

Frobenius homomorphisms in higher algebra

Thomas Nikolaus

International Congress of Mathematicians 2022

living.knowledge

<u>Goal</u>: Compute K-group $K_*(R)$ for R ring

<u>Goal</u>: Compute K-group $K_*(R)$ for R ring

Theorem (Quillen '72)

$$K_*(\mathbb{Z}/p) = \begin{cases} \mathbb{Z} & * = 0 \\ \mathbb{Z}/(p^i - 1) & * = 2i - 1 \\ 0 & else \end{cases}$$

<u>Goal</u>: Compute K-group $K_*(R)$ for R ring

Theorem (Quillen '72)

$$K_*(\mathbb{Z}/p) = \begin{cases} \mathbb{Z} & * = 0 \\ \mathbb{Z}/(p^i - 1) & * = 2i - 1 \\ 0 & else \end{cases}$$

Question: What about $K_*(\mathbb{Z}/p^k)$?

<u>Goal</u>: Compute K-group $K_*(R)$ for R ring

Theorem (Quillen '72)

$$K_*(\mathbb{Z}/p) = \begin{cases} \mathbb{Z} & * = 0 \\ \mathbb{Z}/(p^i - 1) & * = 2i - 1 \\ 0 & else \end{cases}$$

<u>Question:</u> What about $K_*(\mathbb{Z}/p^k)$? Only known for $* \leq 2p-2$ (Angeltveit '11)

<u>Goal</u>: Compute K-group $K_*(R)$ for R ring

Theorem (Quillen '72)

$$K_*(\mathbb{Z}/p) = \begin{cases} \mathbb{Z} & * = 0 \\ \mathbb{Z}/(p^i - 1) & * = 2i - 1 \\ 0 & else \end{cases}$$

Question: What about $K_*(\mathbb{Z}/p^k)$? Only known for $* \leq 2p-2$ (Angeltveit '11)

Theorem (Antieau–N.–Krause '22)

1. For $i \gg 0$

$$\begin{split} & K_{2i-2}(\mathbb{Z}/p^k) = 0 \\ & \# K_{2i-1}(\mathbb{Z}/p^k) = (p^i-1)p^{i(k-1)} \end{split}$$

$$\left(i \geqslant \frac{p^2(p^k - 1)}{(p - 1)^2}\right)$$

<u>Goal</u>: Compute K-group $K_*(R)$ for R ring

Theorem (Quillen '72)

$$K_*(\mathbb{Z}/p) = \begin{cases} \mathbb{Z} & * = 0 \\ \mathbb{Z}/(p^i - 1) & * = 2i - 1 \\ 0 & else \end{cases}$$

<u>Question</u>: What about $K_*(\mathbb{Z}/p^k)$? Only known for $* \leq 2p-2$ (Angeltveit '11)

Theorem (Antieau–N.–Krause '22)

1. For $i\gg 0$ $K_{2i-2}(\mathbb{Z}/p^k)=0$ $\#K_{2i-1}(\mathbb{Z}/p^k)=(p^i-1)p^{i(k-1)}$

 $\left(\mathfrak{i}\geqslant \frac{p^2(p^k-1)}{(p-1)^2}\right)$

2. There is an explicit algorithm computing $K_*(\mathbb{Z}/p^k)$

R :	$\mathbb{Z}/4$	$\mathbb{Z}/8$	$\mathbb{Z}/16$	ℤ/32
Κ1	21	2 ¹ , 2 ¹	2 ¹ , 2 ²	2 ¹ , 2 ³
K ₂	2 ¹	2 ¹	2 ¹	2 ¹
K ₃	2 ³	2 ³ , 2 ²	2 ³ , 2 ⁴	2 ³ , 2 ⁶
K4	0	2^{1}	2 ²	2 ³
K_5	2 ³	2 ¹ , 2 ⁶	$2^1, 2^1, 2^9$	2 ¹ , 2 ² , 2 ¹²
K_6	0	0	2 ¹	2 ¹
K_7	2 ¹ , 2 ³	2 ⁴ , 2 ⁴	2 ¹ , 2 ⁴ , 2 ⁸	2^1 , 2^1 , 2^4 , 2^{11}
K_8	0	0	2 ¹	2 ²
K ₉	$2^1, 2^1, 2^3$	2 ¹ , 2 ¹ , 2 ² , 2 ² , 2 ⁴	2^1 , 2^1 , 2^2 , 2^{12}	2^1 , 2^1 , 2^1 , 2^2 , 2^{17}
K_{10}	0	0	0	2 ¹
K_{11}	2 ¹ , 2 ⁵	$2^1, 2^1, 2^1, 2^1, 2^2, 2^2, 2^5$	2^3 , 2^3 , 2^{12}	2^1 , 2^3 , 2^5 , 2^{16}
K_{12}	0	0	0	2 ¹
K_{13}	$2^1, 2^2, 2^4$	2^1 , 2^1 , 2^1 , 2^1 , 2^2 , 2^3 , 2^5	$2^1, 2^1, 2^1, 2^1, 2^3, 2^{15}$	2^1 , 2^1 , 2^1 , 2^1 , 2^1 , 2^3 , 2^{22}
K_{14}	0	0	0	2 ¹
K_{15}	2^1 , 2^1 , 2^1 , 2^5	2^1 , 2^1 , 2^1 , 2^1 , 2^2 , 2^2 , 2^3 , 2^5	$2^1, 2^1, 2^2, 2^5, 2^{15}$	2^1 , 2^1 , 2^2 , 2^3 , 2^5 , 2^{21}
K_{16}	0	0	0	2 ¹
K ₁₇	2^1 , 2^1 , 2^1 , 2^3 , 2^3	2 ¹ , 2 ¹ , 2 ² , 2 ² , 2 ³ , 2 ⁹	2 ¹ , 2 ² , 2 ² , 2 ² , 2 ³ , 2 ¹⁷	2 ¹ , 2 ¹ , 2 ² , 2 ² , 2 ² , 2 ³ , 2 ²⁶
K_{18}	0	0	0	0
K ₁₉	2 ² , 2 ³ , 2 ⁵	2 ¹ , 2 ³ , 2 ⁴ , 2 ¹²	2 ³ , 2 ³ , 2 ⁴ , 2 ²⁰	2 ³ , 2 ³ , 2 ³ , 2 ⁴ , 2 ²⁷

