by Q′k,1 the set of all B ∈ Qk,1 satisfying B ⊆ XS,L•k

, and denote by Q′k,2
the set of all B ∈ Qk,2 satisfying B ⊆ XS,Lk

. Denote by Λk the set consisting of the pairs (B, g)

for all B ∈ Q′k,2 and g ∈ Θk(B) \ {eG}.
Let 1 ≤ j ≤ nk. Put L†k,j = Γ(Sk,j , ε/2

`k,j ). Since L†k,j ⊆ L†k, we have
Sk,j ,L

†
k,j

P ⊆
Sk,j ,L

†
k
P.

Denote by Wk,j the finite partition of X consisting of X
Sk,j ,L

†
k,j
, X \X

Sk,j ,L
†
k
, and the elements

of
Sk,j ,L

†
k
P \

Sk,j ,L
†
k,j

P. Then Wk,j is coarser than
Sk,j ,L

†
k,j

W and
Sk,j ,L

†
k
P, and hence

Hµ(Wk,j) ≤ Hµ(
Sk,j ,L

†
k,j

W ) ≤ ε

2`k,j
.

By [25, Proposition 10.2] we can find an ηk,j > 0 such that for any large enough finite set V the
number of homomorphisms ϕ : alg(Wk,j) → PV satisfying

∑
A∈Wk,j

|m(ϕ(A)) − µ(A)| ≤ ηk,j is

at most e(Hµ(Wk,j)+ε/2
`k,j )|V | ≤ e2(ε/2

`k,j )|V |.
Take

0 < τ ′k ≤ min{κk/(100|Fk|3), τ̄k/(60|Fk|2)}
and

0 < δ′k ≤ min
{
κk/(10nk|Fk|), δ∗k/(50|L∗kL•k|(|S|+ 1)), τ ′k,

Ψ(ε)/2, min
1≤j≤nk

1/Υ(Sk,j), min
1≤j≤nk

ηk,j

}
.

Let Ak be a finite Borel partition of X refining

(Rk,2)
(L]k∪(L†k)Ck )2

∨
(L]k∪(L†k)Ck )2,Fk

P ∨ (Dk)(
⋃nk
j=1 Sk,j)

Ck .

Take mk ≥ k large enough so that

1

|Vmk |
log |Homµ(Ak, Fk, δ

′
k, πmk)|C ≥ hΠ,µ(Gy X,C )− ε

and so that πmk : G→ Sym(Vmk) is an (Fk, τ
′
k)-approximation for G.

Pick a subset Φ of Homµ(Ak, Fk, δ
′
k, πmk) such that different elements of Φ have different

restrictions to C and
|Φ| = |Homµ(Ak, Fk, δ

′
k, πmk)|C .

Take a maximal subset Φ1 of Φ which is (ρC ,Ψ(ε/|C |))-separated in the sense that ρC (ϕ,ψ) >

Ψ(ε/|C |) for all distinct ϕ,ψ ∈ Φ1. For each ϕ ∈ Φ1, if ψ ∈ Φ satisfies ρC (ϕ,ψ) ≤ Ψ(ε/|C |) then

for each A ∈ C the number of possibilities for ψ(A) is at most eε|Vmk |/|C | since m(ϕ(A)∆ψ(A)) ≤
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Ψ(ε/|C |). Thus for each ϕ ∈ Φ1 the number of ψ ∈ Φ satisfying ρC (ϕ,ψ) ≤ Ψ(ε/|C |) is at most

eε|Vmk |. Therefore

|Φ| ≤ |Φ1|eε|Vmk |.
For every 1 ≤ j ≤ nk and ϕ ∈ Φ1 we have

m(ϕ(Vk,j)) ≤ µ(Vk,j) + δ′k ≤
1

Υ(Sk,j)
+ δ′k ≤

2

Υ(Sk,j)
≤ Ψ(ε/(2`k,j |

Sk,j ,L
†
k,j

P|)).

