
Probability and dynamics

Seminar, SoSe 2024

This seminar will treat some ideas and results at the intersection of probability and dynam-
ics, organized around the themes of entropy, percolation, and the geometry of groups. Basic
references are the books [6] and [7]. The following are proposed topics:

(1) basic ergodic theory: p.m.p. actions, ergodicity, mixing, Bernoulli actions (§2.1-2.3 of
[6])

(2) amenability, soficity, and property (T) (including Glasner–Weiss dynamical-probabilistic
characterization [4]) for discrete groups (§4.1, 5.1, 10.2 of [6]; [1])

(3) measure entropy for p.m.p. actions of amenable and sofic groups (§9.1-9.5, 10.1, 10.3 of
[6])

(4) sofic generator theorem, computation of sofic entropy for Bernoulli actions via second
moment method (§10.4, 10.5 of [6])

(5) Bernoulli bond percolation: first and second moment methods, critical probability, ex-
ample of trees (§5.2, 5.3 of [7])

(6) number of infinite clusters in Bernoulli percolation, amenability implies at most one
infinite cluster (§7.3 of [7])

(7) nonamenability and pc < pu ([8] and §7.7 of [7])
(8) characterization of amenability in terms of invariant percolation (Theorem 1.1 of [2];

makes use of the mass-transport principle: §8.1 in [7])
(9) Gaboriau–Lyons theorem: nonamenable groups measurably contain free groups [3]

(10) Hutchcroft–Pete theorem: property (T) groups have cost one [5] (makes use of the mass-
transport principle: §8.1 of [7])
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