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Abstract

Models of autoassociative memories process information contained in a certain number of
states of a neural network and are afterwards able to associate output states with given
input states of this neural network. An important performance aspect of these models is
the ability to reproduce the input configuration as ouput if it is one of the learned neural
network states. This is measured by the capacity which indicates the maximal number
of stored patterns until the described property is lost. A further performance aspect is
the capability of reconstructing or correcting partially erased or corrupted versions of the
stored configurations.

Various models of associative memories storing sparse patterns are studied. The stor-
age capacities and error correcting behaviour are analysed with regard to the application
of different storing mechanisms, retrieval dynamics and probability distributions of the
stored patterns. We prove the existence of sharp bounds on the storage capacity and error
correction, depending on the remaining relevant parameters of the models. Characteris-
tical properties of the different models are examinend.
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1 Introduction

With the objective to model the memory activities of a human brain various models of
neural networks have been introduced and analysed during the last decades. A neural
network usually consists of a simple graph G = (V,E): the elements of the vertex set V
are called neurons and are connected through a set of edges E. These take the role of
the synapses. To model neural activities the neurons can take values in a state space S
containing at least two elements. A state of the network is then described by a vector
σ = (σi)i∈V ∈ SV , σi ∈ S denoting the state of neuron i ∈ V . Additionally, for each
edge e ∈ E, there is a variable Je to be specified later, describing a certain relationship
between the two neurons connected by e and called synaptic efficacy or synaptic weight
(cf. [30]). It is possible to use additional functions indicated by the edges also containing
information concerning the relationship between the connected neurons.

To make the neural network a model of an (associative) memory, it is supposed to
store a certain amount of information. This information comes in the form of M states
of the network ξµ ∈ SV , 1 ≤ µ ≤M (called patterns or messages). Hebb, a psychologist,
postulated in [19] that learned information in a brain is reflected by the simultaneous
firing of certain neurons and this in turn strengthens the connecting synapses. This so
called Hebbian learning (see [41]) is a guiding principle in many models when constructing
the Je. The patterns are usually stored by determining the value Je through a calculation
rule, depending on the ξµ and this rule in turn describes the outcome of a Hebbian learning
process. The Je are called synaptic efficacies or synaptic weights. In particular, the value
Je is measurable with respect to ξµi , ξ

µ
j , 1 ≤ µ ≤M , if e = {i, j}, i, j ∈ V . This property

is called locality of the synaptic weights, see [30].
A memory is called associative if, confronted with some input pattern, it can produce

an output pattern: in heteroassociative memories, the output patterns are of other forms
than the input patterns, in autoassociative memories they have the same form (see [45]).
An autoassociative or content-addressable memory should be able to recall a stored pat-
tern, given only a part of it (see [25]) and to correct corrupted patterns (see [33]). To reach
this, a dynamics T is defined on SV . The dynamics, confronted with an input pattern
σ ∈ SV , can either update all the neurons in one step (synchronous updating/ parallel
dynamics) or one after another (asynchronous updating/ sequential dynamics).

The model that attracted lots of interest to this research area and is the standard
model for an associative memory, see [21], was introduced by Hopfield in 1982 and is
nowadays called the Hopfield model. For some N ∈ N, one considers the vertex set
V = {1, . . . N} together with the state space S = {−1, 1}. The state 1 signifies that
a neuron is active (also called excited) and −1 signifies that it is inactive (also called
quiescent). There are M(N) patterns ξ1, . . . ξM ∈ SV stored at random, independently
and identically distributed according to the uniform distribution on SV . The underlying
graph is the complete graph on V and the synaptic weights are determined by the Hebbian
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1 Introduction

learning rule

Jij =
1

N

M(N)∑
µ=1

ξµi ξ
µ
j , i 6= j.

Given an input pattern σ, the local field at a neuron i is defined by

Si(σ) :=
∑
j 6=i

Jijσj.

The parallel dynamics T = (T1, . . . , TN) maps an input spin configuration σ ∈ {−1, 1}N
to (T1(σ), . . . , TN(σ)), with Ti(σ) = sgn(Si(σ)). Alternatively, a sequential dynamics
T̄ = T̄τ(N) ◦ . . . ◦ T̄τ(1) can be used, with T̄i(σ) = (σ1, . . . , σi−1, Ti(σ), σi+1, . . . , σN) and an
arbitrary permutation τ of the set V . The model can also be interpreted as a spin glass as
introduced by Pastur and Figotin in [39]. The space SV is thus also called configuration
space and the states of the neurons spins. Concretely, the dynamics is related to a
Hamiltonian (energy) function defined on {−1, 1}N , namely

H(σ) := −1

2

∑
i 6=j

Jijσiσj = −1

2

N∑
i=1

σiSi(σ)

such that, using the sequential dynamics, each step of the dynamics decreases the energy.
Then the sequential dynamics converges to a local minimum of the Hamiltonian and a
stored pattern is stable, this is, a fixed point of the dynamics, if it is a local minimum
of the Hamiltonian. It can be interesting to analyse the energy landscape to determine
the basins of attraction of the local minima: if the input pattern is within the basin of
attraction of a local minimum, the dynamics started in this input pattern converges to
the local minimum.

The maximal number of patterns that can be stored and correctly memorised is called
capacity. There are different notions of capacity, depending on the exact requirements
one has, e. g., if one claims that the stored patterns shall be perfectly memorised (they are
fixed points of the dynamics or local minima of the Hamiltonian, respectively), or if one is
willing to accept small errors (the patterns just have to be located close to local minima
of the energy function, measured in Hamming distance). Another aspect of the notion
of storage capacity is the requirement that all patterns are fixed points of the dynamics,
in contrast to the less restrictive requirement that an arbitrary but fixed stored pattern
is stable. A further, interesting question is if corrupted versions of the stored patterns
are recovered by the dynamics or at least attracted to a local minimum near the stored
pattern, respectively.

Hopfield suggested, supported by computer simulations, that the Hopfield model can
store up to α∗ ·N patterns, with α∗ ≈ 0.15, and that all learned messages will be forgotten
(the stored patterns are no longer close to fixed points of the dynamics) ifM(N) > α∗ ·N .
Using the non-rigorous replica trick, Amit et al. ([3], [4]) obtained similar results as
Hopfield (α∗ ≈ 0.138), namely that the Hopfield model can store up to αN patterns,
with a similar value for α, if small errors are accepted. Newman in [35] was able to prove
rigorously that the model is able to store αN patterns, if small errors are tolerated, giving
a lower bound on α ≥ 0.056. This bound was later improved by Loukianova (see [28],
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[29]) and Talagrand (see [42], [43]), up to 0.08. Concerning the more restrictive case where
the patterns have to be fixed points of the dynamics and corrupted patterns have to be
recovered exactly, McEliece et al. showed rigorously in [34] that a fixed but arbitrary
pattern is exactly memorised and in addition a corrupted version of a stored pattern with
a number of %N errors is corrected by the dynamics if % < 1

2
and the number of stored

patterns is at most αN/ log(N) with α depending on %, where α = 1
2
for % = 0; a similar

results holds for all the patterns if α < 1
4
. Bovier, also considering the perfect retrieval,

was able to show that this bound is sharp and the network is not able to recognise a stored
pattern, with probability converging to 1 if α > 1

2
(see [11]).

Inspired by results of biological research concerning the human brain observing that
only few neurons are involved when something is memorised, sparse models were proposed.
On a vertex set of N ∈ N neurons with a state space S containing states that are either
referred to as active or as inactive, with possibly more than one active state, these models
store patterns with only a few active neurons per pattern, compared to the number N .
Willshaw et al. [44], Palm [37]/ Palm and Sommer [38], Amari [2] and Okada [36], among
others, proposed and/or analysed sparse models and came to the conclusion that their
capacity is much larger than the one of the original Hopfield model. The grade of sparsity
is measured by the activity of the stored patterns, this is the fraction of the expected
number of activated neurons in a stored pattern divided by the total number of neurons
N (see [2]). The models mentioned above either use S = {0, 1} or S = {−1, 1}, with the
0 or respectively the −1 representing the inactive state. The two possible states −1 and 1
of the neurons in the Hopfield model described so far are interchangeable. If the inactive
state is represented by a 0 instead of a −1, the synaptic efficacy belonging to the edge
connecting the two neurons i and j is only influenced by such messages in which i and j
are both activated. In the −1 case, the synaptic efficacy takes every stored message into
account. Besides Okada, all the researchers named above considered the state space {0, 1}.
On the edges of the complete graph on the vertex set V = {1, . . . , N} they either used
additive synaptic weights as Hopfield (Amari, Okada) or a binary learning rule (Willshaw
et al., Palm, Palm and Sommer) with binary synaptic efficacies Jij ∈ {0, 1} indicating
whether the two neurons belonging to an edge are at least once together activated in one
of the stored patterns (then Jij = 1) or not (Jij = 0).

Initiated by the publication of several variations of a new sparse model of associative
memory, see e.g. [17], we rigorously analyse two of these models with an activity depending
on N and converging to 0. Chapters 2 and 4 are devoted to the models of Amari and
Willshaw, both using the state space S = {0, 1}, the first one using the additive and the
second one the binary learning rule. In this context the Willshaw model can be defined
with two different dynamics. The first one uses a threshold algorithm that activates
neurons whose local field, defined as in Hopfield’s model, but with the binary synaptic
weights, exceeds a given threshold. The second one is a Winner takes all (WTA) algorithm
as proposed by Gripon, Berrou et al. for their model ([22]), activating a certain number
of neurons that possess the highest local field. Both models, the one of Amari and the
Willshaw model, can be considered in a version where stored patterns consist of a fixed
number of active neurons per message and in a version where the states of the neurons of
a stored message are independent and identically distributed random variables taking the
active state with probability pN , where pN is the activity in the network with N neurons
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1 Introduction

and tends to 0 as N goes to infinity.
The binary state space is expanded to S = {−1, 0, 1}, now with a 0 corresponding to

the inactive state of a neuron and both, a 1 and a −1, corresponding to active states. We
analyse two of these models in a sparse version, both using the vertex set {1, . . . N} for
some N ∈ N and the complete graph KN on these neurons. The M(N) stored patterns
are chosen at random and for each i ∈ {1, . . . , N} and µ ≤ M(N) the i-th spin of the
µ-th stored pattern is 0 with probability 1− pN and ±1 with probability 1/2 · pN , where
pN is the activity of the model using N neurons. As in the binary models, it is also
possible to choose the stored patterns uniformly among the set of all spin configurations
σ ∈ {−1, 0, 1}N with a fixed number N · pN of active neurons.

The first model uses an additive learning rule like the Hopfield model. It is called
Ternary simple model, was introduced and analysed for fixed activity p by Löwe and
Vermet in [31] and is examined in Chapter 3 in the sparse case with activity pN =
log(N)/N depending on N . A more complicated model for the ternary state space is the
model of Blume, Emery and Griffiths, proposed in [7] as a spin glass model to analyse
the behaviour of liquid He3 − He4 mixtures. Using an additive learning rule with Jij =∑M

µ=1 ξ
µ
i ξ

µ
j , the dynamics takes the variables Kij, i 6= j, into account besides the synaptic

weights. The variable Kij counts common activities with a positive impact and common
inactivities of the neurons i and j per message and with a negative impact messages in
which either i or j is active and the other one is inactive. A neuron i is activated by the
dynamics, if the absolute value of its local field Si(σ) =

∑
j 6=i σjJij at the input pattern

σ, defined as in Amari’s model and using the synaptic efficacies, exceeds the value of the
function θi(σ) =

∑
j 6=i(σj)

2Kij. The neuron is in this case assigned to the sign of the
local field. While Bollé and Verbeiren in [8] and Bollé, Castillo and Shim in [9] stated
that this model performs best compared to other three-state-networks and based their
assertions on the non-rigorous replica theory, Löwe and Vermet in [31] rigorously showed
the existence of lower bounds on the storage capacity of these two ternary models, for
fixed p, observing that the capacity increases for small p in the Ternary simple model,
whereas it decreases as p gets smaller in the BEG model. They supposed that for small
p the BEG model is outperformed by the Ternary simple model. We will show that in
the sparse case with activity pN = log(N)/N depending on N the BEG model is indeed
outperformed by the Ternary simple model, but can slightly be changed and then offers
the second best capacity of the models examinend in this thesis. We prove that stored
patterns are not stable in the original model in the considered sparse case and propose a
modification that allows to store a high number of messages, compared to the models in
chapters 2 - 4.

Over the past few years, a series of papers has been published by Gripon, Berrou
et al. (see e. g., [1], [16], [17], [22], [23], [24], [45]): they deal with several variations
of models whose special feature is a cluster structure. Inspired by the brain, a pattern
to be memorised addresses neurons of different parts of the neural net. The number of
clusters c is small compared to the number of neurons l contained in a cluster. They
use c = log(l) and N = cl neurons in total. The edge set includes all possible edges
that connect two neurons which do not belong to the same cluster and all self-loops (an
edge connecting a neuron to itself). The edges are usually allocated to binary synaptic
weights, but other possibilities are imaginable, as proposed in [20]. The active neurons of
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an input pattern send signals through active edges which means that the synaptic weight
of the edge is 1. The decision which edges are active is made by storing a number of
patterns, and an edge connecting two neurons is active if and only if these two neurons
are at least once part of (excited in) the same stored message. There are several ways to
decide which neurons are activated after a step of the dynamics. Usually the decision is
made per cluster by a WTA algorithm, in [17] still by counting all incoming signals and
determining the neuron that collects the highest number of signals, later (e. g., [1], [23],
[24], [45]) by counting, per neuron, the number of clusters from which it receives at least
one signal. The second decision rule is more plausible because it prevents a high influence
of errors and accounts for the fact that there is only one active neuron per cluster in a
stored message. According to the authors and simulations they made, this decision rule
shows a better error correcting behaviour (see [45]). It is also possible to use a threshold
algorithm per cluster (see [23]), here also counting the number of clusters from which at
least one signal is obtained instead of the total number of signals. In particular, the cluster
structure in combination with the self-loops can be exploitet to guarantee stability of all
stored patterns, independent of their number. Chapter 6 deals with different versions of
this model, called Gripon-Berrou model or GB model, for short.

The authors state that their model performs better than the Hopfield model, which is
indeed the case, but all sparse models analysed in this work possess much higher capacities
than the Hopfield model. We show that the number of stored patterns can in all other
models be at most M(N) = αN2/ log(N)2 with a constant α to be determined and
depending on the model, whereas the Hopfield model can only remember αN/ log(N) or
αN patterns, depending on the notion of capacity. We have to remark that some versions
of the models of chapters 2-5, namely the ones with independent and identically distributed
spins, can only preserve this high capacity if the requirement is that an arbitrary chosen
pattern is stable with probability converging to 1. As we will show in the corresponding
chapters, this high capacity is lost if one claims that all patterns have to be stable with
probability tending to 1. On the other hand, we will see that in the versions with fixed
number of active neurons per stored pattern and in the GB model, the order of the capacity
can also be maintained under the latter condition on the stability.

We give a detailed analysis of the capacity and the error correcting abilities of the
different models. If M = αN2/ log(N)2 patterns are stored, the variable α is called
capacity variable. We show that there are sharp bounds on the capacity variables for
each model besides the GB model with WTA algorithm (called SUM-of-MAX rule) and
a version of the GB model with threshold algorithm, i.e., there is an α∗ > 0 depending
on the model, such that for α < α∗ and appropriate choice of the threshold, if there is
one, αN2/ log(N)2 patterns can be stored such that an arbitrary one is a fixed point of
the dynamics, with probability converging to 1. If α > α∗, an arbitrary stored pattern
is instable with probability concerging to 1 independent of the choice of the threshold.
We prove that the GB model with SUM-of-MAX rule and the GB model with threshold
algorithm, using an appropriate threshold, can store all patterns such that they are stable.
Of course it is not reasonable to store all possible patterns and if one expects the model
to correct a certain number of errors in a stored pattern, the number of stored patterns
is also bounded in these models.

Amari’s model, the Ternary simple model, the BEG model in the adapted version used
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1 Introduction

in this thesis, the Willshaw model with threshold dynamics and two versions of the GB
model use thresholds in their dynamics. These thresholds are determined by a threshold
variable γ. We determine the sets of admissible threshold variables and show that in
each considered model in its version with i.i.d. spins, there are sharp bounds α∗(γ) on
the capacity variables in dependence on the used threshold variable, such that a number
M = αN2/ log(N)2 of stored patterns leads to instability of an arbitrary stored pattern
if α > α∗(γ) and to stability, if α < α∗(γ), both with high probability. Besides the
stability of arbitrary stored patterns we also consider the stability of all stored patterns.
We observe that in the models of chapters 2-5 it is advantageous to choose the stored
patterns uniformly among the set of patterns with fixed number NpN of active neurons
instead of using independent and identically distributed random variables to determine
the spins of a stored message. The capacity of the latter versions (i.i.d. spins) of the
models decreases drastically if one wants all patterns to be stable, compared to the first
versions of the models. The model in Chapter 6 has a fixed number of active neurons per
stored message by construction.