Thus for every 1 ≤ j ≤ nk and D ∈
Sk,j ,L

†
k,j

P, the number of possibilities for ϕ(Vk,j ∩D) for

ϕ ∈ Φ1 is at most e
ε|Vmk |/(2

`k,j |
Sk,j ,L

†
k,j

P|)
. We can then find a subset Φ2 of Φ1 such that for

every 1 ≤ j ≤ nk and D ∈
Sk,j ,L

†
k,j

P the set ϕ(Vk,j ∩D) is the same for all ϕ ∈ Φ2 and

|Φ1| ≤ |Φ2|
nk∏
j=1

eε|Vmk |/2
`k,j ≤ |Φ2|eε|Vmk |.

In particular, the sets ϕ(Vk,j) for 1 ≤ j ≤ nk are the same for all ϕ ∈ Φ2.
Since Υ ≥ 2/Ψ(ε), for each ϕ ∈ Φ2 we have

m(ϕ(Wk)) ≤ µ(Wk) + δ′k ≤
nk∑
j=1

µ(Vk,j) + δ′k ≤
Ψ(ε)

2
+ δ′k ≤ Ψ(ε).

Thus the number of possibilities of ϕ(Wk) for ϕ ∈ Φ2 is at most eε|Vmk |. It follows that there is
a subset Φ3 of Φ2 such that ϕ(Wk) is the same for all ϕ ∈ Φ3 and

|Φ2| ≤ |Φ3|eε|Vmk |.

For each 1 ≤ j ≤ nk, since δ′k ≤ ηk,j the number of possibilities for ϕ|Wk,j for ϕ ∈ Φ3 is at most

e2(ε/2
`k,j )|Vmk |. Thus there is a subset Φ4 of Φ3 such that for each 1 ≤ j ≤ nk the restriction

ϕ|Wk,j is the same for all ϕ ∈ Φ4 and

|Φ3| ≤ |Φ4|
nk∏
j=1

e2(ε/2
`k,j )|Vmk | ≤ |Φ4|e2ε|Vmk |.

Note that the set ϕ(Wk) is the same for all ϕ ∈ Φ4, and for every 1 ≤ j ≤ nk and D ∈
Sk,j ,L

†
k
P

the set ϕ(Vk,j ∩D) is the same for all ϕ ∈ Φ4.

Fix a ϕ0 ∈ Φ4. For each t ∈ (L]k ∪ (L†k)
Ck)2 take a map σ′k,t : Vmk → Vmk such that

σ′k,tv = πmk,λ(t,A)v

for all A ∈
(L]k∪(L†k)Ck )2,Fk

P and v ∈ ϕ0(A). Applying Lemma 4.2 with L = L]k ∪ (L†k)
Ck ,

τ = τ̄k, F
\ = F \k, F = Fk, τ

′ = τ ′k, π = πmk , σ′ = σ′k, and ϕ being the restriction of ϕ0 to

alg((
(L]k∪(L†k)Ck )2,Fk

P)Fk), we find an (L]k ∪ (L†k)
Ck , τ̄k)-approximation σk : H → Sym(Vmk) for

H such that ρHamm(σk,t, σ
′
k,t) ≤ τ̄k/5 for all t ∈ (L]k ∪ (L†k)

Ck)2.
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Let ϕ ∈ Φ4. Define ϕ̃′ : Rk,2 → PVmk by ϕ̃′(B) = ϕ(B) for all B ∈ Qk,2, ϕ̃′(gB) = ∅ for all

B ∈ Qk,2 \Q′k,2 and g ∈ Θk(B) \ {eG}, and

ϕ̃′(gB) = σk,κ(g,B)ϕ(B)

for all (B, g) ∈ Λk. Extend ϕ̃′ to a map alg(Rk,2)→ PVmk by setting ϕ̃′(D) =
⋃
A∈Rk,2,A⊆D ϕ̃

′(A)

for D ∈ alg(Rk,2). Applying Lemma 4.8 with C = C ∗k , L = L∗k, δ = δ∗k, S = S, L• = L•k, L = Lk,

T = Tk, C = Ck, n = nk, Sj = Sk,j , W = Wk, Vj = Vk,j , L
† = L†k, τ̄ = τ̄k, F = Fk, Q1 = Qk,1,

