Frobenius homomorphisms in higher algebra

Thomas Nikolaus
International Congress of Mathematicians 2022

Motivation I: K-Theory

Goal: Compute K-group $K_{*}(\mathrm{R})$ for R ring

Motivation I: K-Theory

Goal: Compute K-group $K_{*}(R)$ for R ring
Theorem (Quillen '72)

$$
K_{*}(\mathbb{Z} / p)= \begin{cases}\mathbb{Z} & *=0 \\ \mathbb{Z} /\left(p^{i}-1\right) & *=2 i-1 \\ 0 & \text { else }\end{cases}
$$

Motivation I: K-Theory

Goal: Compute K-group $K_{*}(R)$ for R ring
Theorem (Quillen '72)

$$
\mathrm{K}_{*}(\mathbb{Z} / \mathrm{p})= \begin{cases}\mathbb{Z} & *=0 \\ \mathbb{Z} /\left(p^{i}-1\right) & *=2 i-1 \\ 0 & \text { else }\end{cases}
$$

Question: What about $\mathrm{K}_{*}\left(\mathbb{Z} / \mathrm{p}^{\mathrm{k}}\right)$?

Motivation I: K-Theory

Goal: Compute K-group $K_{*}(\mathrm{R})$ for R ring
Theorem (Quillen '72)

$$
K_{*}(\mathbb{Z} / p)= \begin{cases}\mathbb{Z} & *=0 \\ \mathbb{Z} /\left(p^{i}-1\right) & *=2 i-1 \\ 0 & \text { else }\end{cases}
$$

Question: What about $K_{*}\left(\mathbb{Z} / p^{k}\right)$? Only known for $* \leqslant 2 p-2$ (Angeltveit '11)

Motivation I: K-Theory

Goal: Compute K-group $K_{*}(R)$ for R ring
Theorem (Quillen '72)

$$
K_{*}(\mathbb{Z} / p)= \begin{cases}\mathbb{Z} & *=0 \\ \mathbb{Z} /\left(p^{i}-1\right) & *=2 i-1 \\ 0 & \text { else }\end{cases}
$$

Question: What about $\mathrm{K}_{*}\left(\mathbb{Z} / \mathrm{p}^{\mathrm{k}}\right)$? Only known for $* \leqslant 2 \mathrm{p}-2$ (Angeltveit '11)
Theorem (Antieau-N.-Krause '22)

1. For $i \gg 0$

$$
\begin{aligned}
\mathrm{K}_{2 i-2}\left(\mathbb{Z} / \mathrm{p}^{k}\right) & =0 \\
\# \mathrm{~K}_{2 i-1}\left(\mathbb{Z} / \mathrm{p}^{k}\right) & =\left(\mathrm{p}^{i}-1\right) \mathrm{p}^{i(k-1)}
\end{aligned}
$$

$$
\left(i \geqslant \frac{p^{2}\left(p^{k}-1\right)}{(p-1)^{2}}\right)
$$

Motivation I: K-Theory

Goal: Compute K-group $K_{*}(R)$ for R ring
Theorem (Quillen '72)

$$
\mathrm{K}_{*}(\mathbb{Z} / \mathrm{p})= \begin{cases}\mathbb{Z} & *=0 \\ \mathbb{Z} /\left(p^{i}-1\right) & *=2 i-1 \\ 0 & \text { else }\end{cases}
$$

Question: What about $\mathrm{K}_{*}\left(\mathbb{Z} / \mathrm{p}^{\mathrm{k}}\right)$? Only known for $* \leqslant 2 \mathrm{p}-2$ (Angeltveit '11)
Theorem (Antieau-N.-Krause '22)

1. For $i \gg 0$

$$
\begin{aligned}
K_{2 i-2}\left(\mathbb{Z} / p^{k}\right) & =0 \\
\# K_{2 i-1}\left(\mathbb{Z} / p^{k}\right) & =\left(p^{i}-1\right) p^{i(k-1)}
\end{aligned}
$$

$$
\left(i \geqslant \frac{\mathrm{p}^{2}\left(\mathrm{p}^{k}-1\right)}{(\mathrm{p}-1)^{2}}\right)
$$

2. There is an explicit algorithm computing $\mathrm{K}_{*}\left(\mathbb{Z} / \mathrm{p}^{\mathrm{k}}\right)$

$\mathrm{R}:$	$\mathbb{Z} / 4$	$\mathbb{Z} / 8$	$\mathbb{Z} / 16$	$\mathbb{Z} / 32$
$\mathrm{~K}_{1}$	2^{1}	$2^{1}, 2^{1}$	$2^{1}, 2^{2}$	$2^{1}, 2^{3}$
$\mathrm{~K}_{2}$	2^{1}	2^{1}	2^{1}	2^{1}
$\mathrm{~K}_{3}$	2^{3}	$2^{3}, 2^{2}$	$2^{3}, 2^{4}$	$2^{3}, 2^{6}$
$\mathrm{~K}_{4}$	0	2^{1}	2^{2}	2^{3}
$\mathrm{~K}_{5}$	2^{3}	$2^{1}, 2^{6}$	$2^{1}, 2^{1}, 2^{9}$	$2^{1}, 2^{2}, 2^{12}$
$\mathrm{~K}_{6}$	0	0	2^{1}	2^{1}
$\mathrm{~K}_{7}$	$2^{1}, 2^{3}$	$2^{4}, 2^{4}$	$2^{1}, 2^{4}, 2^{8}$	$2^{1}, 2^{1}, 2^{4}, 2^{11}$
$\mathrm{~K}_{8}$	0	0	2^{1}	2^{2}
$\mathrm{~K}_{9}$	$2^{1}, 2^{1}, 2^{3}$	$2^{1}, 2^{1}, 2^{2}, 2^{2}, 2^{4}$	$2^{1}, 2^{1}, 2^{2}, 2^{12}$	$2^{1}, 2^{1}, 2^{1}, 2^{2}, 2^{17}$
$\mathrm{~K}_{10}$	0	0	0	2^{1}
$\mathrm{~K}_{11}$	$2^{1}, 2^{5}$	$2^{1}, 2^{1}, 2^{1}, 2^{2}, 2^{2}, 2^{5}$	$2^{3}, 2^{3}, 2^{12}$	$2^{1}, 2^{3}, 2^{5}, 2^{16}$
$\mathrm{~K}_{12}$	0	0	0	2^{1}
$\mathrm{~K}_{13}$	$2^{1}, 2^{2}, 2^{4}$	$2^{1}, 2^{1}, 2^{1}, 2^{1}, 2^{2}, 2^{3}, 2^{5}$	$2^{1}, 2^{1}, 2^{1}, 2^{3}, 2^{15}$	$2^{1}, 2^{1}, 2^{1}, 2^{1}, 2^{3}, 2^{22}$
$\mathrm{~K}_{14}$	0	0	0	2^{1}
$\mathrm{~K}_{15}$	$2^{1}, 2^{1}, 2^{1}, 2^{5}$	$2^{1}, 2^{1}, 2^{1}, 2^{1}, 2^{2}, 2^{2}, 2^{3}, 2^{5}$	$2^{1}, 2^{1}, 2^{2}, 2^{5}, 2^{15}$	$2^{1}, 2^{1}, 2^{2}, 2^{3}, 2^{5}, 2^{21}$
$\mathrm{~K}_{16}$	0	0	0	2^{1}
$\mathrm{~K}_{17}$	$2^{1}, 2^{1}, 2^{1}, 2^{3}, 2^{3}$	$2^{1}, 2^{1}, 2^{2}, 2^{2}, 2^{3}, 2^{9}$	$2^{1}, 2^{2}, 2^{2}, 2^{2}, 2^{3}, 2^{17}$	$2^{1}, 2^{1}, 2^{2}, 2^{2}, 2^{2}, 2^{3}, 2^{26}$
$\mathrm{~K}_{18}$	0	0	0	0
$\mathrm{~K}_{19}$	$2^{2}, 2^{3}, 2^{5}$	$2^{1}, 2^{3}, 2^{4}, 2^{12}$	$2^{3}, 2^{3}, 2^{4}, 2^{20}$	$2^{3}, 2^{3}, 2^{3}, 2^{4}, 2^{27}$