R :	$\mathbb{Z}/4$	$\mathbb{Z}/8$	ℤ/16	ℤ/32
K ₁	2^{1}	$2^{1}, 2^{1}$	$\mathbf{2^1}$, $\mathbf{2^2}$	2^1 , 2^3
K_2	2^1	2^1	2^1	2^1
K ₃	2 ³	2 ³ , 2 ²	2 ³ , 2 ⁴	2 ³ , 2 ⁶
K4	0	2^{1}	2 ²	2 ³
K_5	2 ³	2 ¹ , 2 ⁶	$2^1, 2^1, 2^9$	$2^1, 2^2, 2^{12}$
K_6	0	0	2 ¹	21
K_7	2 ¹ , 2 ³	2 ⁴ , 2 ⁴	$2^1, 2^4, 2^8$	$2^1, 2^1, 2^4, 2^{11}$
K_8	0	0	2 ¹	2 ²
K_9	$2^1, 2^1, 2^3$	2 ¹ , 2 ¹ , 2 ² , 2 ² , 2 ⁴	$2^1, 2^1, 2^2, 2^{12}$	$2^1, 2^1, 2^1, 2^1, 2^2, 2^{17}$
K_{10}	0	0	0	21
K_{11}	2 ¹ , 2 ⁵	2^1 , 2^1 , 2^1 , 2^2 , 2^2 , 2^5	2^3 , 2^3 , 2^{12}	2 ¹ , 2 ³ , 2 ⁵ , 2 ¹⁶
K_{12}	0	0	0	21
K_{13}	$2^1, 2^2, 2^4$	2^1 , 2^1 , 2^1 , 2^1 , 2^2 , 2^3 , 2^5	2^1 , 2^1 , 2^1 , 2^3 , 2^{15}	2^1 , 2^1 , 2^1 , 2^1 , 2^1 , 2^3 , 2^{22}
K_{14}	0	0	0	21
K_{15}	2^1 , 2^1 , 2^1 , 2^5	$2^1, 2^1, 2^1, 2^1, 2^1, 2^2, 2^2, 2^3, 2^5$	2^1 , 2^1 , 2^2 , 2^5 , 2^{15}	2^1 , 2^1 , 2^2 , 2^3 , 2^5 , 2^{21}
K_{16}	0	0	0	2 ¹
K_{17}	2 ¹ , 2 ¹ , 2 ¹ , 2 ³ , 2 ³	2 ¹ , 2 ¹ , 2 ² , 2 ² , 2 ³ , 2 ⁹	2 ¹ , 2 ² , 2 ² , 2 ² , 2 ³ , 2 ¹⁷	2 ¹ , 2 ¹ , 2 ² , 2 ² , 2 ² , 2 ³ , 2 ²⁶
K_{18}	0	0	0	0
K_{19}	2 ² , 2 ³ , 2 ⁵	2 ¹ , 2 ³ , 2 ⁴ , 2 ¹²	2 ³ , 2 ³ , 2 ⁴ , 2 ²⁰	2 ³ , 2 ³ , 2 ³ , 2 ⁴ , 2 ²⁷

Thomas Nikolaus

R :	$\mathbb{Z}/4$	$\mathbb{Z}/8$	$\mathbb{Z}/16$	ℤ/32
Κ1	21	2 ¹ , 2 ¹	2 ¹ , 2 ²	2 ¹ , 2 ³
K_2	2 ¹	2 ¹	2 ¹	2 ¹
K_3	2 ³	2 ³ , 2 ²	2 ³ , 2 ⁴	2 ³ , 2 ⁶
K4	0	2 ¹	2 ²	2 ³
K_5	2 ³	2 ¹ , 2 ⁶	$2^1, 2^1, 2^9$	2 ¹ , 2 ² , 2 ¹²
K_6	0	0	2 ¹	2^{1}
K_7	2 ¹ , 2 ³	2 ⁴ , 2 ⁴	$2^1, 2^4, 2^8$	2^1 , 2^1 , 2^4 , 2^{11}
K_8	0	0	2 ¹	2 ²
K_9	$2^1, 2^1, 2^3$	2 ¹ , 2 ¹ , 2 ² , 2 ² , 2 ⁴	2^1 , 2^1 , 2^2 , 2^{12}	2^1 , 2^1 , 2^1 , 2^2 , 2^{17}
K_{10}	0	0	0	2^{1}
K_{11}	2 ¹ , 2 ⁵	$2^1, 2^1, 2^1, 2^1, 2^2, 2^2, 2^5$	2 ³ , 2 ³ , 2 ¹²	2 ¹ , 2 ³ , 2 ⁵ , 2 ¹⁶
K_{12}	0	0	0	2^{1}
K_{13}	$2^1, 2^2, 2^4$	2^1 , 2^1 , 2^1 , 2^1 , 2^2 , 2^3 , 2^5	2^1 , 2^1 , 2^1 , 2^3 , 2^{15}	2^1 , 2^1 , 2^1 , 2^1 , 2^3 , 2^{22}
K_{14}	0	0	0	2^{1}
K_{15}	2^1 , 2^1 , 2^1 , 2^5	$2^1, 2^1, 2^1, 2^1, 2^1, 2^2, 2^2, 2^3, 2^5$	$2^1, 2^1, 2^2, 2^5, 2^{15}$	2^1 , 2^1 , 2^2 , 2^3 , 2^5 , 2^{21}
K_{16}	0	0	0	2 ¹
K_{17}	2 ¹ , 2 ¹ , 2 ¹ , 2 ³ , 2 ³	2^1 , 2^1 , 2^2 , 2^2 , 2^3 , 2^9	$2^1, 2^2, 2^2, 2^2, 2^3, 2^{17}$	2^1 , 2^1 , 2^2 , 2^2 , 2^2 , 2^3 , 2^{26}
K_{18}	0	0	0	0