Concerning the error correcting abilities of the models, we can give sharp bounds on
α and γ (depending on the type of error) for the one step retrieval of corrupted patterns.
It turns out that there are two principal types of errors that have to be distinguished:
corruption of active and of inactive neurons, respectively. These influence the capacity in
different ways, if one wants to correct a certain number of errors of this kind. The results
obtained in the different chapters are summarised and compared in Chapter 7.

6



Notations and Conventions

In this thesis, the sizes of the networks depend on a natural number N as do the random
variables in the various chapters. The results are asymptotic. An event is called to happen
with high probability, if its probability tends to 1 as N tends to infinity. All random
variables are defined on a common probability space (Ω,A,P); notations of functions,
synaptic efficacies, local fields, dynamics and random variables are usually made per
chapter. In case of ambiguity, their affilitation is indicated more precisely. The following
notations are used: for two functions f, g : R→ R, we write g = O(f), if

∃C > 0,∃x∗ ∈ R : ∀x > x∗ : |g(x)| ≤ C|f(x)|,

and g = o(f), if

lim
x→∞

|g(x)|
|f(x)|

= 0.

In addition, we write f ≈ g as x→∞, if

lim
x→∞

g(x)

f(x)
= 1.

Finally, a function or a sequence of sets is called increasing or decreasing, respectively, if
it is monotonically (not necessarily strictly) increasing/decreasing. Strict monotony is in
each case indicated specifically.
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2 Amari’s Model

The first model relies on the complete graph built on the vertex set V = {1, . . . , N},
N ∈ N. The set of neuronal states is S = {0, 1}: a 1 corresponds to an active and a
0 to an inactive state, respectively. The Hopfield model (see [21]), the standard neural
network, uses {−1, 1} as its state space, with a −1 representing the inactive state. The
latter model is symmetric under a spin flip (-1 to 1, and vice versa), which is not the case
in the present model as we will see. Since the neurons are numbered from 1 to N , a certain
spin configuration (also called state vector) σ = (σ1, . . . , σN) ∈ {0, 1}N correponds to the
state of the neural net in which exactly the neurons i1, . . . , ir ∈ {1, . . . , N} whose spins
σi1 , . . . , σir are 1 are active and those whose spins are 0 are inactive. We aim at storing
M = M(N) messages in the network. The M patterns are denoted by ξµ = (ξµ1 , . . . , ξ

µ
N),

1 ≤ µ ≤M . Amari in [2] proposes a Hebbian learning rule, using the synaptic efficacies

Jij :=
M∑
µ=1

ξµi ξ
µ
j , i 6= j.

As Amari points out in his paper, this learning rule demonstrates the difference between
the state spaces {0, 1} and {−1, 1}: in the first case, the synaptic strength between the
neurons i and j changes by the learning process of a given ξµ only if both neurons are
activated. In the second case, each pattern contributes to their synaptic efficacy. Besides
that, the essential characteristic of Amari’s model is that the stored patterns will be
sparse: a message consists of a very small number of activated neurons compared to the
total number of neurons. Assuming that for fixed N , the (ξµj , 1 ≤ µ ≤M(N), 1 ≤ j ≤ N)
are identically distributed Bernoulli random variables with parameter pN , Amari defines
sparsity by the fact that the probability

pN = P(ξµj = 1)

converges to 0 as N tends to infinity. This is, the expected ratio of excited neurons in a
stored pattern converges to 0, as N tends to infinity:

E

[
1

N

N∑
j=1

ξµj

]
−→ 0.

Amari mentions two possibilities to choose the probability distribution of (ξµj )j≤N,µ≤M : in
the first, the ξµj , j ≤ N,µ ≤ M are all independent and identically distributed. A second
possibility is to keep the activity

aN :=

∑N
j=1 ξ

µ
j

N
,

9



2 Amari’s Model

that is, the ratio of activated neurons per message, fixed and to choose uniformly among
the set of patterns with exactly N · aN excited neurons. Amari asserts without giving a
proof that the second version works much better than the first one. We will analyse both
and compare them.

The parameter pN is chosen as

pN =
log(N)

N
,

as the extreme case of sparsity mentioned by Amari, additionally comparable to the
model of Gripon and Berrou regarding this property because they choose almost the same
activity in their model. In case of exactly c active neurons per message, c is chosen as
c = bpN · Nc = blog(N)c. We will, to simplify expressions, without loss of generality
assume that log(N) ∈ N.

The neural network can serve as an associative memory only if there is some given dy-
namics. Amari uses synchronous updating; here the dynamics is a map T = (T1, . . . , TN) :
{0, 1}N → {0, 1}N . The involved Ti are maps Ti : {0, 1}N → {0, 1} and Ti deter-
mines the state the i-th neuron will take. Alternatively, the spins can be updated
sequentially, e. g., in random order or from 1 to N , this is, T̄ = T̄N ◦ . . . ◦ T̄1, with
T̄i(σ) = (σ1, . . . , σi−1, Ti(σ), σi+1, . . . , σN).

For each σ ∈ {0, 1}N and each neuron i ∈ {1, . . . , N}, the local field Si(σ) at the state
vector σ is defined by

Si(σ) :=
∑
j 6=i

Jijσj.

A neuron i remains or is activated, if the local field Si(σ) is large enough, i.e. larger than
a given threshold h > 0. Confronted with the input σ = (σ1, . . . , σN), the i-th component
of the dynamics T = (T1, . . . , TN) assigns to the i-th neuron the updated value

Ti(σ) = Θ

(∑
j 6=i

Jijσj − h

)
,

where the function Θ is the Heaviside function defined by

Θ(x) =

{
1 x ≥ 0,

0 x < 0.

The threshold h is chosen as h = γ log(N) with some γ, called a threshold variable, to be
determined. This is reasonable because we expect log(N) activated neurons in a message
and the synaptic efficacies among the activated neurons are non-zero because they are at
least once part of the same message. The threshold should be chosen such that stored
messages are fixed points of the dynamics, i.e. the local field of the excited neurons
should exceed this bound, but it should be large enough to prohibit that the local fields
of non-excited neurons of the message become larger than the threshold. This argument
firstly suggests a choice of γ as an element of (0, 1) which is consistent with the models
in Chapter 3 and 4, where it is not possible to choose higher thresholds. It will however
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2.1 Stability and Error Correction

turn out that it is also possible to use a threshold variable γ ≥ 1 as long as it is smaller
than the critical threshold variable γ∗ that will be determined in the following section.

The maximal number of stored patterns is supposed to be of size N2/ log(N)2, an
assertion made by Amari and proven nonrigorously. We therefore presume a number of
M(N) = αN2/ log(N)2 stored patterns and will see that this is an appropriate choice
because with the dynamics described above, there will be some α∗(γ) dependent on the
threshold variable γ such that the stability of a stored pattern can be guaranteed with
high probability if α < α∗(γ) and a stored pattern is instable with high probability if
α > α∗(γ). From now on, the variable α is called capacity variable. The following section
deals with the capacity - concerning two possible notions of it - of the above model and
its error correcting behaviour. In the subsequent section, we will define a Hamiltonian
function associated with the dynamics and show that there is, with high probability, an
energy valley around a stored pattern.

2.1 Stability and Error Correction

A first question to approach is: how many patterns can be stored in the network until
the system is overloaded with information? The most important task a network should
perform is the recognition of the stored patterns. This means that the stored patterns
should be fixed points of the dynamics T . We distinguish between the requirement that all
stored messages should be fixed points and the less restrictive condition that a randomly
chosen stored pattern should be a fixed point of the dynamics T . The capacity of the
model then is the maximal number of messages until this property is lost (dependent on
the notion of stability one requires). We begin with the analysis of the stored pattern’s
stability in Amari’s model with independent spins ξµj , 1 ≤ µ ≤ M , 1 ≤ j ≤ N , using the
second definition of capacity.

We will show that it is possible to store up to αN2/ log(N)2 patterns with a constant α
to be chosen in dependence on γ such that an arbitrary pattern is stable with probability
converging to 1 as N tends to infinity. As we will additionally see, there is, for each
γ ∈ (0, 1), a critical value α∗(γ) strictly separating the two sets (0, α∗(γ)) and (α∗(γ),∞),
such that each element of the first set is an admissible capacity variable (supposed that
M = αN2/ log(N)2 patterns are stored, the probability that an arbitrary stored pattern is
stable tends to 1) and each element of the second set is an inadmissible capacity variable
(M = αN2/ log(N)2 leads to instability of an arbitrary stored pattern, with positive
probability not tending to 0). Of course, M has to be a natural number and we mean by
convention that M = bαN2/ log(N)2c if we write M = αN2/ log(N)2. We mostly write
M instad of M(N).

The distribution of the ξµj , µ ≤ M(N), j ≤ N clearly depends on N and so do the
patterns. We firstly analyse the situation and the behaviour of the dynamics for fixed N ;
the dependence on N of the ξµj is, as the one of p and M , not indicated in the notation.
The derived results are asymptotic. An event with probability converging to 1 as the size
of the network tends to infinity is said to happen with “high probability“.

11



2 Amari’s Model

Considering the network with N neurons, the σ-algebra generated by ξµj , 1 ≤ j ≤ k,
1 ≤ µ ≤ M(N) is called F̄Nk and the one with respect to ξµj , j ≤ k, 1 < µ ≤ M(N) is
called FNk .

We begin now by stating the following theorem:

Theorem 2.1 (cf. [18]) In Amari’s network using N neurons and the threshold h =
γ log(N), γ ∈ (0, 1), assume that the number of stored messages is equal to M =
αN2/ log(N)2. Then, if α < γ satisfies

−γ log
(γ
α

)
+ γ − α < −1, (2.1)

an arbitrary stored message ξµ is stable with probability converging to 1:

lim
N→∞

P(∀i ≤ N : Ti(ξ
µ) = ξµi ) = 1. (2.2)

On the other hand, the system gets unstable if either 1.) α < γ and

−γ log
(γ
α

)
+ γ − α > −1 (2.3)

or if 2.) α ≥ γ. In these cases

lim
N→∞

P(∃i ≤ N : Ti(ξ
µ) 6= ξµi ) = 1 (2.4)

for an arbitrary but fixed µ.
The critical value α∗1, that is, the supremum of all α such that α is an admissible

capacity variable for Amari’s model using a threshold variable γ ∈ (0, 1), is equal to the
root of the function

g(α) = log

(
1

α

)
+ α− 2,

α∗1 ≈ 0.1585.

Concretely, for each α < α∗1 there is some γ ∈ (0, 1), γ > α, such that (2.1) is true and
therefore (2.2) holds for the dynamics T using threshold γ if M = αN2/ log(N)2 patterns
have been stored in the system. For each α > α∗1, (2.4) holds for the dynamics T using an
arbitrary threshold γ ∈ (0, 1), if M = αN2/ log(N)2.

Remark 2.2 In particular, we could not only find upper and lower bounds on the capacity
variable but the bounds obtained in Theorem 2.1 match. We have thus found sharp bounds
on the capacity variable, depending on the used threshold variable γ.

Until now, the threshold variable γ is restricted to the interval (0, 1). The result of
Theorem 2.1 including the determined α∗1 can be helpful in the analysis of the Willshaw
model in Chapter 4.

Proof of Theorem 2.1: We start by proving the first statement of the theorem. To
this end, we fix a randomly chosen stored message: without loss of generality, let this
pattern be ξ1. To determine the probability that ξ1 is stable, there are two cases to be

12
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Figure 2.1: Critical capacity variable α∗(γ) in dependence on the threshold variable γ for
Amari’s model

distinguished: the stability of the neurons that are excited in ξ1 and the stability of those
that are not excited in ξ1.

The local field depends considerably on the number of activated neurons in ξ1. This
is why we split the set {

∃i ∈ {1, . . . , N} : Ti(ξ
1) 6= ξ1

i

}
into the intersections with the disjoint sets

{∣∣∣ log(N)−
N∑
j=1

ξ1
j

∣∣∣ ≥ δ log(N)
}

and
{∣∣∣ log(N)−

N∑
j=1

ξ1
j

∣∣∣ < δ log(N)
}
,

for some fixed δ > 0. Then we can bound the probability of an error:

P
[
∃i ∈ {1, . . . , N} : Ti(ξ

1) 6= ξ1
i

]
≤ P

[∣∣∣ log(N)−
N∑
j=1

ξ1
j

∣∣∣ ≥ δ log(N)

]

+ P

[{
∃i ∈ {1, . . . , N} : Ti(ξ

1) 6= ξ1
i

}
∩
{∣∣∣ log(N)−

N∑
j=1

ξ1
j

∣∣∣ < δ log(N)
}]

.

13



2 Amari’s Model

Since the ξµj are independent Bernoulli random variables with success probability p =
logN/N , the first term disappears as N tends to infinity, due to the Chebyshev inequality.

Every activated neuron of ξ1 will be stable, that is to say, Ti(ξ1) = ξ1
i for each i with

ξ1
i = 1, if the number of activated neurons in ξ1 is big enough. Due to the condition
γ < 1, the variable δ can be chosen such that 0 < δ < 1− γ. The inequality

∣∣∣ log(N)−
N∑
j=1

ξ1
j

∣∣∣ < δ log(N) (2.5)

implies
∑N

j ξ
1
j > (1− δ) log(N), and for each i with ξ1

i = 1, we obtain

Si(ξ
1) =

∑
j 6=i

Jijξ
1
j =

∑
j 6=i

ξ1
j

M∑
µ=1

ξµi ξ
µ
j = ξ1

i

∑
j 6=i

ξ1
j +

∑
j 6=i

ξ1
j

M∑
µ=2

ξµi ξ
µ
j

≥
∑
j 6=i

ξ1
j > (1− δ) log(N)− 1 ≥ γ log(N)

for N large enough, if (2.5) holds. The activated neurons in ξ1 are therefore stable with
probability converging to 1.

To facilitate the readibility while examining the behaviour of the inactive neurons of
ξ1, we will denote the event {

∑N
j=1 ξ

1
j / log(N) ∈ (1 − δ, 1 + δ)} by Aδ. In addition, for

each k ∈ {1, . . . , N}, the events

{ N∑
j=1

ξ1
j = k

}
,
{ N∑

j=1

ξ1
j =

k∑
j=1

ξ1
j = k

}
are called Z̄k and Zk, respectively.

A neuron i is activated by the application of the dynamics to ξ1 if Si(ξ1) ≥ γ log(N).
To obtain a stable ξ1, all the inactive neurons of this pattern must remain inactive. The
probability of the complement of this event can be bounded as follows:

P
[
∃i ≤ N : ξ1

i = 0, Ti(ξ
1) = 1

]
≤ P

[
{∃i ≤ N : ξ1

i = 0, Ti(ξ
1) = 1} ∩ Aδ

]
+ P(Acδ)

=

b(1+δ) log(N)c∑
k=d(1−δ) log(N)e

P
[
{∃i ≤ N : ξ1

i = 0, Ti(ξ
1) = 1} ∩ Z̄k

]
+ P(Acδ)

=

b(1+δ) log(N)c∑
k=d(1−δ) log(N)e

P
[
∃i ≤ N : ξ1

i = 0, Si(ξ
1) ≥ γ log(N)

∣∣∣Z̄k]P(Z̄k) + P(Acδ)

≤
b(1+δ) log(N)c∑

k=d(1−δ) log(N)e

(N − k)P
[
SN(ξ1) ≥ γ log(N)

∣∣∣Zk]P(Z̄k) + P(Acδ).

The delimiters of the sum are chosen because the number of excited neurons in the men-
tioned message,

∑N
j=1 ξ

1
j , does only take values in N. Without loss of generality, we assume

for the rest of this part of the proof that (1 + δ) log(N) ∈ N. In the last line, the event

14



2.1 Stability and Error Correction

Z̄k is replaced by Zk because it does not matter in probability which k of the N neurons
are activated. We continue to estimate the probability:

(1+δ) log(N)∑
k=(1−δ) log(N)

(N − k)P
[
SN(ξ1) ≥ γ log(N)

∣∣∣Zk]P(Z̄k) + P(Acδ)

=

(1+δ) log(N)∑
k=(1−δ) log(N)

(N − k)P

[ ∑
j≤N−1

ξ1
j

M∑
µ=1

ξµNξ
µ
j ≥ γ log(N)

∣∣∣Zk]P(Z̄k) + P(Acδ)

≤ max
k∈N:k/ log(N)
∈(1−δ,1+δ)

(N − k)P

[∑
j≤k

M∑
µ=2

ξµNξ
µ
j ≥ γ log(N)

]
·

(1+δ) log(N)∑
k=(1−δ) log(N)

P(Z̄k) + P(Acδ)

≤N P

 ∑
j≤(1+δ)·log(N)

M∑
µ=2

ξµNξ
µ
j ≥ γ log(N)

 · P(Aδ) + P(Acδ).