$\mathrm{R}:$	$\mathbb{Z} / 4$	$\mathbb{Z} / 8$	$\mathbb{Z} / 16$	$\mathbb{Z} / 32$
$\mathrm{~K}_{1}$	2^{1}	$2^{1}, 2^{1}$	$2^{1}, 2^{2}$	$2^{1}, 2^{3}$
$\mathrm{~K}_{2}$	2^{1}	2^{1}	2^{1}	2^{1}
$\mathrm{~K}_{3}$	2^{3}	$2^{3}, 2^{2}$	$2^{3}, 2^{4}$	$2^{3}, 2^{6}$
$\mathrm{~K}_{4}$	0	2^{1}	2^{2}	2^{3}
$\mathrm{~K}_{5}$	2^{3}	$2^{1}, 2^{6}$	$2^{1}, 2^{1}, 2^{9}$	$2^{1}, 2^{2}, 2^{12}$
$\mathrm{~K}_{6}$	0	0	2^{1}	2^{1}
$\mathrm{~K}_{7}$	$2^{1}, 2^{3}$	$2^{4}, 2^{4}$	$2^{1}, 2^{4}, 2^{8}$	$2^{1}, 2^{1}, 2^{4}, 2^{11}$
$\mathrm{~K}_{8}$	0	0	2^{1}	2^{2}
$\mathrm{~K}_{9}$	$2^{1}, 2^{1}, 2^{3}$	$2^{1}, 2^{1}, 2^{2}, 2^{2}, 2^{4}$	$2^{1}, 2^{1}, 2^{2}, 2^{12}$	$2^{1}, 2^{1}, 2^{1}, 2^{2}, 2^{17}$
$\mathrm{~K}_{10}$	0	0	0	2^{1}
$\mathrm{~K}_{11}$	$2^{1}, 2^{5}$	$2^{1}, 2^{1}, 2^{1}, 2^{2}, 2^{2}, 2^{5}$	$2^{3}, 2^{3}, 2^{12}$	$2^{1}, 2^{3}, 2^{5}, 2^{16}$
$\mathrm{~K}_{12}$	0	0	0	2^{1}
$\mathrm{~K}_{13}$	$2^{1}, 2^{2}, 2^{4}$	$2^{1}, 2^{1}, 2^{1}, 2^{1}, 2^{2}, 2^{3}, 2^{5}$	$2^{1}, 2^{1}, 2^{1}, 2^{3}, 2^{15}$	$2^{1}, 2^{1}, 2^{1}, 2^{1}, 2^{3}, 2^{22}$
$\mathrm{~K}_{14}$	0	0	0	2^{1}
$\mathrm{~K}_{15}$	$2^{1}, 2^{1}, 2^{1}, 2^{5}$	$2^{1}, 2^{1}, 2^{1}, 2^{1}, 2^{2}, 2^{2}, 2^{3}, 2^{5}$	$2^{1}, 2^{1}, 2^{2}, 2^{5}, 2^{15}$	$2^{1}, 2^{1}, 2^{2}, 2^{3}, 2^{5}, 2^{21}$
$\mathrm{~K}_{16}$	0	0	0	2^{1}
$\mathrm{~K}_{17}$	$2^{1}, 2^{1}, 2^{1}, 2^{3}, 2^{3}$	$2^{1}, 2^{1}, 2^{2}, 2^{2}, 2^{3}, 2^{9}$	$2^{1}, 2^{2}, 2^{2}, 2^{2}, 2^{3}, 2^{17}$	$2^{1}, 2^{1}, 2^{2}, 2^{2}, 2^{2}, 2^{3}, 2^{26}$
$\mathrm{~K}_{18}$	0	0	0	0
$\mathrm{~K}_{19}$	$2^{2}, 2^{3}, 2^{5}$	$2^{1}, 2^{3}, 2^{4}, 2^{12}$	$2^{3}, 2^{3}, 2^{4}, 2^{20}$	$2^{3}, 2^{3}, 2^{3}, 2^{4}, 2^{27}$

$\mathrm{R}:$	$\mathbb{Z} / 4$	$\mathbb{Z} / 8$	$\mathbb{Z} / 16$	$\mathbb{Z} / 32$
$\mathrm{~K}_{1}$	2^{1}	$2^{1}, 2^{1}$	$2^{1}, 2^{2}$	$2^{1}, 2^{3}$
$\mathrm{~K}_{2}$	2^{1}	2^{1}	2^{1}	2^{1}
$\mathrm{~K}_{3}$	2^{3}	$2^{3}, 2^{2}$	$2^{3}, 2^{4}$	$2^{3}, 2^{6}$
$\mathrm{~K}_{4}$	0	2^{1}	2^{2}	2^{3}
$\mathrm{~K}_{5}$	2^{3}	$2^{1}, 2^{6}$	$2^{1}, 2^{1}, 2^{9}$	$2^{1}, 2^{2}, 2^{12}$
$\mathrm{~K}_{6}$	0	0	2^{1}	2^{1}
$\mathrm{~K}_{7}$	$2^{1}, 2^{3}$	$2^{4}, 2^{4}$	$2^{1}, 2^{4}, 2^{8}$	$2^{1}, 2^{1}, 2^{4}, 2^{11}$
$\mathrm{~K}_{8}$	0	0	2^{1}	2^{2}
$\mathrm{~K}_{9}$	$2^{1}, 2^{1}, 2^{3}$	$2^{1}, 2^{1}, 2^{2}, 2^{2}, 2^{4}$	$2^{1}, 2^{1}, 2^{2}, 2^{12}$	$2^{1}, 2^{1}, 2^{1}, 2^{2}, 2^{17}$
$\mathrm{~K}_{10}$	0	0	0	2^{1}
$\mathrm{~K}_{11}$	$2^{1}, 2^{5}$	$2^{1}, 2^{1}, 2^{1}, 2^{2}, 2^{2}, 2^{5}$	$2^{3}, 2^{3}, 2^{12}$	$2^{1}, 2^{3}, 2^{5}, 2^{16}$
$\mathrm{~K}_{12}$	0	0	0	2^{1}
$\mathrm{~K}_{13}$	$2^{1}, 2^{2}, 2^{4}$	$2^{1}, 2^{1}, 2^{1}, 2^{1}, 2^{2}, 2^{3}, 2^{5}$	$2^{1}, 2^{1}, 2^{1}, 2^{3}, 2^{15}$	$2^{1}, 2^{1}, 2^{1}, 2^{1}, 2^{3}, 2^{22}$
$\mathrm{~K}_{14}$	0	0	0	2^{1}
$\mathrm{~K}_{15}$	$2^{1}, 2^{1}, 2^{1}, 2^{5}$	$2^{1}, 2^{1}, 2^{1}, 2^{1}, 2^{2}, 2^{2}, 2^{3}, 2^{5}$	$2^{1}, 2^{1}, 2^{2}, 2^{5}, 2^{15}$	$2^{1}, 2^{1}, 2^{2}, 2^{3}, 2^{5}, 2^{21}$
$\mathrm{~K}_{16}$	0	0	0	2^{1}
$\mathrm{~K}_{17}$	$2^{1}, 2^{1}, 2^{1}, 2^{3}, 2^{3}$	$2^{1}, 2^{1}, 2^{2}, 2^{2}, 2^{3}, 2^{9}$	$2^{1}, 2^{2}, 2^{2}, 2^{2}, 2^{3}, 2^{17}$	$2^{1}, 2^{1}, 2^{2}, 2^{2}, 2^{2}, 2^{3}, 2^{26}$
$\mathrm{~K}_{18}$	0	0	0	0
$\mathrm{~K}_{19}$	$2^{2}, 2^{3}, 2^{5}$	$2^{1}, 2^{3}, 2^{4}, 2^{12}$	$2^{3}, 2^{3}, 2^{4}, 2^{20}$	$2^{3}, 2^{3}, 2^{3}, 2^{4}, 2^{27}$