R :	$\mathbb{Z}/4$	$\mathbb{Z}/8$	$\mathbb{Z}/16$	ℤ/32
K_1	21	$2^1, 2^1$	2 ¹ , 2 ²	2 ¹ , 2 ³
K_2	2 ¹	2 ¹	2 ¹	2 ¹
K_3	2 ³	2 ³ , 2 ²	2 ³ , 2 ⁴	2 ³ , 2 ⁶
K_4	0	2 ¹	2 ²	2 ³
K_5	2 ³	2 ¹ , 2 ⁶	$2^1, 2^1, 2^9$	2 ¹ , 2 ² , 2 ¹²
K_6	0	0	2 ¹	2 ¹
K_7	2 ¹ , 2 ³	2 ⁴ , 2 ⁴	2 ¹ , 2 ⁴ , 2 ⁸	$2^1, 2^1, 2^4, 2^{11}$
K_8	0	0	2 ¹	2 ²
K_9	$2^1, 2^1, 2^3$	2 ¹ , 2 ¹ , 2 ² , 2 ² , 2 ⁴	2^1 , 2^1 , 2^2 , 2^{12}	2^1 , 2^1 , 2^1 , 2^2 , 2^{17}
K_{10}	0	0	0	2 ¹
K_{11}	2 ¹ , 2 ⁵	$2^1, 2^1, 2^1, 2^2, 2^2, 2^5$	2^3 , 2^3 , 2^{12}	2^1 , 2^3 , 2^5 , 2^{16}
K_{12}	0	0	0	2^{1}
K_{13}	2^1 , 2^2 , 2^4	2^1 , 2^1 , 2^1 , 2^1 , 2^2 , 2^3 , 2^5	2^1 , 2^1 , 2^1 , 2^3 , 2^{15}	2^1 , 2^1 , 2^1 , 2^1 , 2^3 , 2^{22}
K_{14}	0	0	0	2 ¹
K_{15}	2^1 , 2^1 , 2^1 , 2^5	$2^1, 2^1, 2^1, 2^1, 2^1, 2^2, 2^2, 2^3, 2^5$	2^1 , 2^1 , 2^2 , 2^5 , 2^{15}	2^1 , 2^1 , 2^2 , 2^3 , 2^5 , 2^{21}
K_{16}	0	0	0	2 ¹
K_{17}	2 ¹ , 2 ¹ , 2 ¹ , 2 ³ , 2 ³	2 ¹ , 2 ¹ , 2 ² , 2 ² , 2 ³ , 2 ⁹	2 ¹ , 2 ² , 2 ² , 2 ² , 2 ³ , 2 ¹⁷	2 ¹ , 2 ¹ , 2 ² , 2 ² , 2 ² , 2 ³ , 2 ²⁶
K_{18}	0	0	0	0
K_{19}	$2^2, 2^3, 2^5$	2 ¹ , 2 ³ , 2 ⁴ , 2 ¹²	2 ³ , 2 ³ , 2 ⁴ , 2 ²⁰	2 ³ , 2 ³ , 2 ³ , 2 ⁴ , 2 ²⁷

Idea Use trace methods: K_{*}(R) ↓ TC_{*}(R) ↓ THH_{*}(R)

Thomas Nikolaus

Algebraic Topology: study invariants of spaces, e.g. $H_*(M,\mathbb{Z})$

Algebraic Topology: study invariants of spaces, e.g. $H_*(M, \mathbb{Z})$

Example

■ $S^n \not\simeq S^m$ for $n \neq m$, since $H_*(S^n, \mathbb{Z}) \not\simeq H_*(S^m, \mathbb{Z})$ as groups

Algebraic Topology: study invariants of spaces, e.g. $H_*(M, \mathbb{Z})$

Example

 $\label{eq:snder} \begin{array}{l} & \mathbb{S}^n \not\simeq \mathbb{S}^m \text{ for } n \neq m \text{, since } \mathbb{H}_*(\mathbb{S}^n,\mathbb{Z}) \not\simeq \mathbb{H}_*(\mathbb{S}^m,\mathbb{Z}) \text{ as groups} \\ & \mathbb{C}\mathsf{P}^2 \simeq \mathbb{S}^2 \vee \mathbb{S}^4 ? \end{array}$

Algebraic Topology: study invariants of spaces, e.g. $H_*(M, \mathbb{Z})$

Example

■ $S^n \not\simeq S^m$ for $n \neq m$, since $H_*(S^n, \mathbb{Z}) \not\simeq H_*(S^m, \mathbb{Z})$ as groups ■ $\mathbb{C}P^2 \not\simeq S^2 \lor S^4$, since $H^*(\mathbb{C}P^2, \mathbb{Z}) \not\simeq H^*(S^2 \lor S^4, \mathbb{Z})$ as rings

Algebraic Topology: study invariants of spaces, e.g. $H_*(M, \mathbb{Z})$

Example

- $\blacksquare~S^n \not\simeq S^m$ for $n \neq m$, since $H_*(S^n,\mathbb{Z}) \not\simeq H_*(S^m,\mathbb{Z})$ as groups
- $\mathbb{C}P^2 \not\simeq S^2 \lor S^4$, since $H^*(\mathbb{C}P^2, \mathbb{Z}) \not\simeq H^*(S^2 \lor S^4, \mathbb{Z})$ as rings
- $\blacksquare \Sigma \mathbb{C} \mathbb{P}^2 \simeq \mathbb{S}^3 \vee \mathbb{S}^5?$

Algebraic Topology: study invariants of spaces, e.g. $H_*(M, \mathbb{Z})$

Example

- $\blacksquare S^n \not\simeq S^m \text{ for } n \neq m \text{, since } H_*(S^n, \mathbb{Z}) \not\simeq H_*(S^m, \mathbb{Z}) \text{ as groups}$
- $\mathbb{C}P^2 \not\simeq S^2 \lor S^4$, since $H^*(\mathbb{C}P^2, \mathbb{Z}) \not\simeq H^*(S^2 \lor S^4, \mathbb{Z})$ as rings
- $\blacksquare \Sigma \mathbb{C}P^2 \not\simeq S^3 \vee S^5$, since $H^*(\Sigma \mathbb{C}P^2, \mathbb{F}_2) \not\simeq H^*(\Sigma \mathbb{C}P^2, \mathbb{F}_2)$ as rings with Steenrod action

Algebraic Topology: study invariants of spaces, e.g. $H_*(M, \mathbb{Z})$

Example

- $S^n \not\simeq S^m$ for $n \neq m$, since $H_*(S^n, \mathbb{Z}) \not\simeq H_*(S^m, \mathbb{Z})$ as groups
- $\mathbb{C}P^2 \not\simeq S^2 \vee S^4$, since $H^*(\mathbb{C}P^2, \mathbb{Z}) \not\simeq H^*(S^2 \vee S^4, \mathbb{Z})$ as rings
- $\blacksquare \Sigma \mathbb{C}\mathsf{P}^2 \not\simeq S^3 \vee S^5 \text{, since } \mathsf{H}^*(\Sigma \mathbb{C}\mathsf{P}^2, \mathbb{F}_2) \not\simeq \mathsf{H}^*(\Sigma \mathbb{C}\mathsf{P}^2, \mathbb{F}_2) \text{ as rings with Steenrod action}$

<u>Ultimate invariant</u>: $C^*(M, \mathbb{Z})$ as an \mathbb{E}_{∞} -ring

Algebraic Topology: study invariants of spaces, e.g. $H_*(M, \mathbb{Z})$

Example

- $S^n \not\simeq S^m$ for $n \neq m$, since $H_*(S^n, \mathbb{Z}) \not\simeq H_*(S^m, \mathbb{Z})$ as groups
- $\mathbb{C}P^2 \not\simeq S^2 \lor S^4$, since $H^*(\mathbb{C}P^2, \mathbb{Z}) \not\simeq H^*(S^2 \lor S^4, \mathbb{Z})$ as rings
- $\blacksquare \Sigma \mathbb{C}\mathsf{P}^2 \not\simeq S^3 \vee S^5 \text{, since } \mathsf{H}^*(\Sigma \mathbb{C}\mathsf{P}^2, \mathbb{F}_2) \not\simeq \mathsf{H}^*(\Sigma \mathbb{C}\mathsf{P}^2, \mathbb{F}_2) \text{ as rings with Steenrod action}$