The transition from the second to the third line is performed by taking into account that
on Zk we have ξ1

i = 0 for each i > k and ξ1
i = 1 for i ≤ k. Then the maximum of the

conditional probabilities in the last line is attained for k = (1 + δ) log(N) because the
sum

∑
j≤k
∑M

µ=2 ξ
µ
i ξ

µ
j is increasing in k; the maximum is thus attained by choosing the

maximal value for k.
Since P(Aδ) tends to 1, we have to find a bound on the probability

P

 ∑
j≤(1+δ)·log(N)

M∑
µ=2

ξµNξ
µ
j ≥ γ log(N)

 .
Using the exponential Markov inequality (that will also be called exponential Chebychev
inequality) for some t > 0, we obtain

P

 ∑
j≤(1+δ)·log(N)

M∑
µ=2

ξµNξ
µ
j ≥ γ log(N)

 ≤ exp [−tγ log(N)]E exp

t (1+δ) log(N)∑
j=1

M∑
µ=2

ξµNξ
µ
j


= exp [−tγ log(N)]

E exp

t (1+δ) log(N)∑
j=1

ξMN ξ
M
j

M−1

(2.6)

= exp [−tγ log(N)]
[
1− p+ p

(
1− p+ pet

)(1+δ) log(N)
]M−1

(2.7)

by using independence of the patterns ξµ, 2 ≤ µ ≤ M in (2.6) and independence of the
spins ξµi , 1 ≤ i ≤ N of ξµ in (2.7). Conditionally on {ξµN = 1}, the sum

∑(1+δ) log(N)
j=1 ξµNξ

µ
j

is Binomially distributed with parameters p and (1 + δ) log(N) which results in the given
exponential moment. To continue, (2.7) is at most

exp [−tγ log(N)]
[
1− p+ p

(
1− p+ pet

)(1+δ) log(N)
]M−1
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2 Amari’s Model

≤ exp [−tγ log(N)]
[
1− p+ pep(e

t−1)(1+δ) log(N)
]M−1

(2.8)

≤ exp
[
−tγ log(N) + (M − 1)p

(
ep(e

t−1)(1+δ) log(N) − 1
)]

(2.9)

= exp
[
−tγ log(N) + (M − 1)p

(
p(et − 1)(1 + δ) log(N) +O(log(N)2p2)

)]
, (2.10)

due to the inequality 1 + u ≤ eu for all u ∈ R in (2.8) as well as in (2.9) and the power
series representation of the exponential in (2.10) where we assume t to not depend on N .

Using M = αN2/ log(N)2, p = log(N)/N and in the last line once more the series
representation of the exponential, we obtain

exp
[
−tγ log(N) + (M − 1)p

(
p(et − 1)(1 + δ) log(N) +O(log(N)2p2)

)]
≤ exp

[
−tγ log(N) +Mp2(et − 1)(1 + δ) log(N) +O(log(N)2p)

]
= exp

[
−tγ log(N) + α(et − 1)(1 + δ) log(N) +O(log(N)3/N)

]
= exp

[
log(N)(−tγ + α(et − 1)(1 + δ))

]
(1 +O(log(N)3/N)).

To find a good bound on the probability, the function

fδ,γ,α(t) = −tγ + α(et − 1)(1 + δ)

has to be minimised in t. This yields as minimal argument

t∗δ,γ,α = log

(
γ

α(1 + δ)

)
.

By choosing 0 < δ < (γ − α)/α, possible due to the condition α < γ, t∗δ,γ,α is positive.
Inserting t∗δ,γ,α into the above exponential then yields

exp
[
log(N)(−γt∗δ,γ,α + α(et

∗
δ,γ,α − 1)(1 + δ))

]
= exp

[
log(N)

(
−γ log

(
γ

α(1 + δ)

)
+ γ − α(1 + δ)

)]
.

The inequality

−γ log

(
γ

α(1 + δ)

)
+ γ − α(1 + δ) < −1 (2.11)

is sufficient to let the probability converge to 0. Since δ can be chosen arbitrarily small, this
condition can be obtained for each α satisfying inequality (2.1). This is all we need to prove
the upper bound on α. By chosing δ > 0 small enough that the three conditions δ < 1−γ,
δ < (γ − α)/α and (2.11) are fulfilled, we obtain P [∃1 ≤ i ≤ N : Ti(ξ

1) 6= ξ1
i ] −→ 0 for

α < γ and γ ∈ (0, 1) such that (2.1) holds.
To show the reverse bound, we choose an arbitrary message, e. g., ξ1, and analyse

the probability of having an error at any neuron that is not activated in the message.
With the above notation, the requested probability of having at least one error after the
application of the dynamics is at least equal to

P
(
∃i ≤ N : Ti(ξ

1) 6= ξ1
i

)
≥ P

(
∃i ≤ N : ξ1

i = 0, Ti(ξ
1) 6= 0

)
16



2.1 Stability and Error Correction

=P
(
{∃i ≤ N : ξ1

i = 0, Ti(ξ
1) 6= 0} ∩ Aδ

)
+ P

(
{∃i ≤ N : ξ1

i = 0, Ti(ξ
1) 6= 0} ∩ Acδ

)
≥P
(
{∃i ≤ N : ξ1

i = 0, Ti(ξ
1) 6= 0} ∩ Aδ

)
=

b(1+δ) log(N)c∑
k=d(1−δ) log(N)e

P
[
Z̄k
]
P
[
∃i ≤ N : ξ1

i = 0, Ti(ξ
1) 6= 0

∣∣∣Z̄k]
≥P(Aδ) · min

k∈N:d(1−δ) log(N)e≤k
≤b(1+δ) log(N)c

P
[
∃i ≤ N : ξ1

i = 0, Ti(ξ
1) 6= 0

∣∣∣Z̄k] . (2.12)

We have seen that the probability of Aδ tends to 1 and continue by determining the
conditional probability of the last line for fixed k:

P
[
∃i ≤ N : ξ1

i = 0, Ti(ξ
1) 6= 0

∣∣∣Z̄k] = P
[
∃i ≤ N : ξ1

i = 0, Ti(ξ
1) 6= 0

∣∣∣Zk]
=P
[
∃i ≥ k + 1 : Ti(ξ

1) 6= 0|Zk
]

= 1− P
[
∀i ≥ k + 1 : Ti(ξ

1) = 0|Zk
]

=1− P

[
∀i ≥ k + 1 :

M∑
µ=2

∑
j≤k

ξµi ξ
µ
j < γ log(N)

]
. (2.13)

For a fixed realisation (xµj )µ≥2,j≤k ∈ {0, 1}k(M−1) of (ξµj )µ≥2,j≤k, the events

{ M∑
µ=2

∑
j≤k

ξµi ξ
µ
j < γ log(N)

}
, i > k

are conditionally independent, given {(xµj )µ≥2,j≤k = (ξµj )µ≥2,j≤k}. The last line in (2.13)
is therefore equal to

1− P

[
∀i ≥ k + 1 :

M∑
µ=2

∑
j≤k

ξµi ξ
µ
j < γ log(N)

]

=1− E(ξµj )µ≥2,j≤k

[
P

(
∀i ≥ k + 1 :

M∑
µ=2

∑
j≤k

ξµi ξ
µ
j < γ log(N)

∣∣∣FkN
)]

=1− E(ξµj )µ≥2,j≤k

P( M∑
µ=2

∑
j≤k

ξµNξ
µ
j < γ log(N)

∣∣∣FkN
)N−k


=1− E(ξµj )µ≥2,j≤k

[1− P

(
M∑
µ=2

ξµN
∑
j≤k

ξµj ≥ γ log(N)
∣∣∣FkN

)]N−k . (2.14)

To simplify the computations, we note that

M∑
µ=2

ξµN
∑
j≤k

ξµj ≥
∑

µ>1:
∑
j≤k ξ

µ
j =1

ξµN
∑
j≤k

ξµj
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2 Amari’s Model

and therefore

P

(
M∑
µ=2

ξµN
∑
j≤k

ξµj ≥ γ log(N)
∣∣∣FkN

)
≥ P

 ∑
µ>1:

∑
j≤k ξ

µ
j =1

ξµN
∑
j≤k

ξµj ≥ γ log(N)
∣∣∣FkN

 .

(2.15)

We continue with the analysis of the behaviour of the random variables
∑

j≤k ξ
µ
j , µ ≥

2, which are independent and identically Binomially distributed with parameters p =
log(N)/N and k. Consequently, the parameters of the Binomially distributed random
variable

X1(k) :=
M∑
µ=2

1{
∑
j≤k ξ

µ
j =1}

are
p1(k) = kp(1− p)k−1 = kp+O(k2p2)

and M , where we only (and also in the rest of the proof) consider the ks belonging to the
set on which the minimum is taken in (2.12). Using the Chebyshev inequality, we obtain
for each δ > 0

lim
N→∞

P

(
X1(k)

αk N
log(N)

/∈ (1− δ, 1 + δ)

)
= 0.

The event {
X1(k)

αk N
log(N)

∈ (1− δ, 1 + δ)

}
is denoted by Bδ(k).

To return to (2.14), we first use (2.15) and the fact that the interior sum is 1 on the
considered summands:

1− E(ξµj )µ≥2,j≤k

[1− P

(
M∑
µ=2

ξµN
∑
j≤k

ξµj ≥ γ log(N)
∣∣∣FkN

)]N−k
≥1− E(ξµj )µ≥2,j≤k


1− P

 ∑
µ>1:

∑
j≤k ξ

µ
j =1

ξµN
∑
j≤k

ξµj ≥ γ log(N)
∣∣∣FkN

N−k


=1− E(ξµj )µ≥2,j≤k


1− P

 ∑
µ>1:

∑
j≤k ξ

µ
j =1

ξµN ≥ γ log(N)
∣∣∣FkN

N−k


and, taking the expectation on the set Bδ(k), we obtain that the last line is at least

1− E(ξµj )µ≥2,j≤k

1Bδ(k)

1− P

 ∑
µ>1:

∑
j≤kξ

µ
j =1

ξµN ≥ γ log(N)
∣∣∣FkN

N−k
− P(Bδ(k)c)
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≥1− P(Bδ(k)) ·max
Bδ(k)

1− P

 ∑
µ>1:

∑
j≤k ξ

µ
j =1

ξµN ≥ γ log(N)
∣∣∣FkN

N−k − P (Bδ(k)c)

≥1−max
Bδ(k)

1− P

 ∑
µ>1:

∑
j≤k ξ

µ
j =1

ξµN ≥ γ log(N)
∣∣∣FkN

N−k − P (Bδ(k)c) . (2.16)

Hence we can limit our examinations to the set Bδ(k) because the probability of its
complement vanishes as N tends to infinity.

Conditionally on FkN , the remaining sum

X(k) :=
∑

µ>1:
∑
j≤k ξ

µ
j =1

ξµN

is Binomially distributed with parameters p and X1(k). But on the subset Bδ(k) on which
we will consider X1(k), X1(k) is about αkN/ log(N); X(k) is, given X1(k), therefore
approximately Poisson distributed with parameter X1(k)p.

To be more precise, we use Le Cam’s Theorem:

Lemma 2.3 (Prohorov, Le Cam) (see [40] and [27]) Let πλ(m) denote the probability
weight of m ∈ N0 under a Poisson distribution with parameter λ and θn,p̃(m) its probability
weight under a Bin(n, p̃) distribution. The total variation distance between these two
variables is bounded by

∞∑
m=0

∣∣∣∣∣θn,p̃(m)− πλ(m)

∣∣∣∣∣ ≤ 2np̃2.

Keeping the notation of the Lemma, we obtain

P

 ∑
µ:
∑
j≤k ξ

µ
j =1

ξµN ≥ γ log(N)
∣∣∣FkN

 =
∞∑

m=dγ log(N)e

θX1(k), p (m)

≥
∞∑

m=dγ log(N)e

πX1(k) · p (m)−
∞∑
m=0

∣∣∣∣∣θX1(k), p (m)− πX1(k) · p (m)

∣∣∣∣∣
≥

∞∑
m=dγ log(N)e

πX1(k) · p (m)− 2X1(k) · p2. (2.17)

We only consider the random variable X1(k) on the set Bδ(k) because its probability tends
to 1. On Bδ(k), the last line of (2.17) is at least

min
Bδ(k)

∞∑
m=dγ log(N)e

πX1(k) · p (m)− 2X1(k) · p2

≥
∞∑

m=dγ log(N)e

πk(1−δ)α N
log(N)

· p (m)− 2k(1 + δ)α
N

log(N)
· p2
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2 Amari’s Model

=
∞∑

m=dγ log(N)e

πk(1−δ)α (m)− 2k(1 + δ)α
log(N)

N
, (2.18)

because the probability that a Poisson random variable exceeds the threshold γ log(N)
increases with the parameter of the Poisson distribution. A Poisson random variable Ynλ
with parameter n ·λ, n ∈ N, is equal in distribution to a sum of n independent Poisson(λ)
variables, which we call Y1, . . . , Yn. This justifies to apply Cramér’s theorem, that is:

Lemma 2.4 (Cramér) (see [13]) For independent and identically distributed random
variables Y1, Y2 . . . with finite moment generating function,

E
[
etY1
]
<∞, t ∈ R

and logarithmic moment generating function

Λ(t) = logE
[
etY1
]
,

define the Legendre transform

Λ∗(x) := sup
t∈R

(tx− Λ(t)) , x ∈ R.

Then, for x > E(Y1),

lim
n→∞

1

n
logP

[
n∑
i=1

Yi ≥ xn

]
= −Λ∗(x).

Taking for n ∈ N a Poisson distributed random variable Ynλ ∼
∑n

i=1 Yi, Y1, . . . , Yn inde-
pendent with Yi ∼ Poi(λ), i ≤ n, the moment generating function of Y1 is equal to

E
[
etY1
]

=
∞∑
m=0

etmλm

m!
e−λ = eλ(et−1)

and the Legendre transform in dependence on the parameter λ, indicated as Λ∗λ(t), is
calculated as

Λ∗λ(t) = sup
t∈R

(tx−Λλ(t)) = sup
t∈R

(tx−λ(et−1)) = x log
(x
λ

)
−λ
(x
λ
− 1
)

= x log
(x
λ

)
−x+λ.

This yields for each x > λ

lim
n→∞

1

n
logP [Ynλ ≥ xn] =− x log

(x
λ

)
+ x− λ.

Taking the second term of the last line in (2.12), we remember that it suffices to show
its convergence to 1 to show the second claim of the theorem. Taking into account
(in)equalities (2.13), (2.14) and (2.16), we obtain

lim
N→∞

min
k∈N:d(1−δ) log(N)e
≤k≤b(1+δ) log(N)c

P
(
∃i ≤ N : ξ1

i = 0, Ti(ξ
1) 6= 0

∣∣∣Z̄k)
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2.1 Stability and Error Correction

≥ lim
N→∞

min
k∈N:d(1−δ) log(N)e
≤k≤b(1+δ) log(N)c

1−max
Bδ(k)

1− P

 ∑
µ>1:

∑
j≤k ξ

µ
j =1

ξµN ≥ γ log(N)
∣∣∣FkN

N−k
 ,

(2.19)

because limN→∞mink P [(Bδ(k))c] = 0. For these k, we deduce with the help of inequality
(2.18), again denoting by Yλ a Poisson random variable with parameter λ:

max
Bδ(k)

1− P

 M∑
µ>1:

∑
j≤k ξ

µ
j =1

ξµN ≥ γ log(N)
∣∣∣FkN

N−k

≤

1−
∞∑

m=dγ log(N)e

πk(1−δ)α (m) + 2k(1 + δ)α
log(N)

N

N−k

=

[
1− P

[
Yk(1−δ)α ≥ γ log(N)

]
+ 2k(1 + δ)α

log(N)

N

]N−k
= exp

[
(N − k) log

(
1− P

[
Yk(1−δ)α ≥ γ log(N)

]
+ 2k(1 + δ)α

log(N)

N

)]
. (2.20)

By applying the series expansion of the logarithm, the logarithmic term in (2.20) is

log

(
1− P

[
Yk(1−δ)α ≥ γ log(N)

]
+ 2k(1 + δ)α

log(N)

N

)
=− P

[
Yk(1−δ)α ≥ γ log(N)

]
+ 2k(1 + δ)α

log(N)

N

−O

[(
P
(
Yk(1−δ)α ≥ γ log(N)

)
+ 2k(1 + δ)α

log(N)

N

)2
]
. (2.21)

The limit in (2.19) is, by using (2.20) and (2.21), equal to 1 if

lim
N→∞

max
d(1−δ) log(N)e

≤k≤
b(1+δ) log(N)c

exp

[
(N − k)

(
−P
(
Yk(1−δ)α ≥ γ log(N)

)
+ 2k(1 + δ)α

log(N)

N

)]
= 0.