$\mathrm{R}:$	$\mathbb{Z} / 4$	$\mathbb{Z} / 8$	$\mathbb{Z} / 16$	$\mathbb{Z} / 32$
$\mathrm{~K}_{1}$	2^{1}	$2^{1}, 2^{1}$	$2^{1}, 2^{2}$	$2^{1}, 2^{3}$
$\mathrm{~K}_{2}$	2^{1}	2^{1}	2^{1}	2^{1}
$\mathrm{~K}_{3}$	2^{3}	$2^{3}, 2^{2}$	$2^{3}, 2^{4}$	$2^{3}, 2^{6}$
$\mathrm{~K}_{4}$	0	2^{1}	2^{2}	2^{3}
$\mathrm{~K}_{5}$	2^{3}	$2^{1}, 2^{6}$	$2^{1}, 2^{1}, 2^{9}$	$2^{1}, 2^{2}, 2^{12}$
$\mathrm{~K}_{6}$	0	0	2^{1}	2^{1}
$\mathrm{~K}_{7}$	$2^{1}, 2^{3}$	$2^{4}, 2^{4}$	$2^{1}, 2^{4}, 2^{8}$	$2^{1}, 2^{1}, 2^{4}, 2^{11}$
$\mathrm{~K}_{8}$	0	0	2^{1}	2^{2}
$\mathrm{~K}_{9}$	$2^{1}, 2^{1}, 2^{3}$	$2^{1}, 2^{1}, 2^{2}, 2^{2}, 2^{4}$	$2^{1}, 2^{1}, 2^{2}, 2^{12}$	$2^{1}, 2^{1}, 2^{1}, 2^{2}, 2^{17}$
$\mathrm{~K}_{10}$	0	0	0	2^{1}
$\mathrm{~K}_{11}$	$2^{1}, 2^{5}$	$2^{1}, 2^{1}, 2^{1}, 2^{2}, 2^{2}, 2^{5}$	$2^{3}, 2^{3}, 2^{12}$	$2^{1}, 2^{3}, 2^{5}, 2^{16}$
$\mathrm{~K}_{12}$	0	0	0	2^{1}
$\mathrm{~K}_{13}$	$2^{1}, 2^{2}, 2^{4}$	$2^{1}, 2^{1}, 2^{1}, 2^{1}, 2^{2}, 2^{3}, 2^{5}$	$2^{1}, 2^{1}, 2^{1}, 2^{3}, 2^{15}$	$2^{1}, 2^{1}, 2^{1}, 2^{1}, 2^{3}, 2^{22}$
$\mathrm{~K}_{14}$	0	0	0	2^{1}
$\mathrm{~K}_{15}$	$2^{1}, 2^{1}, 2^{1}, 2^{5}$	$2^{1}, 2^{1}, 2^{1}, 2^{1}, 2^{2}, 2^{2}, 2^{3}, 2^{5}$	$2^{1}, 2^{1}, 2^{2}, 2^{5}, 2^{15}$	$2^{1}, 2^{1}, 2^{2}, 2^{3}, 2^{5}, 2^{21}$
$\mathrm{~K}_{16}$	0	0	0	2^{1}
$\mathrm{~K}_{17}$	$2^{1}, 2^{1}, 2^{1}, 2^{3}, 2^{3}$	$2^{1}, 2^{1}, 2^{2}, 2^{2}, 2^{3}, 2^{9}$	$2^{1}, 2^{2}, 2^{2}, 2^{2}, 2^{3}, 2^{17}$	$2^{1}, 2^{1}, 2^{2}, 2^{2}, 2^{2}, 2^{3}, 2^{26}$
$\mathrm{~K}_{18}$	0	0	0	0
$\mathrm{~K}_{19}$	$2^{2}, 2^{3}, 2^{5}$	$2^{1}, 2^{3}, 2^{4}, 2^{12}$	$2^{3}, 2^{3}, 2^{4}, 2^{20}$	$2^{3}, 2^{3}, 2^{3}, 2^{4}, 2^{27}$

Idea

Use trace methods:

Algebraic Topology: study invariants of spaces, e.g. $H_{*}(M, \mathbb{Z})$

Motivation II: Spaces

Algebraic Topology: study invariants of spaces, e.g. $\mathrm{H}_{*}(\mathrm{M}, \mathbb{Z})$

Example

- $S^{n} \nsucceq S^{m}$ for $n \neq m$, since $H_{*}\left(S^{n}, \mathbb{Z}\right) \not 千 H_{*}\left(S^{m}, \mathbb{Z}\right)$ as groups

Motivation II: Spaces

Algebraic Topology: study invariants of spaces, e.g. $\mathrm{H}_{*}(\mathrm{M}, \mathbb{Z})$

Example

■ $S^{n} \not ㇒ S^{m}$ for $n \neq m$, since $H_{*}\left(S^{n}, \mathbb{Z}\right) \not 千 H_{*}\left(S^{m}, \mathbb{Z}\right)$ as groups

- $\mathbb{C} P^{2} \simeq S^{2} \vee S^{4}$?

Motivation II：Spaces

Algebraic Topology：study invariants of spaces，e．g． $\mathrm{H}_{*}(\mathrm{M}, \mathbb{Z})$

Example

■ $S^{n} \not ㇒ S^{m}$ for $n \neq m$ ，since $H_{*}\left(S^{n}, \mathbb{Z}\right) \not 千 H_{*}\left(S^{m}, \mathbb{Z}\right)$ as groups
■ $\mathbb{C} P^{2} \not 千 S^{2} \vee S^{4}$ ，since $H^{*}\left(\mathbb{C} P^{2}, \mathbb{Z}\right) \not 千 \mathrm{H}^{*}\left(S^{2} \vee S^{4}, \mathbb{Z}\right)$ as rings

Motivation II：Spaces

Algebraic Topology：study invariants of spaces，e．g． $\mathrm{H}_{*}(\mathrm{M}, \mathbb{Z})$

Example

- $S^{n} \not ㇒ S^{m}$ for $n \neq m$ ，since $H_{*}\left(S^{n}, \mathbb{Z}\right) \not \not 二 H_{*}\left(S^{m}, \mathbb{Z}\right)$ as groups
- $\mathbb{C P}^{2} \not 千 S^{2} \vee S^{4}$ ，since $\mathrm{H}^{*}\left(\mathbb{C} P^{2}, \mathbb{Z}\right) \not 千 \mathrm{H}^{*}\left(S^{2} \vee S^{4}, \mathbb{Z}\right)$ as rings
－$\Sigma \mathbb{C} P^{2} \simeq S^{3} \vee S^{5}$ ？

Motivation II：Spaces

Algebraic Topology：study invariants of spaces，e．g． $\mathrm{H}_{*}(\mathrm{M}, \mathbb{Z})$

Example

■ $S^{n} \not ㇒ S^{m}$ for $n \neq m$ ，since $H_{*}\left(S^{n}, \mathbb{Z}\right) \not 千 H_{*}\left(S^{m}, \mathbb{Z}\right)$ as groups
■ $\mathbb{C} P^{2} \not 千 S^{2} \vee S^{4}$ ，since $\mathrm{H}^{*}\left(\mathbb{C P}^{2}, \mathbb{Z}\right) \not 千 \mathrm{H}^{*}\left(S^{2} \vee S^{4}, \mathbb{Z}\right)$ as rings
$■ \Sigma \mathbb{C} P^{2} \not 千 \mathrm{~S}^{3} \vee \mathrm{~S}^{5}$ ，since $\mathrm{H}^{*}\left(\Sigma \mathbb{C} P^{2}, \mathbb{F}_{2}\right) \not 千 \mathrm{H}^{*}\left(\Sigma \mathbb{C} P^{2}, \mathbb{F}_{2}\right)$ as rings with Steenrod action

Motivation II：Spaces

Algebraic Topology：study invariants of spaces，e．g． $\mathrm{H}_{*}(\mathrm{M}, \mathbb{Z})$

Example

■ $S^{n} \not ㇒ S^{m}$ for $n \neq m$ ，since $H_{*}\left(S^{n}, \mathbb{Z}\right) \nsucceq H_{*}\left(S^{m}, \mathbb{Z}\right)$ as groups
■ $\mathbb{C} P^{2} \not 千 S^{2} \vee S^{4}$ ，since $H^{*}\left(\mathbb{C} P^{2}, \mathbb{Z}\right) \not 千 \mathrm{H}^{*}\left(S^{2} \vee S^{4}, \mathbb{Z}\right)$ as rings
$■ \Sigma \mathbb{C} P^{2} \not 千 \mathrm{~S}^{3} \vee \mathrm{~S}^{5}$ ，since $\mathrm{H}^{*}\left(\Sigma \mathbb{C} P^{2}, \mathbb{F}_{2}\right) \not 千 \mathrm{H}^{*}\left(\Sigma \mathbb{C} P^{2}, \mathbb{F}_{2}\right)$ as rings with Steenrod action
Ultimate invariant：$C^{*}(M, \mathbb{Z})$ as an \mathbb{E}_{∞}－ring

Motivation II：Spaces

Algebraic Topology：study invariants of spaces，e．g． $\mathrm{H}_{*}(\mathrm{M}, \mathbb{Z})$