Q2 = Qk,2, Θ = Θk, τ
′ = τ ′k, δ

′ = δ′k, A = Ak, π = πmk , ϕ = ϕ, ϕ0 = ϕ0, and σ = σk, by our
choice of Φ4 we have ∑

(B,g)∈Λk

m(ϕ̃′(gB) ∩ ϕ(Wk)) ≤
δ∗k
40
,

∑
(B,g),(B′,g′)∈Λk,

(B,g)6=(B′,g′)

m(ϕ̃′(gB) ∩ ϕ̃′(g′B′)) ≤
δ∗k
40
,

and ∑
B∈Q′k,1

∑
t∈L∗kL

•
k

m(ϕ̃′(tB)∆σk,tϕ(B)) ≤
δ∗k
20
.

Applying Lemma 4.7 with C = C ∗k , L = L∗k, δ = δ∗k, S = S, W = Wk, L
• = L•k, L = Lk,

Q1 = Qk,1, Q2 = Qk,2, Θ = Θk, A = Ak, ϕ = ϕ, δ′ = δ′k, τ̄ = τ̄k, and σ = σk, we
find a homomorphism ϕ̃ : alg(Rk,2) → PVmk such that ϕ̃(B) = ϕ(B) for every B ∈ Qk,2

and
∑

A∈Rk,2
m(ϕ̃(A)∆ϕ̃′(A)) ≤ δ∗k/5. Furthermore, the restriction of ϕ̃ to alg((C ∗k )L∗k) lies in

Homµ(C ∗k , L
∗
k, δ
∗
k, σk).

For any distinct ϕ,ψ in Φ4, applying Lemma 4.5 with C = C , S = S, W = Wk, L = L[,
Q = Qk, π = πmk , σ = σk, δ = δ∗k, and δ′ = δ′k we have

Ψ(ε/|C |) ≤ ρC (ϕ,ψ)

≤ 2(δ∗k + δ′k)|S|+ 2δ∗k|S| · |L[|+ 2|S|3µ(X \XS2,L[)

+ |S| · |L[|ρC∨
S2,L[

P(ϕ̃, ψ̃)

≤ 4

5
Ψ(ε/|C |) + |S| · |L[|ρC∨

S2,L[
P(ϕ̃, ψ̃),

and hence

ρC∨
S2,L[

P(ϕ̃, ψ̃) ≥ ε′ := Ψ(ε/|C |)
5|S| · |L[|

.

Thus

1

|Vmk |
log |Homµ(C ∨ S2,L[P ∨Uk, Lk, δk, σk)|C∨

S2,L[
P

≥ 1

|Vmk |
log |Homµ(C ∗k , L

∗
k, δ
∗
k, σk)|C∨

S2,L[
P
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≥ 1

|Vmk |
log |Φ4|

≥ 1

|Vmk |
log |Φ| − 5ε

≥ hΠ,µ(Gy X,C )− 6ε.

Since Lk ⊆ L]k and τ̄k ≤ τk for every k ∈ N, the sequence Σ = {σk}k∈N is a sofic approximation

sequence for H. Set C [ = C ∨ S2,L[P. For any finite partition U of X contained in the algebra

generated by
⋃
k∈N Uk, any L ∈ F(H) containing eH , and any δ > 0, we have U � Uk, L ⊆ Lk,

and δ > δk for all large enough k, and hence

hΣ,µ(C [,C [ ∨U , L, δ)

= lim
k→∞

1

|Vmk |
log |Homµ(C [ ∨U , L, δ, σk)|C [

≥ lim
k→∞

1

|Vmk |
log |Homµ(C ∨ S2,L[P ∨Uk, Lk, δk, σk)|C∨

S2,L[
P

≥ hΠ,µ(Gy X,C )− 6ε.

Since the algebra generated by
⋃
k∈N Uk is dense in the Borel σ-algebra of X with respect to

the pseudometric d(A,B) = µ(A∆B), by [25, Lemma 10.13] we conclude that

hΣ,µ(H y X,C [) ≥ hΠ,µ(Gy X,C )− 6ε,

as desired. �

Remark 4.9. Theorem 4.1, and hence also Theorem A, actually uses only that κ is Shannon,
not that λ is Shannon.
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