(2.22)

The minimum of the probabilities P
(
Yk(1−δ)α ≥ γ log(N)

)
is attained by the minimal value

of k, this is k = d(1− δ) log(N)e. Convergence to zero in (2.22) is consequently reached if

lim
N→∞

−
[
N − (1 + δ) log(N)

]
P
(
Yd(1−δ) log(N)e(1−δ)α ≥ γ log(N)

)
+ log(N)2 = −∞

which is fulfilled if

lim inf
N→∞

log
(
P(Yd(1−δ) log(N)e(1−δ)α ≥ γ log(N)

)
log(N)

> −1. (2.23)
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2 Amari’s Model

Denoting by Λ∗α(1−δ)(x) the Legendre transform of a Poisson distributed random variable
with parameter α(1 − δ) at argument x, x > α(1 − δ), Lemma 2.4 yields for each α <
γ/(1− δ)2

lim
N→∞

log
(
P(Yd(1−δ) log(N)e(1−δ)α ≥ d(1− δ) log(N)e γ

1−δ

)
d(1− δ) log(N)e

=Λ∗α(1−δ)

(
γ

1− δ

)
= − γ

1− δ
log

(
γ

α(1− δ)2

)
+

γ

1− δ
− α(1− δ),

and this implies

lim inf
N→∞

log
(
P(Yd(1−δ) log(N)e(1−δ)α ≥ γ log(N)

)
log(N)

≥ (1− δ) lim inf
N→∞

log
(
P(Yd(1−δ) log(N)e(1−δ)α ≥ (1− δ) log(N) γ

1−δ

)
d(1− δ) log(N)e

≥ (1− δ) lim inf
N→∞

log
(
P(Yd(1−δ) log(N)e(1−δ)α ≥ d(1− δ) log(N)e γ

1−δ

)
d(1− δ) log(N)e

= (1− δ)Λ∗α(1−δ)

(
γ

1− δ

)
= −γ log

(
γ

α(1− δ)2

)
+ γ − α(1− δ)2. (2.24)

The value δ > 0 is chosen a priori, but arbitrarily small, and it is thus for each α which
fulfills (2.3), that is,

−γ log
(γ
α

)
+ γ − α > −1,

possible to find a suitable δ such that (2.24) is bigger than −1 which yields (2.23) and
therefore (2.4).

Finally, the condition α < γ indicated in Theorem 2.1 is not only a sufficient, but
also a necessary condition to achieve stability of the stored messages. To prove this, we
assume that α ≥ γ. We will show in the next part of the proof that there is, for each
γ > 0, an α′ such that 0 < α′ < γ and such that (2.3) holds. The probability

P(∃i ≥ k + 1 : Si(ξ
1) ≥ γ log(N)|Zk) = P

(
∃i ≥ k + 1 :

M∑
µ=2

k∑
j=1

ξµi ξ
µ
j

)
is increasing in M . Since α > α′ and the above probability tends for each k ∈ ((1 −
δ) log(N), (1 + δ) log(N)) to 1 if M = α′N2/ log(N)2, it does if M = αN2/ log(N)2. The
condition

α < γ (2.25)

is therefore indeed necessary to ensure stability of the stored messages.
The critical value α∗1 is defined as the supremum of all α > 0 such that α is an

admissible capacity variable for Amari’s model using a threshold variable γ ∈ (0, 1). The
function g : (0,∞)2 → R,

g(γ, α) := γ log
(γ
α

)
− γ + α− 1,
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2.1 Stability and Error Correction

is continuous. The partial derivative of g with respect to α is equal to

∂g

∂α
= 1− γ

α

which is negative on (0, γ). This implies that g(γ, ·) is strictly decreasing on (0, γ). Since
limα↘0 g(γ, α) = ∞ and limα↗γ g(γ, α) = −1, there is a unique root of g(γ, ·) in (0, γ)
and the preimage of R+ belonging to the restricted function g(γ, ·) to the interval (0, γ)
is of the form (0, α∗(γ)). The variable α∗(γ) is the root of g(γ, ·) in (0, γ).

In particular, (2.2) is guaranteed for each α ∈ (0, α∗(γ)) used as a capacity variable.
On the contrary, the interval (α∗(γ), γ) is nonempty. For each α in this interval, (2.4)
holds. As we have seen in the previous part of the proof, the probability in (2.4) increases
with the capacity variable α and therefore (2.4) also holds for α ≥ γ. This means that
each α ∈ (α∗(γ),∞) is inadmissible.

To determine the critical value α∗1 of the capacity, we determine the partial derivative
of g with respect to γ:

∂g

∂γ
= log

(γ
α

)
which is positive for γ > α. Let α∗(1) be the root of g(1, ·) in (0, 1), α∗(1) ≈ 0.1585. Then
α∗1 ≤ α∗(1) because for each α > α∗(1), α ∈ (0, 1), we have g(1, α) < g(1, α∗(1)) = 0 due
to the fact that g(1, ·) is strictly decreasing on (0, 1). Since g(·, α) is strictly increasing in
γ on (α,∞) and γ ≤ α is inadmissible, there is no γ ∈ (0, 1) such that α is an admissible
capacity variable for γ.

To see that α∗1 = α∗(1), we recall that g(1, ·) is strictly decreasing on (0, 1), that
g(1, α∗(1)) = 0 and that g is continuous. Hence for each α < α∗(1) there is an γ ∈ (α, 1)
such that g(γ, α) > 0.

�

We have seen that for each γ ∈ (0, 1), it is possible to store up to M = αN2/ log(N)2

patterns, if α < α∗(γ), such that a randomly chosen one of the stored patterns is stable
with probability converging to 1.

To reach a high storage capacity, it is advantageous to choose a big γ. So far we
considered threshold variables γ ∈ (0, 1); but there is a priori no reason for this choice. We
can use threshold variables γ ≥ 1 and reach a higher critical capacity variable α∗ ≈ 0.255
for the model. This improves the maximal capacity obtained in Theorem 2.1, but will also
give rise to a lower bound on α: we have to store at least a certain number of patterns to
guarantee the stability of the stored messages, with high probability.

Theorem 2.5 It is possible to use threshold variables γ ≥ 1 to increase the storage ca-
pacity of the above model. For arbitrary γ > 0 there are sharp bounds on the capacity
variables: with the root α∗(γ) of the function g(γ, ·) in (0, γ), each

α ∈ (max(0, γ − 1), α∗(γ))

is an admissible capacity variable for γ; each

α ∈ (0,max(0, γ − 1)) ∪ (α∗(γ),∞)
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2 Amari’s Model

is an inadmissible capacity variable (that is, (2.4) holds).
Let γ̃ be the unique root of

f(γ) =
γ

e2/γ
− γ + 1,

γ̃ ≈ 1.255. The critical threshold variable, defined by

γ∗ := sup{γ > 0 : ∃α > 0 : α is admissible for γ},

is equal to γ̃. The critical capacity variable for the model is finally

α∗ := sup{α > 0 : ∃γ > 0 : α is an admissible capacity variable for γ} = γ∗ − 1 =
γ∗

e2/γ∗
.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0
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upper bound on the capacity variable
lower bound on the capacity variable

Figure 2.2: Upper and lower bounds on the capacity variable α in dependence on the
threshold variable γ for Amari’s model

Proof of Theorem 2.5: We aim to find upper and lower bounds on the capacity vari-
ables in dependence on γ. Given an arbitrary pattern ξµ, we distinguish between the
stability of the active and of the inactive neurons of the message. The stability of the
active neurons will result in a sharp lower bound and the stability of the inactive neurons
in a sharp upper bound, respectively, on the capacity variable.

24



2.1 Stability and Error Correction

Let us begin with the stability of the inactive neurons of ξµ: to this end, we can use
some of the results of Theorem 2.1. Firstly, we have shown for any α < γ satisfying

−γ log (γ/α) + γ − α > −1,

that for arbitrary µ ∈ {1, . . . ,M}

lim
N→∞

P (∃i ≤ N : Ti(ξ
µ) 6= ξµi ) ≥ lim

N→∞
P (∃i ≤ N : ξµi = 0, Ti(ξ

µ) 6= 0) = 1,

if M = αN2/ log(N)2. In this part of the proof we did not use the condition γ < 1.
Thus the condition (2.3) remains an upper bound on α and each α < γ fulfilling (2.3) is
an inadmissible capacity variable. In addition, each α ≥ γ is inadmissible because there
is always an α < γ fulfilling (2.3) and the probability of the instability of the inactive
neurons is increasing in M and therefore in α.

However, if threshold variables γ ≥ 1 are used, the stability of the inactive neurons of
pattern ξµ is still provided with high probability, if α < γ and

−γ log (γ/α) + γ − α < −1;

the proof did not use the condition γ < 1, either. For this choice of α, we have for an
arbitrarily chosen µ ∈ {1, . . . ,M}:

lim
N→∞

P (∃i ≤ N : ξµi = 0, Ti(ξ
µ) 6= ξµi ) = 0.

Hence a sufficient constraint to guarantee stability of the inactive neurons of a message is

α < γ, −γ log (γ/α) + γ − α < −1. (2.26)

If we examine the behaviour of the active neurons of a stored pattern under the dynamics,
the threshold variable γ > 1 causes a further condition on α: to keep the message’s 1’s,
the constant α must exceed the value γ − 1. To show this, assume first γ > 1, α < γ − 1.
Without loss of generality, we consider ξ1. With the notation of Theorem 2.1, we estimate

P
(
∃i ≤ N : ξ1

i = 1, Ti(ξ
1) 6= ξ1

i

)
≥P(Aδ) · min

k∈N:k/ log(N)
∈(1−δ,1+δ)

P
(
∃i ≤ N : ξ1

i = 1, Ti(ξ
1) 6= ξ1

i |Zk
)

≥P(Aδ) · min
k∈N:k/ log(N)
∈(1−δ,1+δ)

P

[
M∑
µ=1

N∑
j=2

ξ1
j ξ
µ
1 ξ

µ
j < γ log(N)

∣∣Zk]

≥P(Aδ) · min
k∈N:k/ log(N)
∈(1−δ,1+δ)

P

[
k − 1 +

M∑
µ=2

k∑
j=2

ξµ1 ξ
µ
j < γ log(N)

]

≥P(Aδ) ·

1− max
k∈N:k/ log(N)
∈(1−δ,1+δ)

P

[
k +

M∑
µ=2

k∑
j=2

ξµ1 ξ
µ
j ≥ γ log(N)

] .
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2 Amari’s Model

The probability of the set Aδ tends to 1 and we are left with estimating the second
probability in the last line for the considered k.

For some fixed k, the probability is bounded with the help of the exponential Cheby-
shev inequality:

P

[
k +

M∑
µ=2

k∑
j=2

ξµ1 ξ
µ
j ≥ γ log(N)

]
≤ exp

[
− tγ log(N) + kt

]
E

[
exp

(
k∑
j=2

tξM1 ξ
M
j

)]M−1

,

due to the independence of the stored patterns; this is, for t not depending on N , as in
the proof of Theorem 2.1 at most

exp
[
− tγ log(N) + kt

]
E

[
exp

(
k∑
j=2

tξM1 ξ
M
j

)]M−1

≤ exp
[
− tγ log(N) + kt

]
exp

[
αk(et − 1) +O

(
k2 log(N)/N

)]
.

We just consider k ∈ ((1 − δ) log(N), (1 + δ) log(N)) and the expression in the last line
is increasing in k. An upper bound for the last line is therefore given by inserting k =
(1 + δ) log(N). Minimising in t yields t = log[(γ− 1− δ)/(α(1 + δ))] which is well defined
if δ < γ − 1 and positive if γ − 1 − δ > α(1 + δ). Since γ > 1 and α < γ − 1, δ can be
chosen such that 0 < δ < γ − 1, 0 < δ < (γ − 1− α)/(1 + α). Then the above expression
converges for all k of the considered set to 0 as N tends to infinity, if

−(γ − 1− δ) log

(
γ − 1− δ
(1 + δ)α

)
+ α(1 + δ)

(
γ − 1− δ
(1 + δ)α

− 1

)
< 0.

The function f(x) = −x log(x) + x− 1 is negative on R+, so the condition is fulfilled for
each choice of γ, δ, α > 0 as long as δ < γ − 1. This yields (2.4) for

α < γ − 1. (2.27)

If we want to choose γ > 1, the usage of an α such that (2.27) holds leads to instability
of the stored patterns.

On the other hand, we cannot use the proof of Theorem 2.1 to show the stability of
the messages’ 1’s in the case γ ≥ 1. If α > γ − 1 ≥ 0 and in the first step, γ > 1, we have
for fixed k and t > 0:

P(∃1 ≤ i ≤ k : Ti(ξ
1) 6= ξ1

i |Zk) ≤ kP(T1(ξ1) 6= 1|Zk)

=kP

[
k − 1 +

M∑
µ=2

k∑
j=2

ξµ1 ξ
µ
j < γ log(N)

]
= kP

[
1− k −

M∑
µ=2

k∑
j=2

ξµ1 ξ
µ
j > −γ log(N)

]

≤k exp
[
− (k − 1)t+ log(N)γt

]
E

[
exp

(
−t

k∑
j=2

ξM1 ξ
M
j

)]M−1

≤k exp
[
− (k − 1)t+ log(N)γt+Mp2(k − 1)(e−t − 1) +O(pk2)

]
.

26



2.1 Stability and Error Correction

Again we consider Aδ whose probability converges to 1. The value of k can therefore be
restricted to ((1− δ) log(N), (1 + δ) log(N)). This yields, for such k:

k exp
[
− (k − 1)t+ log(N)γt+Mp2(k − 1)(e−t − 1) +O(pk2)

]
≤ (1 + δ) log(N)·

exp
[

log(N)
(
−(1− δ − γ)t+ α(1− δ)(e−t − 1)

)
+O(p log(N)2) + t− α(e−t − 1)

]
.

We choose t = − log((γ− 1 + δ)/((1− δ)α)). This is positive if (γ− 1 + δ)/(α(1− δ)) < 1.
This inequality can be satisfied for each α > γ − 1 by choosing a suitable 0 < δ <
(1 − γ + α)/(1 + α). The convergence of the probability P(∃i : ξ1

i = 1, Ti(ξ
1) 6= 1) to 0

follows now because the function −x log(x) + x− 1 is negative on R+.
If γ = 1 and a threshold variable α > 0 is used, the pattern ξ1 is also stable with high

probability:

P
(
∃i : ξ1

i = 1, Ti(ξ
1) 6= 1

)
≤P(Aδ) · max

k/ log(N)
∈(1−δ,1+δ)

kP

[
k − 1 +

M∑
µ=2

k∑
j=2

ξµ1 ξ
µ
j < log(N)

]
+ P(Acδ)

≤(1 + δ) log(N)P

 M∑
µ=2

d(1−δ) log(N)e∑
j=2

ξµ1 ξ
µ
j < δ log(N)

+ P(Acδ)

which is bounded from above by

(1 + δ) log(N) exp
[

log(N)δt+ [(1− δ) log(N)− 1]α(e−t − 1) +O(p log(N)2)
]

+ P(Acδ).

Choosing δ/(1− δ) < α, we can use t = − log( δ
(1−δ)α) > 0, and the probability converges

to 0.
It remains to compute the critical values of the parameters. First, we claim that the

function f , defined by
f : R+ → R, f(γ) =

γ

e2/γ
− γ + 1,

has a unique root and is strictly decreasing on R+. Indeed, its derivative is

f ′(γ) = −1 +
2

γ
e−2/γ + e−2/γ = −1 + e−2/γ

(
1 +

2

γ

)
.

This is negative on R+ because 1 + 2
γ
< e

2
γ .

Additionally, the function f fulfills limγ→0 f(γ) = 1 and limγ→∞ f(γ) = −1, so there
is a unique root γ̃ of f in R+, and f is positive on (0, γ̃) and negative on (γ̃,∞).

We recycle the continuous function g(γ, α) from the proof of Theorem 2.1,
g : (0,∞)2 → R,

g(γ, α) = γ log
(γ
α

)
− γ + α− 1.

We observed that g(γ, ·) is strictly decreasing on (0, γ) and strictly increasing on (γ,∞).
The patterns are instable, if α /∈ [γ − 1, γ]. But on the interval [γ − 1, γ], we know as
result of the strict monotony of g(γ, ·) on (0, γ) and its continuity on R+

max
α∈[γ−1,γ]

g(γ, α) = g(γ, γ − 1) = γ log

(
γ

γ − 1

)
− 2.
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2 Amari’s Model

Let γ > γ̃. We show that there is no α ∈ [γ−1, γ] such that g(γ, α) = γ log
(
γ
α

)
−γ+α−1 >

0. Since the function f is strictly decreasing, we observe that γ > γ̃ implies f(γ) < 0 and
therefore γ/e2/γ < γ− 1. This yields in combination with the properties of the function g

max
α∈[γ−1,γ]

γ log
(γ
α

)
− γ + α− 1 = γ log

(
γ

γ − 1

)
− 2 < γ log

(
γ
γ

e2/γ

)
− 2 = 0.