Example

■ $S^{n} \not ㇒ S^{m}$ for $n \neq m$ ，since $H_{*}\left(S^{n}, \mathbb{Z}\right) \nsucceq H_{*}\left(S^{m}, \mathbb{Z}\right)$ as groups
■ $\mathbb{C} P^{2} \not 千 S^{2} \vee S^{4}$ ，since $\mathrm{H}^{*}\left(\mathbb{C P}^{2}, \mathbb{Z}\right) \not 千 \mathrm{H}^{*}\left(S^{2} \vee \mathrm{~S}^{4}, \mathbb{Z}\right)$ as rings
$■ \Sigma \mathbb{C} P^{2} \not 千 S^{3} \vee \mathrm{~S}^{5}$ ，since $\mathrm{H}^{*}\left(\Sigma \mathbb{C} P^{2}, \mathbb{F}_{2}\right) \not 千 \mathrm{H}^{*}\left(\Sigma \mathbb{C} P^{2}, \mathbb{F}_{2}\right)$ as rings with Steenrod action
Ultimate invariant：$C^{*}(M, \mathbb{Z})$ as an \mathbb{E}_{∞}－ring

$$
\begin{aligned}
& \text { Theorem (Mandell'06) } \\
& \begin{array}{l}
C^{*}(M, \mathbb{Z}) \simeq C^{*}(N, \mathbb{Z}) \text { as } \mathbb{E}_{\infty} \text {-rings over } \mathbb{Z} \\
\quad \Rightarrow M \simeq N
\end{array}
\end{aligned}
$$

Motivation II：Spaces

Algebraic Topology：study invariants of spaces，e．g． $\mathrm{H}_{*}(\mathrm{M}, \mathbb{Z})$

Example

■ $S^{n} \not ㇒ S^{m}$ for $n \neq m$ ，since $H_{*}\left(S^{n}, \mathbb{Z}\right) \nsucceq H_{*}\left(S^{m}, \mathbb{Z}\right)$ as groups
■ $\mathbb{C} P^{2} \not 千 S^{2} \vee S^{4}$ ，since $\mathrm{H}^{*}\left(\mathbb{C} P^{2}, \mathbb{Z}\right) \not 千 \mathrm{H}^{*}\left(S^{2} \vee S^{4}, \mathbb{Z}\right)$ as rings
$■ \Sigma \mathbb{C} P^{2} \not 千 S^{3} \vee \mathrm{~S}^{5}$ ，since $\mathrm{H}^{*}\left(\Sigma \mathbb{C} P^{2}, \mathbb{F}_{2}\right) \not 千 \mathrm{H}^{*}\left(\Sigma \mathbb{C} P^{2}, \mathbb{F}_{2}\right)$ as rings with Steenrod action
Ultimate invariant：$C^{*}(M, \mathbb{Z})$ as an \mathbb{E}_{∞}－ring

```
Theorem (Mandell'06)
C*}(M,\mathbb{Z})\simeq\mp@subsup{C}{}{*}(N,\mathbb{Z})\mathrm{ as }\mp@subsup{\mathbb{E}}{\infty}{}\mathrm{ -rings over }\mathbb{Z
(M, N simply-connected, finite type)
    m}\simeq
```

Question：Is $C^{*}(-, \mathbb{Z})$ an equivalence between spaces and \mathbb{E}_{∞}－rings？

Motivation II：Spaces

Algebraic Topology：study invariants of spaces，e．g． $\mathrm{H}_{*}(\mathrm{M}, \mathbb{Z})$

Example

■ $S^{n} \not ㇒ S^{m}$ for $n \neq m$ ，since $H_{*}\left(S^{n}, \mathbb{Z}\right) \nsucceq H_{*}\left(S^{m}, \mathbb{Z}\right)$ as groups
■ $\mathbb{C} P^{2} \not 千 S^{2} \vee S^{4}$ ，since $\mathrm{H}^{*}\left(\mathbb{C} P^{2}, \mathbb{Z}\right) \not 千 \mathrm{H}^{*}\left(S^{2} \vee S^{4}, \mathbb{Z}\right)$ as rings
$■ \Sigma \mathbb{C} P^{2} \not 千 S^{3} \vee \mathrm{~S}^{5}$ ，since $\mathrm{H}^{*}\left(\Sigma \mathbb{C} P^{2}, \mathbb{F}_{2}\right) \not 千 \mathrm{H}^{*}\left(\Sigma \mathbb{C} P^{2}, \mathbb{F}_{2}\right)$ as rings with Steenrod action
Ultimate invariant：$C^{*}(M, \mathbb{Z})$ as an \mathbb{E}_{∞}－ring

```
Theorem (Mandell '06)
```

$$
\begin{aligned}
& C^{*}(M, \mathbb{Z}) \simeq C^{*}(N, \mathbb{Z}) \text { as } \mathbb{E}_{\infty} \text {-rings over } \mathbb{Z} \\
& \quad \Rightarrow M \simeq N
\end{aligned}
$$

Question：Is $C^{*}(-, \mathbb{Z})$ an equivalence between spaces and \mathbb{E}_{∞}－rings with some extra structure？

Motivation II：Spaces

Algebraic Topology：study invariants of spaces，e．g． $\mathrm{H}_{*}(\mathrm{M}, \mathbb{Z})$

Example

■ $S^{n} \not ㇒ S^{m}$ for $n \neq m$ ，since $H_{*}\left(S^{n}, \mathbb{Z}\right) \nsucceq H_{*}\left(S^{m}, \mathbb{Z}\right)$ as groups
■ $\mathbb{C} P^{2} \not 千 S^{2} \vee S^{4}$ ，since $\mathrm{H}^{*}\left(\mathbb{C} P^{2}, \mathbb{Z}\right) \not 千 \mathrm{H}^{*}\left(S^{2} \vee S^{4}, \mathbb{Z}\right)$ as rings
$■ \Sigma \mathbb{C} P^{2} \not 千 S^{3} \vee \mathrm{~S}^{5}$ ，since $\mathrm{H}^{*}\left(\Sigma \mathbb{C} P^{2}, \mathbb{F}_{2}\right) \not 千 \mathrm{H}^{*}\left(\Sigma \mathbb{C} P^{2}, \mathbb{F}_{2}\right)$ as rings with Steenrod action
Ultimate invariant：$C^{*}(M, \mathbb{Z})$ as an \mathbb{E}_{∞}－ring

Theorem（Mandell＇06）

$$
\begin{aligned}
& C^{*}(M, \mathbb{Z}) \simeq C^{*}(N, \mathbb{Z}) \text { as } \mathbb{E}_{\infty} \text {-rings over } \mathbb{Z} \\
& \quad \Rightarrow M \simeq N
\end{aligned}
$$

Question：Is $C^{*}(-, \mathbb{Z})$ an equivalence between spaces and \mathbb{E}_{∞}－rings with some extra structure？
Answer：Yes， \mathbb{E}_{∞}－rings with trivialized Frobenius（Mandell＇01，．．．，Yuan＇21）

The Frobenius homomorphism...

...in ordinary algebra

Commutative Frobenius
R commutative ring

$$
\varphi_{p}: R \rightarrow R / p \quad r \mapsto\left[r^{p}\right]
$$

Map of commutative rings

The Frobenius homomorphism... ...in ordinary algebra

Commutative Frobenius
R commutative ring

$$
\varphi_{\mathrm{p}}: \mathrm{R} \rightarrow \mathrm{R} / \mathrm{p} \quad \mathrm{r} \mapsto\left[\mathrm{r}^{\mathrm{p}}\right]
$$

Map of commutative rings

Associative Frobenius
R associative ring

The Frobenius homomorphism...

 ...in ordinary algebraCommutative Frobenius
R commutative ring

$$
\varphi_{p}: R \rightarrow R / p \quad r \mapsto\left[r^{p}\right]
$$

Map of commutative rings

Associative Frobenius

R associative ring

$$
\varphi_{\mathrm{p}}: \mathrm{R} /[\mathrm{R}, \mathrm{R}] \rightarrow(\mathrm{R} /[\mathrm{R}, \mathrm{R}]) / \mathrm{pR} \quad[\mathrm{r}] \mapsto\left[\mathrm{r}^{\mathrm{p}}\right]
$$

Map of abelian groups

$$
[R, R] \subseteq R \text { : subgroup generated by } r s-s r
$$

The Frobenius homomorphism... ...in ordinary \& higher algebra

Commutative Frobenius
R commutative ring

$$
\varphi_{p}: \mathrm{R} \rightarrow \mathrm{R} / \mathrm{p} \quad \mathrm{r} \mapsto\left[\mathrm{r}^{\mathrm{p}}\right]
$$

Map of commutative rings

Associative Frobenius
R associative ring

$$
\varphi_{\mathrm{p}}: \mathrm{R} /[\mathrm{R}, \mathrm{R}] \rightarrow(\mathrm{R} /[\mathrm{R}, \mathrm{R}]) / \mathrm{pR} \quad[\mathrm{r}] \mapsto\left[\mathrm{r}^{\mathrm{p}}\right]
$$

