Pressemitteilung upm

Neuartige Biosensoren

Forscherteam entwickelt neue Methode zum Nachweis von Proteinen / Nanostrukturierte optische Gitter

Münster (upm), 08. März 2010

Optische Gitter aus Biomembranlipiden lassen sich als neuartige Biosensoren einsetzen.
Optische Gitter aus Biomembranlipiden lassen sich als neuartige Biosensoren einsetzen. Foto: Wilfrid Schroeder - KIT

Wissenschaftler der Westfälischen Wilhelms-Universität Münster (WWU) und des "Karlsruher Institute of Technology" (KIT) haben ein neues Verfahren entwickelt, um nanostrukturierte Biomaterialien mit speziellen optischen Eigenschaften herzustellen. Mithilfe optischer Gitter, deren Gitterlinien jeweils aus einer Vielzahl übereinandergeschichteter Lipid-Lagen bestehen, gelang es ihnen, Proteine auf einfache Weise optisch nachzuweisen. Diese besonders kostengünstige Methode ermöglicht die Untersuchung von Wechselwirkungen zwischen Lipiden und Proteinen ohne die sonst übliche Farbstoffmarkierung. Die Forscher um Harald Fuchs, Professor am Physikalischen Institut der WWU und Leiter des münsterschen Zentrums für Nanotechnologie (CeNTech), haben die Ergebnisse ihrer Arbeiten in der renommierten Zeitschrift "Nature Nanotechnology" veröffentlicht.

Optische Gitter bestehen aus Linien in der Größenordnung der Lichtwellenlänge. Sie beugen das Licht, wobei die Beugungserscheinungen je nach Höhe und Breite der Strukturen unterschiedlich ausfallen. Lipide sind strukturelle und funktionelle Komponenten von biologischen Membranen. "Als Gittermaterial besitzen Lipide eine Reihe von Vorteilen", erklärt Dr. Steven Lenhert, der dem münsterschen Team angehörte und inzwischen als "Assistant Professor" an der "Florida State University" tätig ist. "Die Lipide sind biokompatibel, also verträglich mit lebenden Zellen und Organismen. Sie eignen sich ideal für Biosensoren und Modellmembransysteme." Da sie in Wasser flüssig und zugleich stabil sind, können sie ihre Form dynamisch ändern - eine wichtige Eigenschaft im Hinblick auf das Funktionsprinzip der neuartigen optischen Gitter: Die zu untersuchenden Moleküle befinden sich in wässriger Lösung. Sie docken an bestimmte "Gegenmoleküle" in dem Gitter an. Dadurch verändern sich die Struktur des Gitters und damit seine optischen Eigenschaften je nach Art der angedockten Moleküle auf charakteristische Weise. So können Wissenschaftler von der Veränderung der optischen Eigenschaften auf die untersuchten Moleküle schließen.

Zur Fertigung der Gitter setzen die Forscher die sogenannte Dip-Pen-Nanolithographie (DPN) ein, eine "Direktschreibmethode" zur Erzeugung von Nanostrukturen, die aus der Raster-Kraftmikroskopie stammt. Der englischsprachige Begriff "Dip-Pen" spielt auf das Eintauchen eines Federkiels in ein Fässchen Tinte an. "Unsere Tinte ist jedoch kein Farbstoff, sondern besteht in diesem Fall aus Lipidmolekülen, mit denen wir optische Gitter 'schreiben'", erklärt Harald Fuchs. DPN bietet die erforderliche Auflösung, um die feinen Gitterlinien zu "schreiben", und sie ermöglicht es, die Stärke der übereinandergeschichteten Lipid-Lagen zu steuern. "Man kann gleichzeitig mit bis zu 55.000 Spitzen schreiben, sodass innerhalb von nur einer Minute eine Fläche von zwei Quadratzentimetern mit nahezu beliebigen Nanostrukturen geschrieben werden kann. Wenn man unterschiedliche molekulare Tinten auf die verschiedenen Spitzen aufbringt, lässt sich auch die chemische Zusammensetzung der einzelnen Gitterstruktursensoren gezielt variieren. Auf diese Weise lassen sich sogar mehrere Stoffe gleichzeitig detektieren", erklärt Harald Fuchs.

Die neuartigen optischen Gitter aus Biomaterialien ermöglichen neben der Untersuchung von Lipid-Protein-Wechselwirkungen auch das Studium der Funktion von Liposomen. Diese winzigen, von einer Lipidschicht umschlossenen Hohlkugeln kommen in Zellen vor und werden auch in der Kosmetikindustrie eingesetzt, um wasserlösliche Wirkstoffe in die Haut einzuschleusen. Denkbar ist darüber hinaus, die neuartigen optischen Gitter für diagnostische Anwendungen in der Medizin weiterzuentwickeln.

Literatur