So each α > 0 is inadmissible for γ.
We have shown in the proof of Theorem 2.1 that γ ∈ (0, 1) is admissible. For γ ∈ [1, γ̃),

we choose α ∈ (γ−1, γ/e2/γ). This interval is non-empty: the strict monotony of f implies
f(γ) > 0, i.e. γ/e2/γ > γ − 1. Note that the inequality α < γ is trivially fulfilled because
γ/e2/γ < γ. With this choice of α we can conclude

g(γ, α) = γ log
(γ
α

)
− γ + α− 1 > γ log

(
γ

γ/e2/γ

)
− γ + γ − 2 = γ log

(
e2/γ

)
− 2 = 0.

This shows that there is an admissible capacity variable for each threshold variable γ ∈
[1, γ̃). So γ∗ = γ̃.

It remains to show that the critical value α∗ is equal to γ∗−1. This follows in analogy
to the proof of Theorem 2.1 concerning α∗1, if we keep in mind that γ∗ − 1 = γ̃ − 1 is the
root of the function g(γ∗, ·) = g(γ̃, ·), which follows immediately from the definition of γ̃
as root of f .

�

Remark 2.6 The local field of a fixed neuron i, evaluated in a stored pattern ξµ, can
be split up into a signal term, that is, the part of the local field coming from the stored
message itself (for neuron i and the stored message ξµ, it is ξµi

∑
j 6=i ξ

µ
j ξ

µ
j ), and a noise

term (the part of the local field coming from the remaining stored patterns).
If threshold variables γ ≥ 1 are used, the stability of one of a stored pattern’s active

neurons requires a certain amount of signals coming from the noise term. The noise terms
of all the active neurons are high enough, with high probability, if α > γ− 1. A reason for
this phenomenon is that there are only about log(N) active neurons per stored pattern.

Pattern recognition is not the only task an associative memory is able to perform. If
it is confronted with only partial information of a stored pattern, the retrieval dynamics
should succeed in reconstructing the original pattern. If a spin is erased, the neuron
begins in an inactive state. One step further, if a message is partially corrupted, i.e. there
are some incorrect active and inactive spins in the input pattern, the network can under
certain conditions reconstruct this stored message.

Theorem 2.7 In Amari’s model described above, assume that a threshold variable 0 <
γ < γ∗ is used and that the capacity variable α is fitted to the threshold variable γ according
to the stability conditions derived in Theorem 2.1.

1. a) If γ < 1, for each error rate %1 log(N), %1 < 1 − γ, and a fixed but arbitrary
pattern ξµ, a fraction of %1 log(N) (which is assumed to be a natural number)
of the active neurons can be deleted at random, i.e. set to the inactive state
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2.1 Stability and Error Correction

0, and the dynamics will recover the original message in one step, with high
probability. That is, if ξ̃µ is obtained by deleting %1 log(N) excited neurons of
ξµ at random,

lim
N→∞

P(∀i ≤ N : Ti(ξ̃
µ) = ξµi ) = 1.

b) If 0 < γ < γ∗, the same holds true for a number of %1 log(N) deleted 1’s if
%1 < 1 and

α >
γ − 1 + %1

1− %1

.

This includes in particular the case γ < 1, %1 > 1 − γ. Note that the stability
conditions α < γ and (2.1) must also be fulfilled.

c) On the contrary, using an arbitrary 0 < γ < γ∗, the pattern cannot be recovered,
with high probability, even not after multiple steps,

lim
N→∞

P(∃i ≤ N : ∀n ≥ 1 : T
(n)
i (ξ̃µ) 6= ξµi ) = 1

if

α <
γ − 1 + %1

1− %1

.

2. For a threshold variable 0 < γ < γ∗, a number of %2 log(N) spuriously activated
neurons will be deactivated in one step with high probability if at most αN2/ log(N)2

patterns are stored and the inequalities γ/(1 + %2) > α,

−γ log

(
γ

(1 + %2)α

)
+ γ − α(1 + %2) < −1 (2.28)

hold.

The bound is sharp concerning the one-step-retrieval: if γ > α(1 + %2), but

−γ log

(
γ

(1 + %2)α

)
+ γ − α(1 + %2) > −1

or if γ/(1+%2) ≤ α, the pattern cannot be corrected in one step, with high probability:

lim
N→∞

P(∀i : Ti(ξ̃
µ) = ξµi ) = 0.

3. Finally, a corrupted version of a stored message, where %1 log(N) of the active neu-
rons have been deactivated and %2 log(N) of the inactive neurons have been spuriously
activated, can be returned in one step into the original message, with high probability,
if γ > α(1− %1 + %2),

−γ log

(
γ

(1− %1 + %2)α

)
+ γ − α(1− %1 + %2) < −1

and additionally

α >
γ − 1 + %1

1− %1 + %2
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2 Amari’s Model

holds. The first two conditions are only supplementary to the stability conditions if
%1 < %2, the third if %2 < %1. If the first two conditions are supplementary, they
are sharp concerning the one step retrieval; if in contrary %1 > %2 and the third
condition does not hold, the pattern is never corrected, with high probability.

Proof of Theorem 2.7: The proof is similar to the proof of Thm. 2.1. We begin with
the first case, 1.a): let γ < 1 and %1 < 1− γ. Without loss of generality, we assume that
the corrupted message is a partially deleted version of ξ1 and that in case of k 1’s in ξ1

the patterns ξ1 and ξ̃1 are composed by

ξ1
i = 1, 1 ≤ i ≤ k; ξ1

i = 0, k + 1 ≤ i ≤ N ;

ξ̃1
i = 1, 1 ≤ i ≤ k − %1 log(N); ξ̃1

i = 0, k − %1 log(N) + 1 ≤ i ≤ N.

To recover the message ξ1 from ξ̃1, we need to reactivate the erased active neurons of ξ1.
The non-deleted 1’s and the 0’s must remain in their current state.

The local field of the deleted and non-deleted neurons (both activated in ξ1) will show
almost the same behaviour: for i ∈ {1, . . . , k}, we observe

Si(ξ̃
1) =

∑
j 6=i

Jij ξ̃
1
j =

∑
j 6=i

ξ̃1
j ξ

1
i ξ

1
j +

M∑
µ=2

∑
j 6=i

ξ̃1
j ξ
µ
i ξ

µ
j = k − %1 log(N)− ξ̃1

i +

k−%1
log(N)∑
j=1
j 6=i

M∑
µ=2

ξµi ξ
µ
j .

We call the part of the local field coming from the message ξ1 signal term and the part
coming from ξµ, µ ≥ 2, noise term. The only difference between deleted and non-deleted
neurons is that the signal term and the number of neurons from which signals can be
received are both equal to k− %1 log(N) for the deleted neurons and to k− %1 log(N)− 1
for the non-deleted neurons. For δ < 1− γ − %1, their local field is on Aδ at least

Si(ξ̃
1) ≥ k − %1 log(N)− 1 ≥ (1− δ) log(N)− %1 log(N)− 1 ≥ γ log(N),

if N is large enough. Since P(Aδ) tends to 1, the active neurons are recovered or remain
active, with high probability. The probability that an inactive neuron of ξ1 is activated
by the dynamics, if ξ̃1 is the input, is bounded by the corresponding probability when
examining the stability of ξ1, because there are less active neurons in ξ̃1 than in ξ1. Since
the stability conditions are fulfilled, they remain inactive, with high probability. This
concerns also 1.b) and 1.c).

We continue with 1.b). For %1 > 1 − γ and a corrupted pattern obtained by deleting
1’s, we can estimate, as in Theorem 2.5:

P
[
∃i ≤ N : ξ1

i = 1, Ti(ξ̃1) = 0
]
≤ P(Aδ) max

k∈N:k/ log(N)
∈(1−δ,1+δ)

k · P
[
S1(ξ̃1) < γ log(N)|Zk

]
+ P(Acδ)

≤(1 + δ) log(N) exp [− log(N)t (−γ + 1− δ − %1) + t] ·
exp

[
(1− δ − %1) log(N)α

(
e−t − 1

)
− α

(
e−t − 1

)
+O

(
log(N)2/N

)]
+ P(Acδ).
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2.1 Stability and Error Correction

We are in the same situation as in the proof of Theorem 2.5 concerning the stability of
the active neurons using γ > 1. Similarly to this proof, we observe that the probability
converges to 0 if

α >
γ − 1 + %1 + δ

1− %1 − δ
by taking t = − log [(γ − 1 + δ + %1)/(α(1− δ − %1))] and using −x log(x) +x− 1 < 0 for
x > 0. Especially t > 0 by choosing a δ such that α > (γ − 1 + δ+ %1)/(1− δ− %1) which
is possible due to the choice of α.

Concerning 1.c), if α < γ−1+%1
1−%1 , there will be errors involving the activated neurons of

ξ1. We show that after one step of the dynamics, all activated neurons will be deactivated,
with high probability. In addition, as shown in the proof concerning 1.a), none of the
inactive neurons of ξ1 will be activated by the dynamics, with high probability. If this
both occurs, the message can never be recovered. The proof is very similar to the proof of
Theorem 2.5 concerning the instability of the active neurons of ξ1 if α < γ− 1 and γ > 1.
First,

P(∃i ≤ k : Ti(ξ̃1) = 1|Zk) ≤ kP

k − %1 log(N) +
M∑
µ=2

k−%1 log(N)∑
j=1

ξµk ξ
µ
j ≥ γ log(N)

 .

The only difference of the probability on the right hand side to the probability in the
corresponding part of the proof of Theorem 2.5 is the length of the interior sum and the
reduced signal term coming from the message ξ1. The proof can be repeated with this
slight difference and we obtain that the term on the right hand side is bounded by

k exp
[
− t(γ + %1) log(N) + kt

]
exp

[
α(k − %1 log(N))(et − 1) +O

(
log(N)3/N

)]
.

We only need to take into account k ∈ ((1−δ) log(N), (1+δ) log(N)); the maximum of the
above expression is attained for k = (1+δ) log(N). By choosing δ such that δ < %1−1+γ,
(γ + %1 − 1− δ)/(1 + δ − %1) > α, the above probability tends to 0 by using

t = log

(
γ + %1 − 1− δ
(1 + δ − %1)α

)
> 0.

This yields
P(∃i ≤ N : ∀n ≥ 1 : T

(n)
i (ξ̃1) 6= ξ1

i ) −→ 1

because the probability that ξ̃1 is mapped to (0, . . . , 0) in the first step tends to 1. This
completes the proofs of 1.a), 1.b) and 1.c).

Let us continue with 2.: we again assume that the active neurons in ξ1 are the first
k ones and the spuriously activated are the subsequent %2 log(N) ones. The local field of
the neurons i, 1 ≤ i ≤ k, is at least

Si(ξ̃
1) =

∑
j 6=i

ξ̃1
j ξ

1
i ξ

1
j +

M∑
µ=2

k+%2 log(N)∑
j 6=i,j=1

ξ̃1
j ξ
µ
i ξ

µ
j ≥

k∑
j=1,j 6=i

1 +
M∑
µ=2

k∑
j=1,j 6=i

ξµi ξ
µ
j = Si(ξ

1).

Since α is chosen such that ξ1 is stable with high probability, the active neurons of ξ1 will
also remain activated if the input pattern is ξ̃1, with high probability.
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2 Amari’s Model

The neurons i > k get a potentially higher signal as result of the falsely activated neu-
rons and the probability of an error consequently increases. The bound on the probability
is derived in analogy to the one in the proof of Theorem 2.1 concerning the stability of
the inactive neurons of a stored pattern. Let δ be small enough such that the inequality

α <
γ

1 + δ + %2

holds. The probability of Aδ tends to 1 and the probability of mapping a fixed inactive
neuron of ξ1 to 1 is increasing with the number of active neurons in the message, k. This
yields

P
[
∃i : ξ1

i = 0, Ti(ξ̃
1) 6= ξ1

i

]
≤ NP

 M∑
µ=2

b(1+δ) log(N)c+%2 log(N)∑
j=1

ξµNξ
µ
j ≥ γ log(N)

+ P(Acδ)

≤N exp
[
log(N)(−tγ + α(et − 1)(1 + δ + %2)) +O(log(N)2/N)

]
+ P(Acδ).

With t = log
(

γ
α(1+δ+%2)

)
> 0, the probability tends to zero if

−γ log

(
γ

α(1 + δ + %2)

)
+ γ − α(1 + δ + %2) < −1.

This inequality can be fulfilled for each α such that the condition (2.28) holds.
The sharpness of the bound can be proven in exactly the same way as we have shown

the sharpness of the stability bound: the only difference is the number of neurons from
which signals can potentially come (we saw already in the previous part that the proof
works exactly as the proof of Theorem 2.1). Instead of k, it is k+%2 log(N). We condition
on the random variables ξµj , µ ≥ 2, j ≤ k + %2 log(N) and show that there exists, with
probability tending to 1, a neuron i, i > k+ %2 log(N), that receives enough signals to be
activated.

For the last part, 3., assume that message ξ̂1 is a corrupted version of ξ1 with %1 log(N)
deleted 1’s and %2 log(N) spuriously activated neurons.

To correct the faulty positions of ξ̂1, it is necessary to recover the deleted 1’s, to
deactivate the spuriously activated neurons and to keep the values of the neurons whose
activity has not been changed from ξ1 to ξ̂1. Since the difference between the local fields
of active neurons of ξ1, deleted or not, is negligible, as well as the difference between the
local field of the spuriously active neurons and the correctly inactive neurons in ξ̂1, we
only distinguish between active and inactive neurons of ξ1. The deleting causes a lower
height of the signal term of the 1’s of ξ1; apart from that, we only have to observe that
there are k − %1 log(N) + %2 log(N) active neurons in the pattern. The proof of 1.c) can
almost literally be repeated to show

P
(
∃i : ξ1

i = 1, Ti(ξ̂1) = 0
)
−→ 1

if α < γ−1+%1
1−%1+%2

and the one of 1.b) to show

P
(
∃i ≤ N : ξ1

i = 1, Ti(ξ̂1) = 0
)
−→ 0
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2.1 Stability and Error Correction

if α > γ−1+%1
1−%1+%2

. If %1 ≥ %2, the inactive neurons of ξ1 remain inactive or are deactivated by
the first step of the dynamics, with high probability, because α is chosen subject to the
stability conditions of Theorem 2.1. If %1 ≥ %2 and α < γ−1+%1

1−%1+%2
, the pattern is mapped

to (0, . . . , 0) in one step, and it is stable, if α > γ−1+%1
1−%1+%2

, both with high probability.
If %2 > %1, the active neurons are with high probability stable, because α > γ − 1.

There are k − %1 + %2 log(N) active neurons in the pattern instead of k and the inactive
neurons are or remain deactivated in the first step of the dynamics, with high probability,
if γ > α(1− %1 + %2) and

−γ log

(
γ

(1− %1 + %2)α

)
+ γ − α(1− %1 + %2) < −1.

This follows as in the proof of 2.). The bound is again sharp concerning the one step cor-
rection; this is proven analogously to the corresponding part of the proof of Theorem 2.1.

�

All the results obtained until now are results concerning the first notion of capacity. If
we want instead all the messages to be stable with high probability, the model at hand
looses the order of its capacity:

Proposition 2.8 The stability of a stored pattern’s 1’s raises problems if one wants all
patterns to be stable.

1. For each 0 < κ < 1, we have

lim inf
N→∞

P

(
∃µ ∈ {1, . . . ,M(N)} :

N∑
j=1

ξµj < κ log(N)

)
> 0

if Nβ = O(M), β = κ log(κ)− κ+ 1, and

lim
N→∞

P

(
∃µ ∈ {1, . . . ,M(N)} :

N∑
j=1

ξµj < κ log(N)

)
= 1

for Nβ = o(M), β = κ log(κ)− κ+ 1.
2. In addition, for arbitrary γ and α such that they fulfill the stability conditions

of Theorem 2.5, M = αN2/ log(N)2 stored patterns and used threshold γ log(N), the
probability of having at least one instable message tends to 1. In particular we have for
any choice of γ, α > 0, threshold γ log(N) and M(N) = αN2/ log(N)2 stored patterns

lim
N→∞

P (∃µ ≤M(N) : T (ξµ) 6= ξµ) = 1.

3. Moreover, if a threshold γ log(N) with threshold variable γ ≥ 1 is used, any choice
of M(N) such that Nβ = o(M(N)) for arbitrary but fixed β > 0 leads to

lim sup
N→∞

P (∃µ ≤M(N) : T (ξµ) 6= ξµ) = 1.
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2 Amari’s Model

A threshold variable γ ≥ 1 is therefore not admissible for the second notion of capacity.
4. For a threshold variable γ < 1 and M(N) stored patterns such that Nβ′ = o(M(N))

for some β′ > γ log(γ)− γ + 1, we have

lim sup
N→∞

P (∃µ ≤M(N) : T (ξµ) 6= ξµ) = 1.

However, if we use γ < 1 as threshold variable, we can reach that all patterns are stable,
with high probability, if M = o(Nβ), β = γ log(γ)− γ + 1.