Map of abelian groups

Tate valued Frobenius
R commutative ring spectrum

$$
\varphi_{p}: R \rightarrow R^{t C_{p}}
$$

Map of commutative ring spectra
Commutative Frobenius
R commutative ring

$$
\varphi_{p}: R \rightarrow R / p
$$

Map of commutative rings
Associative Frobenius
R associative ring
$\varphi_{p}: R /[R, R] \rightarrow(R /[R, R]) / p R$$\quad[r] \mapsto\left[r^{p}\right]$

Tate valued Frobenius

R commutative ring spectrum

$$
\varphi_{p}: R \rightarrow R^{t C_{p}}
$$

Map of commutative ring spectra

Frobenius on THH

R associative ring spectrum

$$
\varphi_{p}: \mathrm{THH}(\mathrm{R}) \rightarrow \mathrm{THH}(\mathrm{R})^{\mathrm{tC}} \mathrm{C}_{\mathrm{p}}
$$

Map of spectra

The Tate construction

G finite group, M abelian group with G -action.
Norm map
$N m: M_{G} \rightarrow M^{G}$
with $x \mapsto \sum_{g \in G} g x$

The Tate construction

G finite group, M abelian group with G-action.
Norm map

$$
\mathrm{Nm}: \mathrm{M}_{\mathrm{G}} \rightarrow \mathrm{M}^{\mathrm{G}}
$$

with $x \mapsto \sum_{g \in G} g x$

Definition

Consider $\quad \mathrm{M}^{\mathrm{G}} / \mathrm{Nm}=\operatorname{coker}\left(\mathrm{M}_{\mathrm{G}} \rightarrow \mathrm{M}^{\mathrm{G}}\right)$

The Tate construction

G finite group, M abelian group with G-action.
Norm map

$$
\mathrm{Nm}: \mathrm{M}_{\mathrm{G}} \rightarrow \mathrm{M}^{\mathrm{G}}
$$

with $x \mapsto \sum_{g \in G} g x$

Definition

Consider $\quad \mathrm{M}^{\mathrm{G}} / \mathrm{Nm}=\operatorname{coker}\left(\mathrm{M}_{\mathrm{G}} \rightarrow \mathrm{M}^{\mathrm{G}}\right)$

Example
If $G=C_{p}$ acts trivially on M, then

$$
M^{C_{p} / N m} \cong M / p
$$

The Tate construction

G finite group, M abelian group with G -action. Norm map

$$
\mathrm{Nm}: \mathrm{M}_{\mathrm{G}} \rightarrow \mathrm{M}^{\mathrm{G}}
$$

with $x \mapsto \sum_{g \in G} g x$

Definition

Consider $\quad M^{G} / \mathrm{Nm}_{\mathrm{m}}=\operatorname{coker}\left(\mathrm{M}_{\mathrm{G}} \rightarrow \mathrm{M}^{\mathrm{G}}\right)$

Example
If $G=C_{p}$ acts trivially on M, then

$$
M^{C_{p} / N m} \cong M / p
$$

G finite group, X spectrum with G-action. Norm map

$$
\mathrm{Nm}: \mathrm{X}_{\mathrm{hG}} \rightarrow \mathrm{X}^{\mathrm{hG}}
$$

from (homotopy) coinvariants to invariants.

The Tate construction

G finite group, M abelian group with G -action. Norm map

$$
\mathrm{Nm}: \mathrm{M}_{\mathrm{G}} \rightarrow \mathrm{M}^{\mathrm{G}}
$$

with $x \mapsto \sum_{g \in G} g x$

Definition

Consider $\quad M^{G} / \mathrm{Nm}_{\mathrm{m}}=\operatorname{coker}\left(\mathrm{M}_{\mathrm{G}} \rightarrow \mathrm{M}^{\mathrm{G}}\right)$

G finite group, X spectrum with G-action. Norm map

$$
\mathrm{Nm}: \mathrm{X}_{\mathrm{hG}} \rightarrow \mathrm{X}^{\mathrm{hG}}
$$

from (homotopy) coinvariants to invariants.

Definition

The Tate spectrum X^{tG} is the cofibre of the norm.

Example
If $G=C_{p}$ acts trivially on M, then

$$
M^{C_{p} / N m} \cong M / p
$$

The Tate construction

MM

G finite group, M abelian group with G -action. Norm map

$$
\mathrm{Nm}: \mathrm{M}_{\mathrm{G}} \rightarrow \mathrm{M}^{\mathrm{G}}
$$

with $x \mapsto \sum_{g \in G} g x$

Definition

Consider $\quad M^{G} / \mathrm{Nm}_{\mathrm{m}}=\operatorname{coker}\left(\mathrm{M}_{\mathrm{G}} \rightarrow \mathrm{M}^{\mathrm{G}}\right)$

Example
If $G=C_{p}$ acts trivially on M, then

$$
M^{C_{p} / N m} \cong M / p
$$

G finite group, X spectrum with G-action. Norm map

$$
\mathrm{Nm}: \mathrm{X}_{\mathrm{hG}} \rightarrow \mathrm{X}^{\mathrm{hG}}
$$

from (homotopy) coinvariants to invariants.

Definition

The Tate spectrum X^{tG} is the cofibre of the norm.

Theorem (Lin '80, Gunawardena '80)
If X is finite spectrum, then

$$
X^{t C_{p}} \simeq X_{p}^{\wedge} .
$$

The Tate diagonal

Example

1. A abelian group. The map

$$
\begin{aligned}
\Delta_{p}: A & \rightarrow\left(A \otimes_{\mathbb{Z}} \ldots \otimes_{\mathbb{Z}} A\right)^{C_{p}} \\
a & \mapsto(a \otimes \ldots \otimes a)
\end{aligned}
$$

is not additive.

The Tate diagonal

Example

1. A abelian group. The map

$$
\begin{aligned}
\Delta_{\mathrm{p}}: A & \rightarrow\left(A \otimes_{\mathbb{Z}} \ldots \otimes_{\mathbb{Z}} A\right)^{\mathrm{C}_{\mathrm{p}} / N m} \\
\mathrm{a} & \mapsto(\mathrm{a} \otimes \ldots \otimes a)
\end{aligned}
$$

is additive!

The Tate diagonal

MM

Example

1. A abelian group. The map

$$
\begin{aligned}
\Delta_{\mathrm{p}}: A & \rightarrow\left(A \otimes_{\mathbb{Z}} \ldots \otimes_{\mathbb{Z}} A\right)^{\mathrm{C}_{\mathrm{p}} / N m} \\
& \mathrm{a}
\end{aligned}
$$

is additive!
2. If A is p-torsion then this map is an isomorphism.

The Tate diagonal

Example

1. A abelian group. The map

$$
\begin{aligned}
\Delta_{\mathrm{p}}: A & \rightarrow\left(A \otimes_{\mathbb{Z}} \ldots \otimes_{\mathbb{Z}} A\right)^{\mathrm{C}_{\mathfrak{p}} / N m} \\
\mathrm{a} & \mapsto(\mathrm{a} \otimes \ldots \otimes a)
\end{aligned}
$$

is additive!
2. If A is p-torsion then this map is an isomorphism.

Theorem (Rognes-Nielsen '10, N.-Scholze '17)

1. X a spectrum. There is a (unique) natural map

$$
\Delta_{\mathrm{p}}: X \rightarrow\left(X \otimes_{\mathbb{S}} \ldots \otimes_{\mathbb{S}} X\right)^{\mathrm{t} \mathrm{C}_{\mathrm{p}}}
$$

which is lax symmetric monoidal.

The Tate diagonal

Example

1. A abelian group. The map

$$
\begin{aligned}
\Delta_{\mathrm{p}}: A & \rightarrow\left(A \otimes_{\mathbb{Z}} \ldots \otimes_{\mathbb{Z}} A\right)^{\mathrm{C}_{\mathfrak{p}} / N m} \\
\mathrm{a} & \mapsto(\mathrm{a} \otimes \ldots \otimes a)
\end{aligned}
$$

is additive!
2. If A is p-torsion then this map is an isomorphism.

Theorem (Rognes-Nielsen '10, N.-Scholze '17)

1. X a spectrum. There is a (unique) natural map

$$
\Delta_{\mathrm{p}}: X \rightarrow\left(X \otimes_{\mathbb{S}} \ldots \otimes_{\mathbb{S}} X\right)^{\mathrm{t} \mathrm{C}_{\mathfrak{p}}}
$$

which is lax symmetric monoidal.
2. X p-complete, bounded below then this map is an equivalence.

The Tate diagonal

Example

1. A abelian group. The map

$$
\begin{aligned}
\Delta_{\mathrm{p}}: A & \rightarrow\left(A \otimes_{\mathbb{Z}} \ldots \otimes_{\mathbb{Z}} A\right)^{\mathrm{C}_{\mathrm{p}} / N m} \\
a & \mapsto(a \otimes \ldots \otimes a)
\end{aligned}
$$

is additive!
2. If A is p-torsion then this map is an isomorphism.