<u>Ultimate invariant</u>: $C^*(M, \mathbb{Z})$ as an \mathbb{E}_{∞} -ring

Theorem (Mandell '06)

 $\begin{array}{l} C^*(M,\mathbb{Z})\simeq C^*(N,\mathbb{Z}) \text{ as } \mathbb{E}_\infty\text{-rings over } \mathbb{Z} \\ \Rightarrow M\simeq N \end{array}$

(M, N simply-connected, finite type)

Algebraic Topology: study invariants of spaces, e.g. $H_*(M, \mathbb{Z})$

Example

- $S^n \not\simeq S^m$ for $n \neq m$, since $H_*(S^n, \mathbb{Z}) \not\simeq H_*(S^m, \mathbb{Z})$ as groups
- $\mathbb{C}P^2 \not\simeq S^2 \vee S^4$, since $H^*(\mathbb{C}P^2, \mathbb{Z}) \not\simeq H^*(S^2 \vee S^4, \mathbb{Z})$ as rings
- $\blacksquare \Sigma \mathbb{C}\mathsf{P}^2 \not\simeq S^3 \vee S^5 \text{, since } \mathsf{H}^*(\Sigma \mathbb{C}\mathsf{P}^2, \mathbb{F}_2) \not\simeq \mathsf{H}^*(\Sigma \mathbb{C}\mathsf{P}^2, \mathbb{F}_2) \text{ as rings with Steenrod action}$

<u>Ultimate invariant</u>: $C^*(M, \mathbb{Z})$ as an \mathbb{E}_{∞} -ring

Theorem (Mandell '06)

 $\begin{array}{l} C^*(M,\mathbb{Z})\simeq C^*(N,\mathbb{Z}) \text{ as } \mathbb{E}_\infty\text{-rings over } \mathbb{Z} \\ \Rightarrow M\simeq N \end{array}$

(M, N simply-connected, finite type)

Question: Is $C^*(-,\mathbb{Z})$ an equivalence between spaces and \mathbb{E}_{∞} -rings?

Algebraic Topology: study invariants of spaces, e.g. $H_*(M, \mathbb{Z})$

Example

- $S^n \not\simeq S^m$ for $n \neq m$, since $H_*(S^n, \mathbb{Z}) \not\simeq H_*(S^m, \mathbb{Z})$ as groups
- $\mathbb{C}P^2 \not\simeq S^2 \lor S^4$, since $H^*(\mathbb{C}P^2, \mathbb{Z}) \not\simeq H^*(S^2 \lor S^4, \mathbb{Z})$ as rings
- $\blacksquare \Sigma \mathbb{C}\mathsf{P}^2 \not\simeq S^3 \vee S^5 \text{, since } \mathsf{H}^*(\Sigma \mathbb{C}\mathsf{P}^2, \mathbb{F}_2) \not\simeq \mathsf{H}^*(\Sigma \mathbb{C}\mathsf{P}^2, \mathbb{F}_2) \text{ as rings with Steenrod action}$

<u>Ultimate invariant</u>: $C^*(M, \mathbb{Z})$ as an \mathbb{E}_{∞} -ring

Theorem (Mandell '06)

 $\begin{array}{l} C^*(M,\mathbb{Z})\simeq C^*(N,\mathbb{Z}) \text{ as } \mathbb{E}_\infty\text{-rings over } \mathbb{Z} \\ \Rightarrow M\simeq N \end{array}$

(M, N simply-connected, finite type)

<u>Question</u>: Is $C^*(-, \mathbb{Z})$ an equivalence between spaces and \mathbb{E}_{∞} -rings with some extra structure?

Algebraic Topology: study invariants of spaces, e.g. $H_*(M, \mathbb{Z})$

Example

- $S^n \not\simeq S^m$ for $n \neq m$, since $H_*(S^n, \mathbb{Z}) \not\simeq H_*(S^m, \mathbb{Z})$ as groups
- $\mathbb{C}P^2 \not\simeq S^2 \lor S^4$, since $H^*(\mathbb{C}P^2, \mathbb{Z}) \not\simeq H^*(S^2 \lor S^4, \mathbb{Z})$ as rings
- $\blacksquare \Sigma \mathbb{C}\mathsf{P}^2 \not\simeq S^3 \vee S^5 \text{, since } \mathsf{H}^*(\Sigma \mathbb{C}\mathsf{P}^2, \mathbb{F}_2) \not\simeq \mathsf{H}^*(\Sigma \mathbb{C}\mathsf{P}^2, \mathbb{F}_2) \text{ as rings with Steenrod action}$

<u>Ultimate invariant</u>: $C^*(M, \mathbb{Z})$ as an \mathbb{E}_{∞} -ring

Theorem (Mandell '06)

 $\begin{array}{l} C^*(M,\mathbb{Z})\simeq C^*(N,\mathbb{Z}) \text{ as } \mathbb{E}_\infty\text{-rings over } \mathbb{Z} \\ \Rightarrow M\simeq N \end{array}$

(M, N simply-connected, finite type)

<u>Question</u>: Is $C^*(-, \mathbb{Z})$ an equivalence between spaces and \mathbb{E}_{∞} -rings with some extra structure? <u>Answer</u>: Yes, \mathbb{E}_{∞} -rings with trivialized Frobenius (Mandell '01,...,Yuan '21)