Before proving this statement, we recall

Lemma 2.9 (see [5], Chapter 1, (1.2).) Let X be a Binomially distributed random vari-
able with parameters n and p̃ and Y a Poisson distributed random variable with parameter
np̃. Let A be a subset of N0. There is a constant C not depending on A, n and p̃, such
that

|P(X ∈ A)− P(Y ∈ A)| ≤C
∑
m∈A

(np̃)m

m!
e−np̃(np̃2 +m2n−1)

≤CP(Y ∈ A) max
m∈A

(np̃2 +m2n−1).

Proof of Proposition 2.8: 1. Let 0 < κ < 1. The probability of having at least one
stored pattern that has less than κ log(N) active neurons is equal to

P

(
∃µ ≤M :

N∑
j=1

ξµj < κ log(N)

)
= 1− P

(
∀µ ≤M :

N∑
j=1

ξµj ≥ κ log(N)

)

=1− P

(
N∑
j=1

ξ1
j ≥ κ log(N)

)M

= 1−

[
1− P

(
N∑
j=1

ξ1
j < κ log(N)

)]M
.

The number of active neurons in a message is Binomially distributed with parameters N
and log(N)/N . Denoting by Ylog(N) a Poisson distributed random variable with parameter
log(N), Lemma 2.9 implies

1−

[
1− P

(
N∑
j=1

ξ1
j < κ log(N)

)]M
≥1−

[
1− P

[
Ylog(N) < κ log(N)

] [
1− C

(
log(N)2/N + κ2 log(N)2/N

)]]M
.

The application of Lemma 2.4 yields, as in the proof of Theorem 2.1, for 0 < κ < 1,

lim
N→∞

1

log(N)
logP

[
Ylog(N) < κ log(N)

]
= −κ log (κ) + κ− 1.

So we obtain

lim inf
N→∞

P

(
∃µ ∈ {1, . . . ,M(N)} :

N∑
j=1

ξµj < κ log(N)

)
> 0
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if Nβ = O(M), β = κ log(κ)− κ+ 1, and

lim
N→∞

P

(
∃µ ∈ {1, . . . ,M(N)} :

N∑
j=1

ξµj < κ log(N)

)
= 1

for Nβ = o(M), β = κ log(κ)− κ+ 1.
2. For 0 < κ < 1, the expression −κ log (κ) +κ−1 is restricted to the interval (−1, 0).

Hence we know for M = αN2/ log(N)2

lim
N→∞

P

(
∃µ ∈ {1, . . . ,M(N)} :

N∑
j=1

ξµj < κ log(N)

)
= 1

for each κ ∈ (0, 1). For arbitrary α and γ such that the stability conditions of Theorem 2.1
hold, especially α < γ, we choose κ ∈ (0, 1) such that 0 < κ < γ − α. Since the previous
probability of having at least one pattern with less than κ log(N) active neurons tends to
1, we assume without loss of generality that ξ1 has k < κ log(N) active neurons in exactly
the first k places. As in the proof of Theorem 2.7, where we showed that a pattern is
mapped to (0, . . . , 0) in one step if α is too small, we obtain for arbitrary i ≤ k, using
that 0 < α < γ − κ:

P(Si(ξ
1) ≥ γ log(N)) =P

(
M∑
µ=2

k∑
j 6=i

ξµi ξ
µ
j > γ log(N)− k

)

≤P

 M∑
µ=2

log(N)∑
j 6=i

ξµi ξ
µ
j > (γ − κ) log(N)

 −→ 0.

An arbitrary active neuron of the stored message is deactivated after the first step, with
high probability and there is thus at least one instable stored pattern. If the stability
conditions are not fulfilled by α and γ, one of the conditions a) γ > γ∗, b) γ ≤ γ∗ and
α ∈ (0, γ − 1) ∪ (α∗(γ),∞), c) 1 < γ ≤ γ∗ and α = γ − 1 or d) γ ≤ γ∗ and α = α∗(γ)
must be fulfilled. Conditions a) and b) imply that an arbitrary stored pattern is instable
with high probability. In the two latter cases, there is again 0 < κ < γ − α (recall that
α∗(γ) < γ) and we can continue the proof as in the case where the stability conditions
hold.

3. Now suppose that a threshold variable γ ≥ 1 is used. If γ > γ∗, an arbitrary stored
pattern is instable with high probability. Let 1 ≤ γ ≤ γ∗ and fix an arbitrary β > 0
and a sequence M(N)N∈N, Nβ = o(M(N)). If there is an α > 0 such that there is a
subsequence (Nl)l∈N with M(Nl) ≥ αN2

l / log(Nl)
2, for all l ∈ N, we know by the second

part of the proof that the probability of an error is tending to 1 along this subsequence
and lim supN→∞ P (∃µ ≤M(N) : T (ξµ) 6= ξµ) = 1. If in contrary Nβ = o(M(N)) and
M(N) = o(N2/ log(N)2), we first observe with the help of the first part of the proof that
we have for κ ∈ (0, 1), β = κ log(κ)− κ+ 1

lim
N→∞

P

(
∃µ ≤M(N) :

N∑
j=1

ξµj ≤ κ log(N)

)
= 1.
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Since γ ≥ 1, we have γ−κ > 0 and due to the fact thatM(N) = o(N2/ log(N)2), another
application of the exponential Chebyshev inequality shows that an arbitrary one of the
active neurons is deactivated after the first step of the dynamics because it cannot allocate
enough signals to make the local field exceed the threshold, with high probability.

4. Let now 0 < γ < 1 and β′ > γ log(γ) − γ + 1. Let M(N) be a sequence with
Nβ′ = o(M(N)). We can as in the case γ ≥ 1 assume that M(N) = o(N2/ log(N)2);
otherwise we see immediately that lim supN→∞ P (∃µ ≤M(N) : T (ξµ) 6= ξµ) = 1. Since
β′ > γ log(γ) − γ + 1 there is an ε > 0 such that β′ ≥ (γ − ε) log(γ − ε) − γ + ε + 1.
Using the first result of the Proposition yields limN→∞ P(∃µ ≤ M(N) :

∑N
j=1 ξ

µ
j ≤ (γ −

ε) log(N)) = 1. The local field of an arbitrary active neuron of a stored pattern with at
most (γ − ε) log(N) excited neurons does with high probability not exceed the threshold
γ log(N) because M(N) = o(N2/ log(N)2).

Finally if M = o(Nβ), β = γ log(γ) − γ + 1, γ ∈ (0, 1), patterns are stored and the
threshold is equal to γ log(N), the probability that there is at least one pattern that is
not stable is at most

P (∃µ ≤M,∃i ≤ N : Ti(ξ
µ) 6= ξµi ) ≤MP

[
N∑
j=1

ξ1
j ≤ γ log(N)

]
+MP

[
N∑
j=1

ξ1
j ≥ 3 log(N)

]

+MP

(
∃i ≤ N : ξ1

i = 0, Ti(ξ
1) 6= 0

∣∣∣ N∑
j=1

ξ1
j < 3 log(N)

)
, (2.29)

because the active neurons are trivially stable, if
∑N

j=1 ξ
1
j ≥ γ log(N). Again, with the

help of the exponential Chebyshev inequality, we observe for t > 0

MP

(
N∑
j=1

ξ1
j ≤ γ log(N)

)
≤M exp [γ log(N)t] (1− p+ pe−t)N

≤M exp
[
γ log(N)t+Np(e−t − 1)

]
≤M exp [log(N)(−γ log(γ) + γ − 1)]

and

MP

(
N∑
j=1

ξ1
j ≥ 3 log(N)

)
≤M exp [log(N)(−3 log(3) + 3− 1)] .

For γ ∈ (0, 1), −β = −γ log(γ) + γ − 1 only takes values in (−1, 0). Due to the choice of
M and the fact that −3 log(3)+2 < −1, the first two summands in (2.29) vanish. Finally,

MP

(
∃i ≤ N : ξ1

i = 0, Ti(ξ
1) 6= 0

∣∣∣ N∑
j=1

ξ1
j < 3 log(N)

)

≤MNP

 M∑
µ=2

∑
j≤3 log(N)

ξµNξ
µ
j ≥ γ log(N)


≤MN exp

[
−γ log(N)t+Mp2(et − 1)3 log(N) +O(M log(N)5/N3)

]
for arbitrary t > 0 not depending on N . This converges to 0 for the given choice of γ and
M , using an arbitrary t ≥ (β + 1)/γ. �
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In his paper [2], Amari uses a version of the model in which the number of activated
neurons is kept constant, i.e., each message has the same number of active neurons. This
version of the model behaves like the model we analysed until now, but allows in addition
to ensure the stability of every stored pattern without loosing the order of the capacity.

Proposition 2.10 In the second version of Amari’s model, where a stored message has
exactly c = log(N) excited neurons instead of independent and identically distributed spins
ξµj , 1 ≤ j ≤ N , let the threshold variable be γ ≤ 1 and the threshold γc. Suppose that
M = αN2/c2 patterns have been stored. Every pattern is stable with high probability, if
α < γ and

−γ log
(γ
α

)
+ γ − α < −3.

The results obtained for independent and identically distributed spins per message con-
cerning the stability of one arbitrary stored pattern ξµ are also valid for this version of the
model: using γ < γ∗, we have

lim
N→∞

P(∀i ≤ N : Ti(ξ
µ) = ξµi ) = 1

if max(0, γ − 1) < α < γ and

−γ log
(γ
α

)
+ γ − α < −1,

whereas

lim
N→∞

P(∃i ≤ N : Ti(ξ
µ) 6= ξµi ) = 1

if either 1. α < γ and

−γ log
(γ
α

)
+ γ − α > −1,

2. α ≥ γ or 3. γ > 1, α < γ − 1.
Concerning this notion of capacity, the critical variables remain γ∗ and α∗ as obtained

in Theorem 2.5.
The results obtained in Theorem 2.7 remain true for this version of the model.

Proof of Proposition 2.10: We do not give a detailed proof of the results already ob-
tained for the other version of the model because most of it can be carried over from
the corresponding proofs of the first version of the model. However, we focus on the
differences between the models. Concerning the less restrictive definition of the storage
capacity, the exponential Chebyshev inequality is used to show the lower bound concern-
ing the stability of the 0’s and the upper and lower bounds concerning the stability of the
1’s. One can omit the conditioning on Aδ; this makes the proof slightly easier. Assume
that the c activated neurons in ξ1 are the first c neurons 1, . . . , c. For i > c, the following
exponential moment is

E

[
exp

(
M∑
µ=2

c∑
j=1

ξµi ξ
µ
j

)]
= E

[
exp

(
c∑
j=1

ξMi ξ
M
j

)]M−1
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=

[
1− c

N
+

c

N

(
c−1∑
n=0

(
c

n

) n∏
m=1

c−m
N −m

c−n−1∏
k=0

(
1− c− 1− n

N − 1− n− k

)
etn

)]M−1

≤
[
1 +

c2(c− 1)

N(N − 1)
(et − 1) +O

(
c5

N3

)]M
=

[
1 +

c2(c− 1)

N2
(et − 1) +O

(
c5

N3

)]M
≤ exp

[
α(et − 1)(c− 1) +O(c3/N)

]
= exp

[
α(et − 1)(c− 1)

]
(1 +O(c3/N)).

We used in the second line that there are exactly c active neurons per message and in the
third line that the summand for n = 0 is at most

c−1∏
k=0

(
1− c− 1

N − 1− k

)
= 1−

c−1∑
k=0

c− 1

N − 1− k
+O

(
c4

N2

)
≤ 1− c c− 1

N − 1
+O

(
c4

N2

)
.

Now all parts of the proof involving this exponential moment can repeated analogously to
the proofs concerning the other version of the model. In particular, for γ ≤ 1, the active
neurons are automatically stable and

P (∃µ ≤M : ∃i ≤ N : Ti(ξ
µ) 6= ξµi ) ≤ P (∃µ ≤M : ∃i ≤ N : ξµi = 0, Ti(ξ

µ) 6= 0)

≤MN exp
[
−γct+ α(et − 1)(c− 1)

]
(1 +O(c3/N))

≤αN3 exp
[
−γct+ α(et − 1)(c− 1)

]
(1 + o(1)).

Using t = log(γ/α) for α < γ, this shows the stability for each ξµ with high probability, if

−γ log
(γ
α

)
+ γ − α < −3.

For the upper bound, assume again that the c active neurons in ξ1 are the first c ones.
To show that (2.4) holds, if (2.3) is fulfilled, we condition on ξµj , µ ≥ 2, j ≤ c. But
in contrary to the version with independent and identically distributed spins, the sums∑

j≤c
∑M

µ=2 ξ
µ
i ξ

µ
j , i > c, are no longer conditionally independent, given ξµj , µ ≥ 2, j ≤ c.

The random variable X1,

X1 =
M∑
µ=2

1{
∑
j≤c ξ

µ
j =1},

used also in the corresponding part of the proof concerning the first version of the model,
is again Binomially distributed, but now with parameters M − 1 and

p̃1 = c
c

N

c−2∏
k=0

(
1− c− 1

N − k − 1

)
=
c2

N
(1 +O(c2/N))

The probability of the event

Bδ =
{ X1

αN
∈ (1− δ, 1 + δ)

}
tends, again, to 1. We observe that

P

(
∃i > c :

∑
j≤c

M∑
µ=2

ξµi ξ
µ
j ≥ γc

)
≥ P

(
∃i > c :

∑
j≤c

∑
µ:
∑
j≤c ξ

µ
j =1

ξµi ξ
µ
j ≥ γc

)
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=P

(
∃i > c :

∑
µ:
∑
j≤c ξ

µ
j =1

ξµi ≥ γc

)

≥P(Bδ) · min
l∈N: l/(αN)∈(1−δ,1+δ)

P

(
∃i > c :

∑
µ:
∑
j≤c ξ

µ
j =1

ξµi ≥ γc
∣∣∣X1 = l

)

=P(Bδ) · min
l∈N: l/(αN)∈(1−δ,1+δ)

P

(
∃i > c :

l+1∑
µ=2

ξµi ≥ γc
∣∣∣∀µ ∈ {2, . . . , l + 1} :

∑
j≤c

ξµj = 1

)

=P(Bδ) · P

(
∃i > c :

dαN(1−δ)e+1∑
µ=2

ξµi ≥ γc
∣∣∣∀µ ∈ {2, . . . , dαN(1− δ)e+ 1} :

∑
j≤c

ξµj = 1

)
.

We will use negative association of random variables to show that the upper bounds on
α of this version of the model coincide with those of the first version. We therefore recall
the definition and some properties of negatively associated random variables:

Definition 2.11 (see [26]) A set of random variables X1, . . . , Xk is negatively associated
if for every pair of disjoint subsets A1, A2 of {1, . . . , k} and every pair of (coordinatewise)
increasing functions f1 and f2

Cov(f1(Xi : i ∈ A1), f2(Xj : j ∈ A2)) ≤ 0.

Obviously, the increasing functions can equally be replaced by decreasing functions f1, f2.

Lemma 2.12 (see [26], P2, P6 and P7 and [10], Theorem 1.(8)) Negatively associated
random variables possess the following properties:

1. For disjoint subsets A1, . . . , Am of {1, . . . , k} and increasing positive functions
f1, . . . , fm, the inequality

E

(
m∏
i=1

fi(Xj : j ∈ Ai)

)
≤

m∏
i=1

E (fi(Xj : j ∈ Ai))

holds. The inequality holds likewise for decreasing positive functions.

2. Increasing functions defined on disjoint subsets of negatively associated random vari-
ables are negatively associated.

3. The union of independent sets of negatively associated random variables is negatively
associated.

4. If X1, . . . , Xn are negatively associated nonnegative integer valued random variables,
then

P(Xi = 0, i = 1, . . . , n) ≤
n∏
i=1

P(Xi = 0).
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2 Amari’s Model

For a fixed µ and conditionally on {
∑

j≤c ξ
µ
j = 1}, the common distribution of the random

variables ξµi , i > c, is Multivariate Hypergeometric (with parameters N − c (number of
characteristics), c − 1 (number of drawings) and (1, . . . , 1) (vector of multiplicity of the
characteristics)) and they are therefore negatively associated (see [26], 3.1(c)). So are ξµi ,
2 ≤ µ ≤ dαN(1− δ)e+ 1, i > c, given {∀µ ≥ 2, µ ≤ 1 + dαN(1− δ)e :

∑
j≤c ξ

µ
j = 1} since

these are unions of independent sets of negatively associated random variables. So the

dαN(1−δ)e+1∑
µ=2

ξµi , i > c

are conditionally negatively associated, given {∀µ ≥ 2, µ ≤ 1+dαN(1−δ)e :
∑

j≤c ξ
µ
j = 1},

because they are increasing functions defined on disjoint subsets of negatively associated
random variables. Finally, the same is true if we apply to

∑dαN(1−δ)e+1
µ=2 ξµi , i > c, the

increasing functions hi(x) = h(x) = 1[γc,∞)(x) and obtain the random variables

1[γc,∞)

dαN(1−δ)e+1∑
µ=2

ξµi

 , i > c.