Theorem (Rognes-Nielsen '10, N.-Scholze '17)

1. X a spectrum. There is a (unique) natural map

$$
\Delta_{\mathrm{p}}: X \rightarrow\left(X \otimes_{\mathbb{S}} \ldots \otimes_{\mathbb{S}} X\right)^{\mathrm{t} \mathrm{C}_{\mathrm{p}}}
$$

which is lax symmetric monoidal.
2. X p-complete, bounded below then this map is an equivalence.

Conjecture

G finite p-group, X p-complete, bounded below spectrum. Then the analogous map

$$
\Delta_{\mathrm{G}}: X \rightarrow\left(\mathrm{X}^{\otimes_{\mathrm{s}} \mathrm{G}}\right)^{\varphi \mathrm{G}}
$$

is an equivalence.

The Tate valued Frobenius

Example

R commutative ring. The Frobenius is the composite

$$
R \xrightarrow{\Delta_{p}}\left(R \otimes_{\mathbb{Z}} \ldots \otimes_{\mathbb{Z}} R\right)^{C_{p}} / N_{m} \xrightarrow{m} R^{C_{p}} / N_{m}=R / p
$$

The Tate valued Frobenius

Example

R commutative ring. The Frobenius is the composite

$$
R \xrightarrow{\Delta_{p}}\left(R \otimes_{\mathbb{Z}} \ldots \otimes_{\mathbb{Z}} R\right)^{C_{p}} / N_{m} \xrightarrow{m} R^{C_{p}} / N_{m}=R / p
$$

Definition

R an \mathbb{E}_{∞}-ring. The Tate-valued Frobenius is the map of \mathbb{E}_{∞}-ring spectra

$$
\varphi_{p}: R \xrightarrow{\Delta_{p}}\left(R \otimes_{\mathbb{S}} \ldots \otimes_{\mathbb{S}} R\right)^{t C_{p}} \xrightarrow{m^{t C_{p}}} R^{t C_{p}}
$$

Example

R commutative ring. The Frobenius is the composite

$$
R \xrightarrow{\Delta_{p}}\left(R \otimes_{\mathbb{Z}} \ldots \otimes_{\mathbb{Z}} R\right)^{C_{p}} / N m \xrightarrow{m} R^{C_{p}} / N m=R / p
$$

Definition

R an \mathbb{E}_{∞}-ring. The Tate-valued Frobenius is the map of \mathbb{E}_{∞}-ring spectra

$$
\varphi_{p}: R \xrightarrow{\Delta_{p}}\left(R \otimes_{\mathbb{S}} \ldots \otimes_{\mathbb{S}} R\right)^{t C_{p}} \xrightarrow{m^{t C_{p}}} R^{t C_{p}}
$$

Example

If $\mathrm{R}=\mathrm{C}^{*}\left(M, \mathbb{F}_{2}\right)$ then φ_{2} induces on π_{*} the map

$$
\mathrm{H}^{*}\left(\mathrm{M}, \mathbb{F}_{2}\right) \rightarrow \mathrm{H}^{*}\left(\mathrm{M}, \mathbb{F}_{2}\right)((\mathrm{t})) \quad \mathrm{x} \mapsto \sum \mathrm{Sq}^{i}(x) \mathrm{t}^{-\mathrm{i}}
$$

Spaces and the Frobenius

- If R is p-complete, finite spectrum, then $R^{t C_{p}} \simeq R \quad \Rightarrow \quad \varphi_{p}: R \rightarrow R$

Spaces and the Frobenius

Example

\square If R is p-complete, finite spectrum, then $R^{t C_{p}} \simeq R \quad \Rightarrow \quad \varphi_{p}: R \rightarrow R$
■ $R=C^{*}\left(M, \mathbb{S}_{p}^{\wedge}\right)$ for M a finite space. Then $\varphi_{p} \simeq \operatorname{id}_{R}$.

Spaces and the Frobenius

Example

■ If R is p-complete, finite spectrum, then $R^{t C_{p}} \simeq R \quad \Rightarrow \quad \varphi_{p}: R \rightarrow R$

- $R=C^{*}\left(M, \mathbb{S}_{p}^{\wedge}\right)$ for M a finite space. Then $\varphi_{p} \simeq \operatorname{id}_{R}$.

Theorem (Yuan '21)
$\mathrm{C}^{*}(-, \mathbb{S}):\left\{\begin{array}{l}\text { finite, simply } \\ \text { conn. spaces }\end{array}\right\} \stackrel{\simeq}{\leftrightharpoons}\left\{\begin{array}{l}\text { finite } \mathbb{E}_{\infty} \text {-algebras } \mathrm{R} \text { with coherent trivializations } \\ \varphi_{\mathrm{p}} \simeq \mathrm{id}_{\mathrm{R}_{\hat{p}}} \text { and } \widetilde{\mathrm{H}}^{\mathrm{i}}(\mathrm{R}, \mathbb{Z})=0 \text { for } \mathrm{i}>-1 .\end{array}\right\}$

Spaces and the Frobenius

Example

- If R is p-complete, finite spectrum, then $R^{t C_{p}} \simeq R \quad \Rightarrow \quad \varphi_{p}: R \rightarrow R$

■ $R=C^{*}\left(M, \mathbb{S}_{p}^{\wedge}\right)$ for M a finite space. Then $\varphi_{p} \simeq \operatorname{id}_{R}$.

Theorem (Yuan '21)
$\mathrm{C}^{*}(-, \mathbb{S}):\left\{\begin{array}{l}\text { finite, simply } \\ \text { conn. spaces }\end{array}\right\} \stackrel{\simeq}{\Rightarrow}\left\{\begin{array}{l}\text { finite } \mathbb{E}_{\infty} \text {-algebras } \mathrm{R} \text { with coherent trivializations } \\ \varphi_{p} \simeq \mathrm{id}_{\mathrm{R}_{\hat{p}}} \text { and } \widetilde{\mathrm{H}}^{\mathrm{i}}(\mathrm{R}, \mathbb{Z})=0 \text { for } \mathrm{i}>-1 .\end{array}\right\}$

Conjecture

$\mathrm{C}_{*}(-, \mathbb{S}):\left\{\begin{array}{l}\text { simply } \\ \text { conn. spaces }\end{array}\right\} \stackrel{\hookrightarrow}{\leftrightharpoons}\left\{\begin{array}{l}\text { simply conn. } \mathbb{E}_{\infty} \text {-coalgebras } \mathrm{C} \text { with } \\ \text { coherent trivializations } \varphi_{\mathrm{p}} \simeq \mathrm{id}_{\mathrm{C}_{\hat{p}}}\end{array}\right\}$

Commutative Frobenius

R commutative ring

$$
\varphi_{p}: R \rightarrow R / p \quad r \mapsto\left[r^{p}\right]
$$

Map of commutative rings

Associative Frobenius
R associative ring

$$
\varphi_{\mathrm{p}}: \mathrm{R} /[\mathrm{R}, \mathrm{R}] \rightarrow(\mathrm{R} /[\mathrm{R}, \mathrm{R}]) / \mathrm{pR} \quad[\mathrm{r}] \mapsto\left[\mathrm{r}^{\mathrm{p}}\right]
$$

Map of abelian groups

Tate valued Frobenius

R commutative ring spectrum

$$
\varphi_{\mathrm{p}}: \mathrm{R} \rightarrow \mathrm{R}^{\mathrm{tC}} \mathrm{C}_{\mathrm{p}}
$$

Map of commutative ring spectra

Frobenius on THH

R associative ring spectrum

$$
\varphi_{\mathrm{p}}: \mathrm{THH}(\mathrm{R}) \rightarrow \mathrm{THH}(\mathrm{R})^{\mathrm{t} \mathrm{C}_{\mathrm{p}}}
$$

Map of spectra

Commutative Frobenius
R commutative ring

$$
\varphi_{\mathrm{p}}: \mathrm{R} \rightarrow \mathrm{R} / \mathrm{p} \quad \mathrm{r} \mapsto\left[\mathrm{r}^{\mathrm{p}}\right]
$$

Map of commutative rings

Associative Frobenius
R associative ring

$$
\varphi_{\mathrm{p}}: \mathrm{R} /[\mathrm{R}, \mathrm{R}] \rightarrow(\mathrm{R} /[\mathrm{R}, \mathrm{R}]) / \mathrm{pR} \quad[\mathrm{r}] \mapsto\left[r^{\mathrm{p}}\right]
$$

Map of abelian groups

Tate valued Frobenius

R commutative ring spectrum

$$
\varphi_{\mathrm{p}}: \mathrm{R} \rightarrow \mathrm{R}^{\mathrm{t} \mathrm{C}_{\mathrm{p}}}
$$

Map of commutative ring spectra

Frobenius on THH

R associative ring spectrum

$$
\varphi_{\mathrm{p}}: \mathrm{THH}(\mathrm{R}) \rightarrow \mathrm{THH}(\mathrm{R})^{\mathrm{t} \mathrm{C}_{p}}
$$

Map of spectra

Topological Hochschild homology

Example

R associative ring, then

$$
R /[R, R]=R \otimes_{R \otimes_{Z} R^{\circ p}} R
$$

as abelian groups.