The Frobenius homomorphism... ...in ordinary algebra

Commutative Frobenius

R commutative ring

$$\phi_p: R \to R/p \qquad \qquad r \mapsto [r^p]$$

Map of commutative rings

The Frobenius homomorphism... ...in ordinary algebra

Commutative Frobenius

R commutative ring

 $\phi_p: R \to R/p \qquad \qquad r \mapsto [r^p]$

Map of commutative rings

Associative Frobenius

R associative ring

The Frobenius homomorphism... ...in ordinary algebra

Commutative Frobenius

R commutative ring

 $\phi_p: R \to R/p \qquad \qquad r \mapsto [r^p]$

Map of commutative rings

Associative Frobenius

R associative ring

 $\phi_p: R/[R,R] \to (R/[R,R])/pR \qquad [r] \mapsto [r^p]$

Map of abelian groups

 $[R, R] \subseteq R$: subgroup generated by rs - sr

The Frobenius homomorphism... ... in ordinary & higher algebra

Commutative Frobenius

R commutative ring

 $\phi_p: R \to R/p \qquad \qquad r \mapsto [r^p]$

Map of commutative rings

Associative Frobenius

R associative ring

 $\phi_p: R/[R,R] \to (R/[R,R])/pR \qquad [r] \mapsto [r^p]$

Map of abelian groups

Tate valued Frobenius

R commutative ring spectrum

$$\phi_{\mathtt{p}}: R \to R^{t\,C_{\mathtt{p}}}$$

Map of commutative ring spectra

The Frobenius homomorphism... ... in ordinary & higher algebra

Commutative Frebenius	Tate valued Frebenius
Commutative Hobellius	Tate valueu riobennus
R commutative ring	R commutative ring spectrum
$\phi_p:R\to R/p \qquad \qquad r\mapsto [r^p]$	$\phi_{\mathtt{p}}: R \to R^{\mathtt{t}C_{\mathtt{p}}}$
Map of commutative rings	Map of commutative ring spectra
Associative Frobenius	Frobenius on THH
R associative ring	R associative ring spectrum
$\phi_p: R/[R,R] \to (R/[R,R])/pR \qquad [r] \mapsto [r^p]$	$\phi_{\mathfrak{p}}:THH(R)\toTHH(R)^{tC_{\mathfrak{p}}}$
Map of abelian groups	Map of spectra

The Tate construction

G finite group, M abelian group with G-action. Norm map

$$\operatorname{Nm}: \operatorname{M}_G \to \operatorname{M}^G$$

with $x \mapsto \sum_{g \in G} gx$

The Tate construction

G finite group, M abelian group with G-action. Norm map

$$Nm: M_G \to M^G$$

with $x \mapsto \sum_{g \in G} gx$

Definition

 $\textit{Consider} \quad M^G/_{Nm} = \text{coker}(M_G \to M^G)$

G finite group, M abelian group with G-action. Norm map

$$\mathsf{Nm}:\mathsf{M}_G\to\mathsf{M}^G$$

with $x \mapsto \sum_{g \in G} gx$

Definition

Consider $M^{G}_{Nm} = coker(M_{G} \rightarrow M^{G})$

Example

If $G = C_p$ acts trivially on M, then

$$M^{C_p}/_{Nm} \cong M/p$$

G finite group, M abelian group with G-action. Norm map

$$\mathsf{Nm}: \mathsf{M}_\mathsf{G} \to \mathsf{M}^\mathsf{G}$$

with $x\mapsto \sum_{g\in G}\,gx$

Definition

 $\textit{Consider} \quad M^G/_{Nm} = \text{coker}(M_G \to M^G)$

Example

If $G = C_p$ acts trivially on M, then

$$M^{C_p}/_{Nm} \cong M/p$$

G finite group, X spectrum with G-action. Norm map

$$\mathsf{Nm}: X_{hG} \to X^{hG}$$

from (homotopy) coinvariants to invariants.

6

G finite group, M	abelian g	group	with	G-action.
Norm map		-		

$$\mathsf{Nm}: \mathsf{M}_\mathsf{G} \to \mathsf{M}^\mathsf{G}$$

 $M^{G}/_{Nm} = coker(M_{G} \rightarrow M^{G})$

with $x\mapsto \sum_{g\in G}\,gx$

G finite group, X spectrum with G-action. Norm map

$$\mathsf{Nm}: X_{hG} \to X^{hG}$$

from (homotopy) coinvariants to invariants.

Definition

The Tate spectrum X^{tG} is the cofibre of the norm.

Example

Definition

Consider

If $G = C_p$ acts trivially on M, then

$$M^{C_p}/_{Nm} \cong M/p$$

G finite group, X spectrum with G-action.

Norm map
$Nm: X_{hG} \to X^{hG}$
from (homotopy) coinvariants to invariants.
Definition
The Tate spectrum X^{tG} is the cofibre of the norm.
Theorem (Lin '80, Gunawardena '80)
If X is finite spectrum, then
$X^{{\rm t}C_{p}}\simeq X_p^\wedge.$

Example

1. A abelian group. The map

$$\Delta_{\mathfrak{p}}: A \to (A \otimes_{\mathbb{Z}} \dots \otimes_{\mathbb{Z}} A)^{C_{\mathfrak{p}}}$$
$$a \mapsto (a \otimes \dots \otimes a)$$

is not additive.

Example

1. A abelian group. The map

$$\Delta_{p}: A \to (A \otimes_{\mathbb{Z}} ... \otimes_{\mathbb{Z}} A)^{C_{p}} /_{\mathsf{Nm}}$$
$$\mathfrak{a} \mapsto (\mathfrak{a} \otimes ... \otimes \mathfrak{a})$$

is additive!

7

Example

1. A abelian group. The map

$$\Delta_{\mathfrak{p}}: \mathcal{A} \to (\mathcal{A} \otimes_{\mathbb{Z}} ... \otimes_{\mathbb{Z}} \mathcal{A})^{C_{\mathfrak{p}}}/_{\mathsf{Nm}}$$
$$\mathfrak{a} \mapsto (\mathfrak{a} \otimes ... \otimes \mathfrak{a})$$

is additive!

2. If A is p-torsion then this map is an isomorphism.

Example

1. A abelian group. The map

$$\begin{split} \Delta_{p}: A \to (A \otimes_{\mathbb{Z}} ... \otimes_{\mathbb{Z}} A)^{C_{p}} /_{\mathsf{Nm}} \\ a \mapsto (a \otimes ... \otimes a) \end{split}$$

is additive!

2. If A is p-torsion then this map is an isomorphism.

Theorem (Rognes-Nielsen '10, N.-Scholze '17)

1. X a spectrum. There is a (unique) natural map

$$\Delta_p:X\to (X\otimes_{\mathbb{S}}...\otimes_{\mathbb{S}}X)^{t\,C_p}$$

which is lax symmetric monoidal.

Example

1. A abelian group. The map

$$\begin{split} \Delta_{p}: A \to (A \otimes_{\mathbb{Z}} ... \otimes_{\mathbb{Z}} A)^{C_{p}} /_{\mathsf{Nm}} \\ a \mapsto (a \otimes ... \otimes a) \end{split}$$

is additive!

2. If A is p-torsion then this map is an isomorphism.

Theorem (Rognes-Nielsen '10, N.-Scholze '17)

1. X a spectrum. There is a (unique) natural map

$$\Delta_p: X \to (X \otimes_{\mathbb{S}} ... \otimes_{\mathbb{S}} X)^{t \, C_p}$$

which is lax symmetric monoidal.

2. X p-complete, bounded below then this map is an equivalence.

Example

1. A abelian group. The map

 $\begin{array}{l} \Delta_p: A \to (A \otimes_{\mathbb{Z}} \ldots \otimes_{\mathbb{Z}} A)^{C_p} /_{\mathsf{Nm}} \\ a \mapsto (a \otimes \ldots \otimes a) \end{array}$

is additive!