These variables are in addition nonnegative and integer valued, and this implies due to
Lemma 2.12, 4.:

P

(
∃i > c :

dαN(1−δ)e+1∑
µ=2

ξµi ≥ γc
∣∣∣∀µ ∈ {2, . . . , dαN(1− δ)e+ 1} :

∑
j≤c

ξµj = 1

)

=1− P

(
∀i > c :

dαN(1−δ)e+1∑
µ=2

ξµi < γc
∣∣∣∀µ ∈ {2, . . . , dαN(1− δ)e+ 1} :

∑
j≤c

ξµj = 1

)

≥1− P

( dαN(1−δ)e+1∑
µ=2

ξµN < γc
∣∣∣∀µ ∈ {2, . . . , dαN(1− δ)e+ 1} :

∑
j≤c

ξµj = 1

)N−c

.

The sum
∑dαN(1−δ)e+1

µ=2 ξµN is, conditionally on {∀µ ≥ 2, µ ≤ dαN(1−δ)e+1 :
∑

j≤c ξ
µ
j = 1},

Binomially distributed with parameters dαN(1 − δ)e and c−1
N−c . For an arbitrary ε > 0,

choose N big enough such that c−1
c

N
N−c > 1− ε. Let for n ∈ N and λ ∈ (0, 1) Rλ,n denote

a Binomial random variable with parameters n and λ. Then for λ′ ≥ λ and x ∈ R,

P (Rλ′,n ≥ x) ≥ P (Rλ,n ≥ x) .

R(1−ε)c/N, dαN(1−δ)e is, as in the proof of Theorem 2.1, asymptotically Poisson distributed
with parameter (1− ε)cdαN(1− δ)e/N ≥ (1− ε)(1− δ)cα. The rest of the proof can now
be adopted from the corresponding part of the proof of Theorem 2.1, using (1− ε)(1− δ)c
instead of (1− δ)k as parameter of the Poisson distribution.

�
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2.2 Hamiltonian Function and Energy Landscape

2.2 Hamiltonian Function and Energy Landscape

The dynamics of the neural network analysed in the previous section corresponds to an
Hamiltonian function: if the updating rule of one step of the sequential dynamics has
decided to change a state, this decreases the energy of the configuration. The sequential
dynamics of the neural network therefore leads to local minima of the energy function.
This corresponds to a spin glass notion of the associative memory: the dynamics corre-
sponds to a Metropolis algorithm at zero temperature using the associated energy function.
The stability of a pattern defined in the previous section signifies that this pattern is a
local minimum of the Hamiltonian function. Newman, in [35], takes another approach to
the definition of stability: a pattern is considered to be stable if it is not too far away from
a local minimum, measured in Hamming distance. A small number of errors is tolerated.
An energy barrier around the pattern is a sphere of a given Hamming distance centered in
the pattern, such that the difference of the energy functions evaluated in a configuration
on the sphere and the stored pattern exceeds a given amount, for each configuration on
the sphere. If there is an energy barrier around the stored pattern, the gradient descent
dynamics of the energy, started in the pattern, converges to a local minimum within the
ball with the corresponding Hamming radius.

If we suppose a sequential updating, the following Hamiltonian is decreasing after an
updating step of the dynamics:

Proposition 2.13 The function H : {0, 1}N → R,

H(σ) := −1

2

N∑
i 6=j
i,j=1

σiσjJij + γ log(N)
N∑
j=1

σj,

is decreasing along each step T̄i, 1 ≤ i ≤ N , of a sequential dynamics T̄ .

Proof of Proposition 2.13: Indeed, using the sequential dynamics T̄i(σ) =
(σ1, . . . , σi−1, Ti(σ), σi+1, . . . , σN), the difference of the Hamiltonians before and after
the updating is

H(σ)−H(T̄i(σ)) = −(σi − Ti(σ))
∑

j≤N,j 6=i

σjJij + (σi − Ti(σ))γ log(N).

If neuron i is deactivated during this step, the difference is positive:

H(σ)−H(T̄i(σ)) =− (σi − Ti(σ))
∑
j 6=i

σjJij + (σi − Ti(σ))γ log(N)

=−
∑
j 6=i

σjJij + γ log(N) > 0

because the local field Si(σ) =
∑

j 6=i σjJij is smaller than the threshold γ log(N), if σi is
flipped from 1 to 0. For the opposite situation, if the value of a neuron is upgraded from
0 to 1, we have

H(σ)−H(T̄i(σ)) =− (σi − Ti(σ))
∑
j 6=i

σjJij + (σi − Ti(σ))γ log(N)
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2 Amari’s Model

=
∑
j 6=i

σjJij − γ log(N) ≥ 0,

because then the local field Si(σ) is at least equal to the threshold γ log(N).

�

We want to find valleys of the energy function centered in the stored patterns including
their depth and radii. We therefore consider a fixed pattern in a given Hamming distance
of a stored pattern ξµ and analyse the difference of the Hamiltonians evaluated in this
pattern and ξµ.

Proposition 2.14 Consider the given neural network with Hamiltonian function H using
the threshold γ log(N), γ ∈ (0, 1), and an arbitrary fixed 1 ≤ µ ≤ M . There are η > 0,
ε > 0, α > 0 such that the Hamiltonian function of some arbitrary pattern ξ̄µ in Hamming-
distance η log(N) of ξµ exceeds the value of the message ξµ by at least ε log(N)2, with high
probability, if M ≤ αN2/ log(N)2 messages are stored in the network.

This choice is maximal: for a Hamming distance h(N), log(N) = o(h(N)), and an
arbitrary pattern ξ̄µ in Hamming distance h(N) of ξµ, we have even

lim
N→∞

P(H(ξ̄µ) ≤ H(ξµ)) = 1.

Proof of Proposition 2.14: Take a stored message, e. g., ξ1. To shorten expressions,
we define for ξ̄1 the set J by J := {i : ξ̄1

i 6= ξ1
i } and

J1 = {i : ξ̄1
i = 1, ξ1

i = 0}, J2 = {i : ξ̄1
i = 0, ξ1

i = 1}, J = J1 ∪ J2.

We call |J1| = k1, |J2| = k2, f = k1+k2. For fixed k, k1 and k2, we assume that the excited
neurons of ξ1 are exactly the first k ones and consider ξ̄1 such that J1 = {k+1, . . . , k+k1}
and J2 = {k − k2, . . . , k}. The difference between the Hamiltonians is, for fixed k, given
by

H(ξ1)−H(ξ̄1) = −1

2

N∑
i 6=j
i,j=1

Jij
[
ξ1
i ξ

1
j − ξ̄1

i ξ̄
1
j

]
+ γ log(N)

N∑
j=1

[
ξ1
j − ξ̄1

j

]

=− 1

2

[
N∑
i 6=j
i,j=1

ξ1
i ξ

1
j

[
ξ1
i ξ

1
j − ξ̄1

i ξ̄
1
j

]
+

M∑
µ=2

N∑
i 6=j
i,j=1

ξµi ξ
µ
j

[
ξ1
i ξ

1
j − ξ̄1

i ξ̄
1
j

] ]
+ γ log(N)[k − [k − k2 + k1]]

=−
(
k

2

)
+

(
k − k2

2

)
− 1

2

M∑
µ=2

N∑
i 6=j
i,j=1

ξµi ξ
µ
j

[
ξ1
i ξ

1
j − ξ̄1

i ξ̄
1
j

]
+ γ log(N)(k2 − k1)

=− kk2 +
k2

2 + k2

2
− 1

2

M∑
µ=2

N∑
i 6=j
i,j=1

ξµi ξ
µ
j

[
ξ1
i ξ

1
j − ξ̄1

i ξ̄
1
j

]
+ γ log(N)(k2 − k1). (2.30)
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We define the random variables Aµ(k, k2), Bµ(k, k2) and Cµ(k, k1) by

Aµ(k, k2) :=

k−k2∑
j=1

ξµj , Bµ(k, k2) :=
k∑

j=k−k2+1

ξµj , Cµ(k, k1) :=

k+k1∑
j=k+1

ξµj .

Recalling that Aµ(k, k2), Bµ(k, k2) and Cµ(k, k1) depend on k and k2 or k and k1, respec-
tively, we fix k, k1 and k2 and write simply Aµ, Bµ and Cµ. We then can rewrite the
random part of the difference of the energy functions:

−1

2

M∑
µ=2

N∑
i 6=j
i,j=1

ξµi ξ
µ
j

[
ξ1
i ξ

1
j − ξ̄1

i ξ̄
1
j

]
=− 1

2

M∑
µ=2

k∑
i 6=j
i,j=1

ξµi ξ
µ
j +

1

2

M∑
µ=2

∑
i 6=j

i,j∈{1,...,k2}
∪{k+1,...,k+k1}

ξµi ξ
µ
j

=
M∑
µ=2

[
−
(
Aµ +Bµ

2

)
+

(
Aµ + Cµ

2

)]

=
1

2

M∑
µ=2

[
C2
µ + 2AµCµ − Cµ −B2

µ − 2AµBµ +Bµ

]
=

M∑
µ=2

[(
Cµ
2

)
+ AµCµ −

(
Bµ

2

)
− AµBµ

]
. (2.31)

The variables (Aµ, µ ≥ 1, Bµ, µ ≥ 1, Cµ, µ ≥ 1) are (for fixed k, k1 and k2) independent.
For each µ, the distributions of Aµ, Bµ and Cµ are Binomial: for Aµ the parameters are
k − k2 and p, for Bµ the parameters are k2 and p and for Cµ they are k1 and p. The
expectation of one summand of the preceding sum is thus

E
[(
Cµ
2

)
+ AµCµ −

(
Bµ

2

)
− AµBµ

]
= p2 ·

[(
k1

2

)
+ (k − k2)k1 −

(
k2

2

)
− (k − k2)k2

]
.

For some fixed k ≤ (1+δ) log(N), assuming w.l.o.g. that h(N)p→ 0, a short computation
yields

V
[(
Cµ
2

)
+ AµCµ −

(
Bµ

2

)
− AµBµ

]
=p2

((
k1

2

)
+

(
k2

2

)
+ k1(k − k2) + k2(k − k2)

)
+O(p3(k2

1(k − k2) + (k − k2)2k1)).

Using the Chebyshev inequality, we can now show that the Hamiltonian on the Hamming
sphere indeed exceeds the Hamiltonian in ξ1 by at least ε log(N)2, if η, ε and α are
appropriately chosen and the radius of the sphere is η log(N). This statement is also
included in the next theorem and therefore not shown in detail. To show that this choice
is maximal, assume that log(N) = o(h(N)). Recalling that Aµ, Bµ and Cµ are defined in
dependence on k, k1 and k2, the Chebyshev inequality yields

lim
N→∞

max
k,k1,k2∈N:k/

log(N)∈(1−δ,1+δ),
k2≤k,k1=h(N)−k2

P

 ∑M
µ=2

(
Cµ
2

)
+ AµCµ −

(
Bµ
2

)
− AµBµ

α
((

h(N)−k2
2

)
+
(
k2
2

)
+ h(N)(k − k2)

) /∈ (1− δ, 1 + δ)

 = 0.
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Since k2 ≤ k, we observe that for k ≤ (1 + δ) log(N), the expression

α(1− δ)
[(
h(N)− k2

2

)
+

(
k2

2

)
+ h(N)(k − k2)

]
− kk2 +

k2
2 + k2

2
− γ log(N)(h(N)− k2)

tends to infinity, as N does. We finally obtain for large enough N and an arbitrary pattern
ξ̄1 in Hamming distance h(N) of ξ1, chosen in dependence on k:

P(H(ξ̄1) ≤ H(ξ1)) ≥ P(Aδ) min
k/ log(N)
∈(1−δ,1+δ)

P(H(ξ̄1) ≤ H(ξ1)|Zk) ≥ P(Aδ)·

min
k,k1,k2∈N:k/

log(N)∈(1−δ,1+δ),
k2≤k,k1=h(N)−k2

P

 ∑M
µ=2

(
Cµ
2

)
+ AµCµ −

(
Bµ
2

)
− AµBµ

α
((

h(N)−k2
2

)
+
(
k2
2

)
+ h(N)(k − k2)

) ∈ (1− δ, 1 + δ)


and both probabilities tend to 1, as N tends to infinity. The random variables Aµ, Bµ

and Cµ are defined in dependence on k, k1, k2, as described in the proof.

�

The radii will thus be maximal of order log(N); the height of the valleys is of order
log(N)2.

Theorem 2.15 Consider the Hamiltonian in Amari’s model using a threshold variable
0 < γ < 1 and a number of stored patterns M = αN2/ log(N)2 with a capacity variable α
such that α < γ,

−γ log
(γ
α

)
+ γ − α < −1.

Fix some arbitrary ξµ, µ ∈ {1, . . . ,M}. Then there is with high probability an energy
barrier around ξµ, that is, there are η > 0 and ε > 0 such that

lim
N→∞

P(∀ξ̄µ ∈ Sbη log(N)c(ξ
µ) : H(ξµ)−H(ξ̄µ) ≤ −ε log(N)2) = 1.

Sbη log(N)c(ξ
µ) describes the sphere with radius bη log(N)c with respect to the Hamming

distance dH(·, ·) centered in ξµ.

Proof of Theorem 2.15: We first assume that ξ1 consists of exactly k 1’s and that
these are located in the first k places. This event is, as in the previous proofs, denoted
by Zk. Furthermore, we assume that k = ρ log(N) with ρ ∈ (1− δ, 1 + δ) for some fixed
δ > 0. For a pattern ξ̄µ in Hamming-distance η log(N) (w.l.o.g. we assume η log(N) ∈ N)
we denote by η1 log(N) = k1 the number of neurons that are not excited in ξ1, but in
ξ̃1, and by η2 log(N) = k2 the number of neurons whose spins have been changed from
1 to 0. The patterns in Hamming distance η log(N) correspond uniquely to the subsets
J ⊆ {1, . . . , N}, |J | = η log(N). The pattern that differs from ξ1 exactly in the values of
the neurons belonging to the subset J is denoted by ξ1

J .
As shown in the previous proposition, the difference of the Hamiltonians (for fixed

choices of k, k1 and k2) is given by
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H(ξ1)−H(ξ1
J)

=
M∑
µ=2

[(
CJ
µ

2

)
−
(
BJ
µ

2

)
+ AJµC

J
µ − AJµBJ

µ

]
− kk2 +

k2
2 + k2

2
+ γ log(N)(k2 − k1)

with
AJµ :=

∑
i∈{1,...,k}\J2

ξµi , BJ
µ :=

∑
i∈J2

ξµi , CJ
µ :=

∑
i∈J1

ξµi .

For fixed numbers k1, k2 and k, k1 + k2 = η log(N), there are
(
N−k
k1

)(
k
k2

)
possibilities to

choose patterns that differ from ξ1 in exactly k1 of the inactive neurons of ξ1 and in exactly
k2 of the active neurons of ξ1. The probability of having at least one such configuration
whose Hamiltonian is below the Hamiltonian of ξ1 plus the threshold ε log(N)2 is thus
bounded by

P [∃J1 ⊆ {k + 1, . . . , N}, |J1| = k1, J2 ⊆ {1, . . . , k}, |J2| = k2 :

H(ξ1
J) ≤ H(ξ1) + ε log(N)2|Zk

]
≤
(
N − k
k1

)(
k

k2

)
P
(
H(ξ1

J̃
) ≤ H(ξ1) + ε log(N)2|Zk

)
for an arbitrary subset J̃ = J̃1 ∪ J̃2, J̃1 ⊆ {k + 1, . . . N}, J̃2 ⊆ {1, . . . , k}, with |J̃1| = k1,
|J̃2| = k2. We take J̃2 = {k − k2 + 1, . . . , k} and J̃1 = {k + 1, . . . , k + k1}. To prove the
assertion of the Theorem, we show that

lim
N→∞

max
k∈N:k/ log(N)
∈(1−δ,1+δ)

η log(N) · max
0≤k1≤η log(N)

P [∃J1 ⊆ {k + 1, . . . , N}, |J1| = k1,

J2 ⊆ {1, . . . , k}, |J2| = k2 = η log(N)− k1 : H(ξ1
J) ≤ H(ξ1) + ε log(N)2|Zk

]
= 0.
(2.32)

As the distributions of AJµ, BJ
µ and CJ

µ do not depend on the subset J for fixed k1 and
k2, we renounce on the index J . We observe that we need to bound the probability
P
(
H(ξ1

J̃
) ≤ H(ξ1) + ε log(N)2|Zk

)
for each choice of k1 and k of the considered sets by

exp [− log(N)2κ], with κ > η. For this purpose, we determine the exponential moments
of the random variables

(
Cµ
2

)
−
(
Bµ
2

)
+ AµCµ − AµBµ, µ ≥ 2. First,

E
[
exp

(
t

((
Cµ
2

)
−
(
Bµ

2

)
+ AµCµ − AµBµ

))]
=

k−k2∑
i1=0

k2∑
i2=0

k1∑
i3=0

(
k − k2

i1

)(
k2

i2

)(
k1

i3

)
pi1+i2+i3(1− p)k+k1−i1−i2−i3et((

i3
2 )−(i22 )−i1i2+i1i3)

because Aµ, Bµ and Cµ are independent and Binomially distributed. Having in mind that
p = log(N)/N , we sort according to the power of p and bound the expectation by

k−k2∑
i1=0

k2∑
i2=0

k1∑
i3=0

(
k − k2

i1

)(
k2

i2

)(
k1

i3

)
pi1+i2+i3(1− p)k+k1−i1−i2−i3et((

i3
2 )−(i22 )−i1i2+i1i3)
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2 Amari’s Model

≤(1− p)k+k1 + p(1− p)k+k1−1(k + k1) + p2(1− p)k+k1−2

[(
k1

2

)
et + k1(k − k2)et

+

(
k2

2

)
e−t + k2(k − k2)e−t +

(
k − k2

2

)
+ k1k2

]
+ log(N)3 max

i1,i2,i3:i1+i2+i3≥3
i1≤k−k2,i2≤k2,i3≤k1

(
k − k2

i1

)(
k2

i2

)(
k1

i3

)
pi1+i2+i3et((

i3
2 )−(i22 )+i1i3−i1i2).