Topological Hochschild homology

```
Example
```

R associative ring, then

$$
\mathrm{R} /[\mathrm{R}, \mathrm{R}]=\mathrm{R} \otimes_{\mathrm{R} \otimes_{\mathbb{Z}} \mathrm{R}^{\circ p} \mathrm{R}}
$$

as abelian groups.

Definition

R associative ring spectrum. Topological Hochschild homology is the spectrum

$$
\mathrm{THH}(\mathrm{R})=\mathrm{R} \otimes_{\mathrm{R} \otimes_{\mathrm{s}} \mathrm{R}^{\circ p}} \mathrm{R}
$$

Topological Hochschild homology

```
Example
```

R associative ring, then

$$
\mathrm{R} /[\mathrm{R}, \mathrm{R}]=\mathrm{R} \otimes_{\mathrm{R} \otimes_{\mathbb{Z}} \mathrm{R}^{\circ p} \mathrm{R}}
$$

as abelian groups.

Definition

R associative ring spectrum. Topological Hochschild homology is the spectrum

$$
\mathrm{THH}(\mathrm{R})=\mathrm{R} \otimes_{\mathrm{R} \otimes_{\mathrm{s}} \mathrm{R}^{\circ p}} \mathrm{R}
$$

Facts:

■ R commutative ring spectrum $\Rightarrow \mathrm{THH}(\mathrm{R})$ commutative ring spectrum

Topological Hochschild homology

```
Example
```

R associative ring, then

$$
\mathrm{R} /[\mathrm{R}, \mathrm{R}]=\mathrm{R} \otimes_{\mathrm{R} \otimes_{\mathbb{Z}} \mathrm{R}^{\circ p} \mathrm{R}}
$$

as abelian groups.

Definition

R associative ring spectrum. Topological Hochschild homology is the spectrum

$$
T H H(R)=R \otimes_{R \otimes_{S} R_{\text {op }}} R .
$$

Facts:

\square R commutative ring spectrum $\Rightarrow \mathrm{THH}(\mathrm{R})$ commutative ring spectrum

$$
\Rightarrow \mathrm{THH}_{*}(\mathrm{R}):=\pi_{*}(\mathrm{THH}(\mathrm{R})) \text { graded commutative ring }
$$

Topological Hochschild homology

MM

Example

R associative ring, then

$$
R /[R, R]=R \otimes_{R} \otimes_{\mathbb{Z}} R^{\circ p} R
$$

as abelian groups.

Definition

R associative ring spectrum. Topological Hochschild homology is the spectrum

$$
T H H(R)=R \otimes_{R \otimes_{S} R_{\text {op }}} R .
$$

Facts:

\square R commutative ring spectrum $\Rightarrow \mathrm{THH}(\mathrm{R})$ commutative ring spectrum

$$
\Rightarrow \mathrm{THH}_{*}(\mathrm{R}):=\pi_{*}(\mathrm{THH}(\mathrm{R})) \text { graded commutative ring }
$$

\square There is an S^{1}-action on $\mathrm{THH}(\mathrm{R}) \quad$ (Connes '83)

Topological Hochschild homology

Example

R associative ring, then

$$
R /[R, R]=R \otimes_{R \otimes_{Z} R^{\circ p}} R
$$

as abelian groups.

Definition

R associative ring spectrum. Topological Hochschild homology is the spectrum

$$
T H H(R)=R \otimes_{R \otimes_{S} R_{\text {op }}} R .
$$

Facts:

■ R commutative ring spectrum $\Rightarrow \mathrm{THH}(\mathrm{R})$ commutative ring spectrum

$$
\Rightarrow \mathrm{THH}_{*}^{\prime}(\mathrm{R}):=\pi_{*}(\mathrm{THH}(\mathrm{R})) \text { graded commutative ring }
$$

■ There is an S^{1}-action on $\operatorname{THH}(\mathrm{R}) \quad$ (Connes '83)

Theorem (Bökstedt '85)

There is an isomorphism

$$
\mathrm{THH}_{*}\left(\mathbb{F}_{\mathfrak{p}}\right) \cong \mathbb{F}_{\mathfrak{p}}[x] \quad|x|=2
$$

Proposition (Bökstedt-Hsiang-Madsen '93,...,N.-Scholze '17)
For every prime p there is a S^{1}-equivariant map of spectra

$$
\varphi_{p}: \mathrm{THH}(\mathrm{R}) \rightarrow \mathrm{THH}(\mathrm{R})^{\mathrm{tC}} \mathrm{C}_{\mathrm{p}}
$$

Proposition (Bökstedt-Hsiang-Madsen '93,...,N.-Scholze '17)
For every prime p there is a S^{1}-equivariant map of spectra

$$
\varphi_{p}: \mathrm{THH}(\mathrm{R}) \rightarrow \mathrm{THH}(\mathrm{R})^{\mathrm{tC}} \mathrm{C}_{\mathrm{p}}
$$

- Constructed from the Tate-diagonal

Proposition (Bökstedt-Hsiang-Madsen '93,...,N.-Scholze '17)
For every prime p there is a S^{1}-equivariant map of spectra

$$
\varphi_{\mathrm{p}}: \mathrm{THH}(\mathrm{R}) \rightarrow \mathrm{THH}(\mathrm{R})^{\mathrm{t} \mathrm{C}_{\mathrm{p}}}
$$

- Constructed from the Tate-diagonal
- R commutative ring spectrum, then have commutative diagram

Proposition (Bökstedt-Hsiang-Madsen '93,...,N.-Scholze '17)
For every prime p there is a S^{1}-equivariant map of spectra

$$
\varphi_{p}: \mathrm{THH}(\mathrm{R}) \rightarrow \mathrm{THH}(\mathrm{R})^{\mathrm{t} \mathrm{C}_{p}}
$$

- Constructed from the Tate-diagonal
- R commutative ring spectrum, then have commutative diagram

- φ_{p} is equivalence after p-completion (in positive degrees) for $R=\mathbb{S}, H \mathbb{F}_{p}, H \mathbb{Z}, M U, B P, \ldots$

Recall

For $\mathrm{K}_{*}\left(\mathbb{Z} / \mathrm{p}^{\mathrm{k}}\right)$ we use trace methods:

$\mathrm{THH}_{*}(\mathrm{R})$

Recall

- TC(R) defined by Bökstedt-Hsiang-Madsen '94

For $\mathrm{K}_{*}\left(\mathbb{Z} / \mathrm{p}^{\mathrm{k}}\right)$ we use trace methods:
$\mathrm{K}_{*}(\mathrm{R})$
$\hat{\xi}$
$\mathrm{TC}_{*}(\mathrm{R})$
$\hat{\xi}$
$\mathrm{THH}_{*}(\mathrm{R})$

Recall

For $\mathrm{K}_{*}\left(\mathbb{Z} / \mathrm{p}^{\mathrm{k}}\right)$ we use trace methods:

- TC(R) defined by Bökstedt-Hsiang-Madsen '94
- There is a map $K(R) \rightarrow T C(R)$ called cyclotomic trace

Recall

For $\mathrm{K}_{*}\left(\mathbb{Z} / \mathrm{p}^{\mathrm{k}}\right)$ we use trace methods:

- TC(R) defined by Bökstedt-Hsiang-Madsen '94

■ There is a map $K(R) \rightarrow T C(R)$ called cyclotomic trace
$■$ Often an iso, e.g. $K_{*}\left(\mathbb{Z} / p^{k}\right)_{p}^{\wedge} \cong T C_{*}\left(\mathbb{Z} / p^{k}\right)$ for $*>0$

Topological cyclic homology

Recall

For $\mathrm{K}_{*}\left(\mathbb{Z} / \mathrm{p}^{\mathrm{k}}\right)$ we use trace methods:

$\mathrm{THH}_{*}(\mathrm{R})$

■ TC(R) defined by Bökstedt-Hsiang-Madsen '94
\square There is a map $K(R) \rightarrow T C(R)$ called cyclotomic trace
■ Often an iso, e.g. $K_{*}\left(\mathbb{Z} / p^{k}\right)_{\mathcal{p}}^{\wedge} \cong T C_{*}\left(\mathbb{Z} / p^{k}\right)$ for $*>0$

Topological cyclic homology

Recall

For $\mathrm{K}_{*}\left(\mathbb{Z} / \mathrm{p}^{\mathrm{k}}\right)$ we use trace methods:

$\mathrm{THH}_{*}(\mathrm{R})$

■ TC(R) defined by Bökstedt-Hsiang-Madsen '94
$■$ There is a map $K(R) \rightarrow T C(R)$ called cyclotomic trace
■ Often an iso, e.g. $K_{*}\left(\mathbb{Z} / p^{k}\right)_{\mathcal{p}}^{\wedge} \cong T C_{*}\left(\mathbb{Z} / p^{k}\right)$ for $*>0$

Theorem (N.-Scholze '17)

If R is connective, then $\mathrm{TC}(\mathrm{R})$ can be computed from $\operatorname{THH}(\mathrm{R})$ with its S^{1}-action and maps φ_{p}.