2. If A is p-torsion then this map is an isomorphism.

Theorem (Rognes-Nielsen '10, N.-Scholze '17)

1. X a spectrum. There is a (unique) natural map

$$\Delta_p:X\to (X\otimes_{\mathbb{S}}\ldots\otimes_{\mathbb{S}}X)^{t\,C_p}$$

which is lax symmetric monoidal.

2. X p-complete, bounded below then this map is an equivalence.

Conjecture

G finite p-group, X p-complete, bounded below spectrum. Then the analogous map

 $\Delta_G:X\to \left(X^{\otimes_{\mathbb{S}} G}\right)^{\phi\,G}$

is an equivalence.

The Tate valued Frobenius

Example

R commutative ring. The Frobenius is the composite

$$R \xrightarrow{\Delta_{p}} (R \otimes_{\mathbb{Z}} ... \otimes_{\mathbb{Z}} R)^{C_{p}} /_{Nm} \xrightarrow{m} R^{C_{p}} /_{Nm} = R/p$$

The Tate valued Frobenius

Example

R commutative ring. The Frobenius is the composite

$$R \xrightarrow{\Delta_{p}} (R \otimes_{\mathbb{Z}} ... \otimes_{\mathbb{Z}} R)^{C_{p}} /_{\mathsf{Nm}} \xrightarrow{\mathsf{m}} R^{C_{p}} /_{\mathsf{Nm}} = R / p$$

Definition

R an $\mathbb{E}_\infty\text{-ring}.$ The Tate-valued Frobenius is the map of $\mathbb{E}_\infty\text{-ring}$ spectra

$$\varphi_{p}: R \xrightarrow{\Delta_{p}} (R \otimes_{\mathbb{S}} ... \otimes_{\mathbb{S}} R)^{tC_{p}} \xrightarrow{m^{tC_{p}}} R^{tC_{p}}$$

The Tate valued Frobenius

Example

R commutative ring. The Frobenius is the composite

$$R \xrightarrow{\Delta_{p}} (R \otimes_{\mathbb{Z}} ... \otimes_{\mathbb{Z}} R)^{C_{p}} /_{\mathsf{Nm}} \xrightarrow{\mathfrak{m}} R^{C_{p}} /_{\mathsf{Nm}} = R/p$$

Definition

R an $\mathbb{E}_\infty\text{-ring}.$ The Tate-valued Frobenius is the map of $\mathbb{E}_\infty\text{-ring}$ spectra

$$\varphi_{p}: R \xrightarrow{\Delta_{p}} (R \otimes_{\mathbb{S}} ... \otimes_{\mathbb{S}} R)^{tC_{p}} \xrightarrow{m^{tC_{p}}} R^{tC_{p}}$$

Example

If $R = C^*(M, \mathbb{F}_2)$ then ϕ_2 induces on π_* the map

$$H^*(M, \mathbb{F}_2) \to H^*(M, \mathbb{F}_2)((t)) \qquad x \mapsto \sum Sq^i(x)t^{-i}$$

Example

• If R is p-complete, finite spectrum, then $R^{tC_p} \simeq R \qquad \Rightarrow \qquad \phi_p: R \to R$

Example

- $\blacksquare R = C^*(M, \mathbb{S}_p^{\wedge}) \text{ for } M \text{ a finite space. Then } \phi_p \simeq \mathsf{id}_R.$

Example

If R is p-complete, finite spectrum, then
$$R^{tC_p} \simeq R \qquad \Rightarrow \qquad \phi_p: R \to R$$

$$\blacksquare$$
 R = C^{*}(M, S ^{\wedge} _p) for M a finite space. Then $\phi_p \simeq id_R$.

Theorem (Yuan '21)

$$C^{*}(-,\mathbb{S}): \quad \begin{cases} \text{finite, simply} \\ \text{conn. spaces} \end{cases} \xrightarrow{\simeq} \begin{cases} \text{finite } \mathbb{E}_{\infty}\text{-algebras } R \text{ with coherent trivializations} \\ \varphi_{p} \simeq \operatorname{id}_{R_{p}^{\wedge}} \text{ and } \widetilde{H}^{\mathfrak{i}}(R,\mathbb{Z}) = 0 \text{ for } \mathfrak{i} > -1. \end{cases}$$

Example

- $\label{eq:relation} \blacksquare \ R = C^*(M, \mathbb{S}_p^\wedge) \text{ for } M \text{ a finite space. Then } \phi_p \simeq \mathsf{id}_R.$

Theorem (Yuan '21)

$$C^{*}(-,\mathbb{S}): \quad \begin{cases} \text{finite, simply} \\ \text{conn. spaces} \end{cases} \xrightarrow{\simeq} \begin{cases} \text{finite } \mathbb{E}_{\infty}\text{-algebras } R \text{ with coherent trivializations} \\ \phi_{p} \simeq \text{id}_{R_{p}^{\wedge}} \text{ and } \widetilde{H}^{i}(R,\mathbb{Z}) = 0 \text{ for } i > -1. \end{cases}$$

Conjecture

$$(-,\mathbb{S}): \quad \begin{cases} simply \\ conn. \ spaces \end{cases} \xrightarrow{\simeq} \begin{cases} simply \ conn. \ \mathbb{E}_{\infty} \text{-}coalgebras \ C \ with \\ coherent \ trivializations \ \phi_p \simeq \operatorname{id}_{C_p^{\wedge}} \end{cases}$$

Q

The Frobenius homomorphism... ...in ordinary & higher algebra

Commutative Frobenius		Tate valued Frobenius
R commutative ring		R commutative ring spectrum
$\phi_{p}:R\to R/p \qquad \qquad r\mapsto [$	r ^p]	$\phi_{\mathtt{p}}: R \to R^{\mathtt{t}C_{\mathtt{p}}}$
Map of commutative rings		Map of commutative ring spectra
Associative Frobenius		Frobenius on THH
R associative ring		R associative ring spectrum
$\phi_{p}: R/[R,R] \rightarrow (R/[R,R])/pR \qquad [r] \mapsto [r]$	r ^p]	$\phi_{\mathfrak{p}}: THH(R) \to THH(R)^{tC_{\mathfrak{p}}}$
Map of abelian groups		Map of spectra

The Frobenius homomorphism... ... in ordinary & higher algebra

Commutative Frobenius	Tate valued Frobenius
R commutative ring	R commutative ring spectrum
$\phi_p: R \to R/p \qquad \qquad r \mapsto [r^p]$	$\varphi_{p}: R \to R^{tC_{p}}$
Map of commutative rings	Map of commutative ring spectra
Associative Frobenius	Frobenius on THH
R associative ring	R associative ring spectrum
$\phi_p: R/[R,R] \to (R/[R,R])/pR \qquad [r] \mapsto [r^p]$	$\phi_{\mathtt{p}}:THH(R)\toTHH(R)^{\mathtt{tC}_{\mathtt{p}}}$
Map of abelian groups	Map of spectra

Example

R associative ring, then

$$\mathbb{R}/[\mathbb{R},\mathbb{R}] = \mathbb{R} \otimes_{\mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R}^{op}} \mathbb{R}$$

as abelian groups.