More precisely: CycSp the ∞-category of spectra with S^{1}-action and S^{1}-equiv. maps $\varphi_{p}: X \rightarrow X^{\mathrm{t} \mathrm{C}_{p}}$. Then

$$
\mathrm{TC}(\mathrm{R}) \simeq \operatorname{map}_{\mathrm{CycSp}}(\mathbb{1}, \mathrm{THH}(\mathrm{R}))
$$

Prisms and Bökstedt periodicity

For $\operatorname{TC}\left(\mathbb{Z} / \mathrm{p}^{k}\right)$, we compute TC relative to $\mathbb{S}[z]_{p}$ and use descent along $\mathbb{S} \rightarrow \mathbb{S}[z]_{p}$

Prisms and Bökstedt periodicity

For $\operatorname{TC}\left(\mathbb{Z} / \mathrm{p}^{k}\right)$, we compute TC relative to $\mathbb{S}[z]_{p}$ and use descent along $\mathbb{S} \rightarrow \mathbb{S}[z]_{p}$
Proposition
Let \mathbb{S}_{A} be a p-complete \mathbb{E}_{∞}-ring, flat over \mathbb{S} and $A:=\pi_{0}\left(\mathbb{S}_{A}\right)$.

Prisms and Bökstedt periodicity

For $\operatorname{TC}\left(\mathbb{Z} / \mathrm{p}^{k}\right)$, we compute TC relative to $\mathbb{S}[z]_{\mathrm{p}}$ and use descent along $\mathbb{S} \rightarrow \mathbb{S}[z]_{p}$
Proposition
Let \mathbb{S}_{A} be a p-complete \mathbb{E}_{∞}-ring, flat over \mathbb{S} and $\mathrm{A}:=\pi_{0}\left(\mathbb{S}_{\mathrm{A}}\right)$. Then

$$
\varphi_{p}: \mathbb{S}_{A} \rightarrow \mathbb{S}_{A}^{t C_{p}} \simeq \mathbb{S}_{A}
$$

induces on π_{0} a lift of Fronbenius, i.e. A is a δ-ring.

Prisms and Bökstedt periodicity

MM
For $\operatorname{TC}\left(\mathbb{Z} / \mathrm{p}^{k}\right)$, we compute TC relative to $\mathbb{S}[z]_{p}$ and use descent along $\mathbb{S} \rightarrow \mathbb{S}[z]_{p}$

Proposition
Let \mathbb{S}_{A} be a p-complete \mathbb{E}_{∞}-ring, flat over \mathbb{S} and $\mathrm{A}:=\pi_{0}\left(\mathbb{S}_{\mathrm{A}}\right)$. Then

$$
\varphi_{p}: \mathbb{S}_{A} \rightarrow \mathbb{S}_{A}^{t \mathrm{C}_{p}} \simeq \mathbb{S}_{A}
$$

induces on π_{0} a lift of Fronbenius, i.e. A is a δ-ring.

Theorem (Antieau-Krause-N.)

R a nice A-algebra. Then $\mathrm{TC}\left(\mathrm{R} / \mathbb{S}_{\mathrm{A}}\right)$ admits a complete filtration with i-th graded given by an extension

$$
\mathbb{Z}_{\mathfrak{p}}(\mathfrak{i})(\mathrm{R} / \mathrm{A})[2 \mathrm{i}] .
$$

of Bhatt-Scholze's syntomic cohomology relative to δ-rings

Prisms and Bökstedt periodicity

For $\operatorname{TC}\left(\mathbb{Z} / \mathrm{p}^{k}\right)$, we compute TC relative to $\mathbb{S}[z]_{p}$ and use descent along $\mathbb{S} \rightarrow \mathbb{S}[z]_{p}$

Proposition

Let \mathbb{S}_{A} be a p-complete \mathbb{E}_{∞}-ring, flat over \mathbb{S} and $A:=\pi_{0}\left(\mathbb{S}_{A}\right)$. Then

$$
\varphi_{p}: \mathbb{S}_{A} \rightarrow \mathbb{S}_{A}^{t C_{p}} \simeq \mathbb{S}_{A}
$$

induces on π_{0} a lift of Fronbenius, i.e. A is a δ-ring.

Theorem (Antieau-Krause-N.)

R a nice A-algebra. Then $\mathrm{TC}\left(\mathrm{R} / \mathbb{S}_{\mathrm{A}}\right)$ admits a complete filtration with i-th graded given by an extension

$$
\mathbb{Z}_{p}(i)(R / A)[2 i] .
$$

of Bhatt-Scholze's syntomic cohomology relative to δ-rings

Corollary (Ultimate Bökstedt periodicity)
For $\mathrm{R}=\mathrm{A} / \mathrm{I}$ with (A, I) a prism we have
$\mathrm{THH}_{*}\left(\mathrm{R} / \mathbb{S}_{A}\right) \cong \begin{cases}\mathrm{I}^{n} / \mathrm{I}^{\mathrm{n}+1} & \text { for } *=2 n \\ 0 & \text { else }\end{cases}$

Definition

We say that $\operatorname{THH}(R)$ is eventually p-perfect if the map $\varphi_{p}: \operatorname{THH}(R)_{p}^{\wedge} \rightarrow \operatorname{THH}(R)^{t C_{p}}$ is an isomorphism on π_{*} for $* \gg 0$.

Definition

We say that $\operatorname{THH}(R)$ is eventually p-perfect if the map $\varphi_{p}: \operatorname{THH}(R)_{p}^{\wedge} \rightarrow \operatorname{THH}(R)^{t C_{p}}$ is an isomorphism on π_{*} for $* \gg 0$.

This is true for $R=\mathbb{S}, \mathbb{F}_{\mathfrak{p}}, \mathbb{Z}, M U, B P, \ldots$

Theorem (Antieau-N. '18)

1. There is a t -structure on $\mathrm{CycSp}_{\mathrm{p}} \wedge$ whose connective objects are those $\left(\mathrm{X}, \varphi_{\mathrm{p}}\right)$ such that X is connective.
2. Every t-truncated object X is eventually p-perfect and has truncated TC.

Definition

We say that $\operatorname{THH}(R)$ is eventually p-perfect if the map $\varphi_{p}: \operatorname{THH}(R)_{p}^{\wedge} \rightarrow \operatorname{THH}(R)^{t C_{p}}$ is an isomorphism on π_{*} for $* \gg 0$.

This is true for $R=\mathbb{S}, \mathbb{F}_{p}, \mathbb{Z}, M U, B P, \ldots$

Theorem (Antieau-N. '18)

1. There is a t -structure on $\mathrm{CycSo}_{\mathrm{p}} \hat{\mathrm{p}}$ whose connective objects are those $\left(\mathrm{X}, \varphi_{\mathrm{p}}\right)$ such that X is connective.
2. Every t-truncated object X is eventually p-perfect and has truncated TC.

Hahn-Wilson '20 prove a converse to (2) and deduce that

$$
\begin{aligned}
& \mathrm{TC}(\mathrm{BP}\langle\mathrm{n}\rangle) \rightarrow \mathrm{L}_{\mathrm{n}+1}^{\mathrm{f}}(\mathrm{TC}(\mathrm{BP}\langle\mathrm{n}\rangle)) \\
& \quad \mathrm{K}(\mathrm{BP}\langle\mathrm{n}\rangle) \rightarrow \mathrm{L}_{\mathrm{n}+1}^{\mathrm{f}}(\mathrm{~K}(\mathrm{BP}\langle\mathrm{n}\rangle))
\end{aligned}
$$

are after p-completion equivalences in degrees $* \gg 0$ (redshift).