Example

R associative ring, then

$$\mathbb{R}/[\mathbb{R},\mathbb{R}] = \mathbb{R} \otimes_{\mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R}^{op}} \mathbb{R}$$

as abelian groups.

Definition

R associative ring spectrum. Topological Hochschild homology is the spectrum

 $\mathsf{THH}(\mathsf{R}) = \mathsf{R} \otimes_{\mathsf{R} \otimes_{\mathbb{S}} \mathsf{R}^{\mathsf{op}}} \mathsf{R}$.

Example

R associative ring, then

$$\mathbb{R}/[\mathbb{R},\mathbb{R}] = \mathbb{R} \otimes_{\mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R}^{op}} \mathbb{R}$$

as abelian groups.

Definition

R associative ring spectrum. Topological Hochschild homology is the spectrum

 $\mathsf{THH}(\mathsf{R}) = \mathsf{R} \otimes_{\mathsf{R} \otimes_{\mathbb{S}} \mathsf{R}^{\mathsf{op}}} \mathsf{R}$.

Facts:

R commutative ring spectrum \Rightarrow THH(R) commutative ring spectrum

Example

R associative ring, then

$$\mathbb{R}/[\mathbb{R},\mathbb{R}] = \mathbb{R} \otimes_{\mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R}^{op}} \mathbb{R}$$

as abelian groups.

Definition

R associative ring spectrum. Topological Hochschild homology is the spectrum

 $\mathsf{THH}(\mathsf{R}) = \mathsf{R} \otimes_{\mathsf{R} \otimes_{\mathbb{S}} \mathsf{R}^{\mathsf{op}}} \mathsf{R}$.

Facts:

R commutative ring spectrum \Rightarrow THH(R) commutative ring spectrum

 \Rightarrow THH_{*}(R) := π_* (THH(R)) graded commutative ring

Example

R associative ring, then

$$\mathbb{R}/[\mathbb{R},\mathbb{R}] = \mathbb{R} \otimes_{\mathbb{R} \otimes_{\mathbb{Z}} \mathbb{R}^{op}} \mathbb{R}$$

as abelian groups.

Definition

R associative ring spectrum. Topological Hochschild homology is the spectrum

 $\mathsf{THH}(\mathsf{R}) = \mathsf{R} \otimes_{\mathsf{R} \otimes_{\mathbb{S}} \mathsf{R}^{\mathsf{op}}} \mathsf{R}$.

Facts:

R commutative ring spectrum \Rightarrow THH(R) commutative ring spectrum

 \Rightarrow THH_{*}(R) := π_* (THH(R)) graded commutative ring

There is an S^1 -action on THH(R) (Connes '83)

Example

R associative ring, then

$$R/[R, R] = R \otimes_{R \otimes_{\mathbb{Z}} R^{op}} R$$

as abelian groups.

Definition

R associative ring spectrum. Topological Hochschild homology is the spectrum

 $\mathsf{THH}(\mathsf{R}) = \mathsf{R} \otimes_{\mathsf{R} \otimes_{\mathbb{S}} \mathsf{R}^{\mathsf{op}}} \mathsf{R}$.

Facts:

R commutative ring spectrum \Rightarrow THH(R) commutative ring spectrum

 $\Rightarrow \mathsf{THH}_*(\mathsf{R}) := \pi_*(\mathsf{THH}(\mathsf{R}))$ graded commutative ring

There is an S^1 -action on THH(R) (Connes '83)

Theorem (Bökstedt '85)

There is an isomorphism

$$\mathsf{THH}_*(\mathbb{F}_p) \cong \mathbb{F}_p[\mathbf{x}] \qquad |\mathbf{x}| = 2$$

Proposition (Bökstedt-Hsiang-Madsen '93,...,N.-Scholze '17)

For every prime p there is a S¹-equivariant map of spectra

 $\phi_{\mathfrak{p}}: \mathsf{THH}(R) \to \mathsf{THH}(R)^{t\,C_{\mathfrak{p}}}$

Proposition (Bökstedt-Hsiang-Madsen '93,...,N.-Scholze '17)

For every prime p there is a S¹-equivariant map of spectra

 $\phi_{p}: \mathsf{THH}(R) \to \mathsf{THH}(R)^{tC_{p}}$

Constructed from the Tate-diagonal

Proposition (Bökstedt-Hsiang-Madsen '93,...,N.-Scholze '17)

For every prime p there is a S¹-equivariant map of spectra

 $\phi_{p}: \mathsf{THH}(R) \to \mathsf{THH}(R)^{t\,C_{\,p}}$

Constructed from the Tate-diagonal

R commutative ring spectrum, then have commutative diagram

Proposition (Bökstedt-Hsiang-Madsen '93,...,N.-Scholze '17)

For every prime p there is a S¹-equivariant map of spectra

 $\phi_{p}: THH(R) \rightarrow THH(R)^{tC_{p}}$

Constructed from the Tate-diagonal

R commutative ring spectrum, then have commutative diagram

• φ_p is equivalence after p-completion (in positive degrees) for R = S, $H\mathbb{F}_p$, $H\mathbb{Z}$, MU, BP, ...

■ TC(R) defined by Bökstedt-Hsiang-Madsen '94

Recall

- TC(R) defined by Bökstedt-Hsiang-Madsen '94
- There is a map $K(R) \rightarrow TC(R)$ called cyclotomic trace

Recall

For $K_*(\mathbb{Z}/p^k)$ we use trace methods: $K_*(R)$

- TC(R) defined by Bökstedt-Hsiang-Madsen '94
- There is a map $K(R) \rightarrow TC(R)$ called cyclotomic trace
- Often an iso, e.g. $K_*(\mathbb{Z}/p^k)_p^{\wedge} \cong TC_*(\mathbb{Z}/p^k)$ for * > 0

Recall

For $K_*(\mathbb{Z}/p^k)$ we use trace methods:

■ TC(R) defined by Bökstedt-Hsiang-Madsen '94

- There is a map $K(R) \rightarrow TC(R)$ called cyclotomic trace
- Often an iso, e.g. $K_*(\mathbb{Z}/p^k)^{\wedge}_p \cong TC_*(\mathbb{Z}/p^k)$ for * > 0

Theorem (N.-Scholze '17)

If R is connective, then TC(R) can be computed from THH(R) with its S¹-action and maps ϕ_p .

Recall

For $K_*(\mathbb{Z}/p^k)$ we use trace methods:

■ TC(R) defined by Bökstedt-Hsiang-Madsen '94

- There is a map $K(R) \rightarrow TC(R)$ called cyclotomic trace
- Often an iso, e.g. $K_*(\mathbb{Z}/p^k)^{\wedge}_p \cong TC_*(\mathbb{Z}/p^k)$ for * > 0

Theorem (N.-Scholze '17)

If R is connective, then TC(R) can be computed from THH(R) with its S¹-action and maps ϕ_p .

More precisely: CycSp the ∞ -category of spectra with S^1 -action and S^1 -equiv. maps $\phi_p : X \to X^{tC_p}$. Then

 $\mathsf{TC}(\mathsf{R}) \simeq \mathsf{map}_{\mathsf{CycSp}}(\mathbb{1}, \mathsf{THH}(\mathsf{R}))$

Prisms and Bökstedt periodicity

For $\mathsf{TC}(\mathbb{Z}/p^k)$, we compute TC relative to $\mathbb{S}[\![z]\!]_p$ and use descent along $\mathbb{S} \to \mathbb{S}[\![z]\!]_p$

For $\mathsf{TC}(\mathbb{Z}/p^k)$, we compute TC relative to $\mathbb{S}[\![z]\!]_p$ and use descent along $\mathbb{S} \to \mathbb{S}[\![z]\!]_p$

Proposition

Let \mathbb{S}_A be a p-complete \mathbb{E}_{∞} -ring, flat over \mathbb{S} and $A := \pi_0(\mathbb{S}_A)$.

For $\mathsf{TC}(\mathbb{Z}/p^k)$, we compute TC relative to $\mathbb{S}[\![z]\!]_p$ and use descent along $\mathbb{S} \to \mathbb{S}[\![z]\!]_p$

Proposition

Let \mathbb{S}_A be a p-complete \mathbb{E}_{∞} -ring, flat over \mathbb{S} and $A := \pi_0(\mathbb{S}_A)$. Then

 $\phi_p:\mathbb{S}_A\to\mathbb{S}_A^{t\,C_p}\simeq\mathbb{S}_A$

induces on π_0 a lift of Fronbenius, i.e. A is a $\delta\text{-ring.}$

For $\mathsf{TC}(\mathbb{Z}/p^k)$, we compute TC relative to $\mathbb{S}[\![z]\!]_p$ and use descent along $\mathbb{S} \to \mathbb{S}[\![z]\!]_p$

Proposition

Let \mathbb{S}_A be a p-complete \mathbb{E}_{∞} -ring, flat over \mathbb{S} and $A := \pi_0(\mathbb{S}_A)$. Then

 $\phi_p:\mathbb{S}_A\to\mathbb{S}_A^{t\,C_p}\simeq\mathbb{S}_A$

induces on π_0 a lift of Fronbenius, i.e. A is a $\delta\text{-ring.}$

Theorem (Antieau–Krause–N.)

R a nice A-algebra. Then $\mathsf{TC}(R/\mathbb{S}_A)$ admits a complete filtration with i-th graded given by an extension

 $\mathbb{Z}_p(\mathfrak{i})(R/A)[2\mathfrak{i}]$.

of Bhatt-Scholze's syntomic cohomology relative to δ -rings

For TC(\mathbb{Z}/p^k), we compute TC relative to $\mathbb{S}[\![z]\!]_p$ and use descent along $\mathbb{S} \to \mathbb{S}[\![z]\!]_p$

Proposition

Let \mathbb{S}_A be a p-complete \mathbb{E}_{∞} -ring, flat over \mathbb{S} and $A := \pi_0(\mathbb{S}_A)$. Then

 $\phi_p:\mathbb{S}_A\to\mathbb{S}_A^{t\,C_p}\simeq\mathbb{S}_A$

induces on π_0 a lift of Fronbenius, i.e. A is a δ -ring.

Theorem (Antieau-Krause-N.)

R a nice A-algebra. Then $\mathsf{TC}(R/\mathbb{S}_A)$ admits a complete filtration with i-th graded given by an extension

 $\mathbb{Z}_{p}(i)(R/A)[2i]$.

of Bhatt-Scholze's syntomic cohomology relative to $\delta\text{-rings}$

Corollary (Ultimate Bökstedt periodicity)

For R=A/I with (A,I) a prism we have

$$\mathsf{THH}_*(\mathsf{R}/\mathbb{S}_A) \cong \begin{cases} \mathrm{I}^n/\mathrm{I}^{n+1} & \textit{for } * = 2n \\ 0 & \textit{else} \end{cases}$$

Definition

We say that THH(R) is *eventually* p*-perfect* if the map $\varphi_p : THH(R)_p^{\wedge} \to THH(R)^{tC_p}$ is an isomorphism on π_* for $* \gg 0$.

Definition

We say that THH(R) is *eventually* p*-perfect* if the map $\varphi_p : THH(R)_p^{\wedge} \to THH(R)^{tC_p}$ is an isomorphism on π_* for $* \gg 0$.

This is true for $R=\mathbb{S}, \mathbb{F}_p, \mathbb{Z}, \mathsf{MU}, \mathsf{BP}, ...$

Theorem (Antieau-N. '18)

- 1. There is a t-structure on $CycSp_p^{\wedge}$ whose connective objects are those (X, ϕ_p) such that X is connective.
- 2. Every t-truncated object X is eventually p-perfect and has truncated TC.

Definition

We say that THH(R) is *eventually* p*-perfect* if the map $\varphi_p : THH(R)_p^{\wedge} \to THH(R)^{tC_p}$ is an isomorphism on π_* for $* \gg 0$.

This is true for $R = \mathbb{S}$, \mathbb{F}_p , \mathbb{Z} , MU, BP, ...

Theorem (Antieau-N. '18)

- 1. There is a t-structure on CycSp_p^\wedge whose connective objects are those (X,ϕ_p) such that X is connective.
- **2.** Every t-truncated object X is eventually p-perfect and has truncated TC.

Hahn-Wilson '20 prove a converse to (2) and deduce that

$$\begin{split} \mathsf{TC}(\mathsf{BP}\langle \mathfrak{n}\rangle) & \to \mathsf{L}^{\mathrm{f}}_{\mathfrak{n}+1}(\mathsf{TC}(\mathsf{BP}\langle \mathfrak{n}\rangle)) \\ \mathsf{K}(\mathsf{BP}\langle \mathfrak{n}\rangle) & \to \mathsf{L}^{\mathrm{f}}_{\mathfrak{n}+1}(\mathsf{K}(\mathsf{BP}\langle \mathfrak{n}\rangle)) \end{split}$$

are after p-completion equivalences in degrees $* \gg 0$ (redshift).