The last line is at most

log(N)3 max
i1,i2,i3:i1+i2+i3≥3
i1≤k−k2,i2≤k2,i3≤k1

(
k − k2

i1

)(
k2

i2

)(
k1

i3

)
pi1+i2+i3et((

i3
2 )−(i22 )+i1i3−i1i2)

≤ log(N)3 max
i1,i2,i3:i1+i2+i3≥3
i1≤k−k2,i2≤k2,i3≤k1

ki1 ki22 k
i3
1 p

i1+i2+i3et((
i3
2 )−(i22 )+i1i3−i1i2). (2.33)

To determine the maximal value of this expression, we first fix values t, i1 and i3. It will
later turn out that t does not depend on N ; this is also assumed in the proof.

Since k2p < 1 and i1 ≥ 0, t > 0, one sees immediately that the expression decreases
in i2. We thus restrict the choice of i2 to the set {0, 1, 2, 3} in order to determine the
maximal value in (2.33).

For fixed k ≤ (1 + δ) log(N), t < 1
η
, i2 and i3, the expression in (2.33) is decreasing in

i1: we consider

pi1 ki1eti1i3−i1i2 = exp [i1 (log log(N)− log(N) + log(k) + ti3 − ti2)] .

Since i3 ≤ η log(N), t < 1
η
,

log log(N)− log(N) + log(k) + ti3 − ti2 < 0

for N large enough and each choice of i2 and i3 of the considered sets. So the whole
expression in the last line of (2.33) is, for fixed i2 and i3 and large enough N , decreasing
in i1.

For fixed t, i2 and i1, we observe finally

pi3 ki31 e
t((i32 )+i1i3) = exp

[
i23
2
t+ i3

(
log log(N)− log(N) + log(k1) + ti1 −

t

2

)]
.

This is either maximal in i3 = k1 or in the smallest value of i3, i3 ∈ {0, 1, 2, 3}, depending
on i1 and i2 (because their sum must be at least 3).

For t < 1
η
, k ≤ (1 + δ) log(N) and large enough N , the maximal argument in (2.33) is

an element of the set

{(i1, i2, i3) ∈ {0, 1, 2, 3}3 : i1 + i2 + i3 = 3} ∪ {(0, 0, k1)}. (2.34)

For each triple of the set on the left hand side, we have

pi1+i2+i3 ki1 ki22 k
i3
1 e

t((i32 )−(i22 )+i1i3−i1i2) = O
(

log(N)6

N3

)
.
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Inserting the last triple (0, 0, k1) in the right hand side of the last line in (2.33) yields

pi1+i2+i3 ki1 ki22 k
i3
1 e

t((i32 )−(i22 )+i1i3−i1i2) ≤ exp

[
k1

(
log log(N)− log(N) + log(k1) + t

k1

2

)]
and the argument of the exponential is again quadratic in k1, which implies that it is
either maximal in k1 = η log(N) or in k1 = 3. It remains to consider k1 = η log(N); using
that t < 1

η
, we have

exp

[
η log(N)

(
log log(N)− log(N) + log(η log(N)) + t

η log(N)

2

)]
≤ exp

[
η log(N)

(
log log(N)− 1

2
log(N) + log(η log(N))

)]
= o

(
log(N)6

N3

)
.

The maximum in (2.33) is therefore attained by one of the elements of {(i1, i2, i3) ∈
{0, 1, 2, 3}3 : i1 + i2 + i3 = 3}. We can now estimate the exponential moment under the
assumption t < 1

η
, using the previous calculations on page 46:

E
[
exp

[
t

((
Cµ
2

)
−
(
Bµ

2

)
+ AµCµ − AµBµ

)]]
≤1 + p2

[(
k1

2

)
et + k1(k − k2)et +

(
k2

2

)
e−t + (k − k2)k2e

−t

+

(
k − k2

2

)
+ k1k2 −

(
k + k1

2

)]
+O

(
log(N)9

N3

)
.

The
(
Cµ
2

)
−
(
Bµ
2

)
+ AµCµ − AµBµ, µ ≥ 2, are independent, which yields

E

[
exp

[
t
M∑
µ=2

((
Cµ
2

)
−
(
Bµ

2

)
+ AµCµ − AµBµ

)]]

=E
[
exp

[
t

((
C2

2

)
−
(
B2

2

)
+ A2C2 − A2B2

)]]M−1

≤ exp

[
α

[(
k1

2

)
et + k1(k − k2)et +

(
k2

2

)
e−t + (k − k2)k2e

−t

+

(
k − k2

2

)
+ k1k2 −

(
k + k1

2

)]
+O

(
log(N)7

N

)]
.

We obtain for fixed k, k1 and k2 with the aid of the exponential Chebyshev inequality(
N

k1

)(
k

k2

)
P
(
H(ξ1

J̃
) ≤ H(ξ1) + ε log(N)2|Zk

)
≤ exp [k1 log(N) + k2 log(k)] ·

exp

[
−t(kk2 − k2

2/2− k2/2− γ log(N)(k2 − k1)− ε log(N)2) + α

[(
k1

2

)
et + k1(k − k2)et

+

(
k2

2

)
e−t + (k − k2)k2e

−t +

(
k − k2

2

)
+ k1k2 −

(
k + k1

2

)]
+O

(
log(N)7/N

)]
.

(2.35)
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2 Amari’s Model

We know that k1 + k2 = η log(N) which means that the argument in the exponential is
quadratic in k1 if we replace k2 by η log(N)− k1: the function in k1 used as argument in
the exponential is of the form f(k1) = ak2

1 + bk1 + c, with

a = α(2sinh(t) + cosh(t)− 1) + t/2 > 0.

The maximum is thus attained by k1 = 0 or k1 = η log(N).
If k1 = 0, we use k2 = η log(N) in (2.35). We only need to consider k/ log(N) ∈

(1− δ, 1 + δ); due to the equality
(
k2
2

)
+ (k− k2)k2 =

(
k
2

)
−
(
k−k2

2

)
= kk2 − k22+k2

2
, (2.35) is

exp

[
k2 log(k)− tk2

(
k − k2/2− 1/2− γ log(N)

)
+ tε log(N)2+

α

(
kk2(e−t − 1)− k2

2 + k2

2
(e−t − 1)

)
+O

(
log(N)7/N

) ]

= exp

[
tε log(N)2 + η log(N)

[
log(k)− t

(
k − η log(N)

2
− 1

2
− γ log(N)

)
+α
(
k(e−t − 1)− η log(N) + 1

2
(e−t − 1)

)]
+O

(
log(N)7/N

)]
≤ exp

[
tε log(N)2 + η log(N)

[
log[(1 + δ) log(N)]− log(N)t

(
1− δ − η

2
− γ
)
− 1

2
t

+α log(N)
(

(1− δ)(e−t − 1)− η

2
(e−t − 1)

)
+ α

1

2
(e−t − 1)

]
+O

(
log(N)7/N

)]
.

Assuming that the maximum in (2.32) is attained in k1 = 0, we observe that (2.32) is
fulfilled if

ε < η(1− δ − η/2− γ).

To see this, we consider all the terms of order log(N)2 in the argument of the exponential
function and use an arbitrary t > 0; note that e−t − 1 < 0 and 1 − δ − η/2 > 0 if δ is
small enough, since η < 1. This condition can be fulfilled for suitable δ > 0 if

ε < η(1− γ − η/2)

and, to obtain a positive ε,
0 < η < 2(1− γ)

Since γ < 1, there are ε, η such that the conditions are fulfilled.
We continue with the second case, k1 = η log(N), k2 = 0. The exponential in (2.35) is

at most

exp [log(N) [k1 − tγk1 + tε log(N)]] exp

[
α

[(
k1

2

)
et + k1ke

t +

(
k

2

)
−
(
k + k1

2

)]]
≤ exp

[
log(N)2

(
η − tγη + tε+ α

η2

2
(et − 1) + α(1 + δ)η(et − 1)

)
+O(log(N))

]
.
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We used the maximal argument for k, k = (1+δ) log(N); it is maximal because et−1 > 0
for t > 0. Note also that

(
k
2

)
−
(
k+k1

2

)
= −kk1 −

(
k1
2

)
.

Minimising the expression

−tγη + tε+ α
η2

2
(et − 1) + α(1 + δ)η(et − 1)

yields

t∗(δ, η, ε, γ, α) = log

(
γη − ε

ηα(η/2 + 1 + δ)

)
= log

(
γ − ε

η

α(η/2 + 1 + δ)

)
as the extremal argument. This is positive if

ε < η (γ − α(η/2 + 1 + δ)) .

Since α < γ, there are positive ε, η and δ such that the inequality is fulfilled.
The probability in (2.32) converges to 0 as N tends to infinity, if

−tγη + tε+ α
η2

2
(et − 1) + α(1 + δ)η(et − 1) < −η

is satisfied for some t > 0. Inserting t∗(δ, η, ε, γ, α) yields the condition

−
(
γ − ε

η

)
log

(
γ − ε

η

α(η/2 + 1 + δ)

)
+ γ − ε

η
− αη

2
− α(1 + δ) < −1.

If all derived conditions are fulfilled, the probability

P(∃ξ̄µ : dH(ξµ, ξ̄µ) = η log(N), H(ξµ)−H(ξ̄µ) ≥ −ε log(N)2)

≤P(Acδ) + max
k/ log(N)∈
(1−δ,1+δ)

P(∃ξ̄µ : dH(ξµ, ξ̄µ) = η log(N), H(ξµ)−H(ξ̄µ) ≥ −ε log(N)2|Zk)

tends to 0.
It remains to show that it is possible to choose the variables such that all the conditions

are fulfilled. Setting γ̄ := γ− ε
η
and ᾱ := α

(
η
2

+ 1 + δ
)
, the inequality can be traced back

to inequality (2.1) whose solutions have been analysed during the last section. For γ̄ < γ∗,
the inequality is fulfilled if ᾱ < α∗(γ̄). In particular, for a pair γ ∈ (0, 1) and α < γ, such
that (2.1) holds, there are ε > 0 and η > 0 such that all the conditions are fulfilled by
choosing η and ε small enough, especially to reach t∗ < 1/η.

�

Remark 2.16 In the Hopfield model, the analysis of the Hamiltonian and the less restric-
tive notion of capacity allow to store αN instead of αN/ log(N) patterns such that they are
stable (tolerating small errors). In contrary to the Hopfield model, we do not obtain better
results concerning the bounds on α compared to the stability results of the previous section.
The difference to the result of Theorem 2.7 is that Theorem 2.15 concerns all corrupted
patterns in a given Hamming-distance and shows that their energy if higher than the one
of the stored pattern, with high probability, whereas the results obtained in Theorem 2.7
concern an arbitrary fixed pattern with a certain number of errors.
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3 The Ternary Simple Model

This model is an adaption of Amari’s network to ternary spin values as proposed in [31].
The network we consider consists again of N neurons, V = {1, . . . , N}, of which each one
can take values in S2 = {−1, 0, 1}. A spin σi = 0 signifies that neuron i is inactive; an
active neuron can be in the states −1 or 1. The state 0 has a special role; this model
is therefore different in spirit from the three state Hopfield model (Potts-Hopfield model,
see e. g., [32]) using three equal states. We store randomly M patterns ξµ ∈ {−1, 0, 1}N ,
1 ≤ µ ≤M . The values of these patterns are indicated by random variables ξµi , 1 ≤ i ≤ N ,
and the random variables (ξµi , 1 ≤ µ ≤ M, 1 ≤ i ≤ N) are independent and identically
distributed such that

P(ξµi = 0) = 1− log(N)

N
= 1− pN ,

P(ξµi = ±1) =
log(N)

2N
=

1

2
pN .

We will have in mind that pN depends on N but omit the index to achieve a better
readability. Given an input spin configuration σ ∈ {−1, 0, 1}N , the dynamics described
in the next paragraph is applied. Just as in Amari’s model, the edge set of the graph is
E = {{i, j} : i, j ∈ {1, . . . , N}, i 6= j} and on each edge, the synaptic efficacy Jij is defined
by

Jij :=
M∑
µ=1

ξµi ξ
µ
j .

We define the local field Si(σ) in dependence on the synaptic efficacies by

Si(σ) :=
N∑

j=1,j 6=i

σjJij =
∑
j 6=i

M∑
µ=1

σjξ
µ
i ξ

µ
j .

The parallel dynamics T will now assign a non-zero value to neuron i if and only if the
absolute value of the local field Si is at least equal to a given threshold. This threshold
will be chosen as γ log(N), with γ ∈ (0, 1), as in the first suggestion of the previous model,
because the expected number of neurons taking non-zero values per message is equal to
log(N). Other than in Chapter 2, the choice of γ is indeed restricted to the interval (0, 1),
as we will see in Proposition 3.2. If the absolute value of Si(σ) exceeds the threshold, the
neuron is mapped to the sign of the local field. That is,

Ti(σ) =

{
±1 Si(σ) R ±γ log(N)

0 |Si(σ)| < γ log(N).
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3 The Ternary Simple Model

Löwe and Vermet analysed this model in [31] for fixed p not depending on N and showed
that stability (for one or for all patterns) can be reached as well as that a certain number
of errors can be corrected, with high probability, if the number of stored patterns does
not exceed a certain bound (depending on the number of errors). The threshold of their
model cannot be utilised in the present, extremely sparse version of the model and has
been replaced by γ log(N), as described above. We will see that this choice is optimal to
obtain a maximal capacity.

The model described so far can be varied in the way that one chooses, as in Chapter 2,
the patterns ξ1, . . . , ξM independently and uniformly from the set of patterns with exactly
c = log(N) active neurons. We will show that the lower bounds on α concerning the
stability and error correction for the model with independent spins are also valid for this
second version and that the latter model outperforms the first version when stability of
all patterns is required. The second version is thus better than the one with independent
and identically distributed spins.

We first examine the sparse model with independent spins. We show the existence of
sharp bounds on the capacity variables concerning the stability and error correction of a
fixed stored pattern and prove afterwards that the lower bounds on the capacity variables
are also valid for the second version of the model. The crucial difference between the two
versions is that in the second one all the patterns can be stable with high probability
without loosing the order of the capacity, whereas the first version cannot keep the same
size of the number of stored patterns if the stability of all patterns (with high probability)
is required.

Stability and Error Correction

A network should provide stability of the stored patterns: as in Chapter 2, it is either
required for one arbitrary fixed pattern or for all patterns, depending on the notion of
capacity. We are interested in perfect retrieval. As in Amari’s model, we suggest a
maximal number of M = αN2/ log(N)2 messages until the system looses any ability to
recognise a stored pattern, where α has still to be determined. As we will see, this choice
is justified and will lead to sharp bounds on α dependent on γ with the property that a
randomly chosen message will be stable if α is smaller than this bound and that it will
not be stable if α exceeds the bound, both with high probability. We state the following
theorem:

Theorem 3.1 In the Ternary simple model using γ ∈ (0, 1) to determine the threshold
γ log(N), suppose that M = αN2/ log(N)2 patterns are stored, with α fulfilling

α <
γ

yγ
, (3.1)

where yγ is the unique root of the function

gγ : R+ → R, gγ(x) = −arsinh(x) + x−1 (cosh(arsinh(x))− 1) +
1

γ
.
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Then we have for each arbitrary but fixed of the stored messages ξµ:

lim
N→∞

P (∀i ≤ N : Ti(ξ
µ) = ξµi ) = 1. (3.2)

This bound is sharp: for any
α >

γ

yγ
,

the system looses the ability of recognising the stored patterns: for each arbitrary but fixed
µ ∈ {1, . . . ,M}, we have

lim
N→∞

P (∃i ≤ N : Ti(ξ
µ) 6= ξµi ) = 1. (3.3)
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critical capacity variable

Figure 3.1: Critical capacity variable α∗(γ) in dependence on the threshold variable γ for
the Ternary simple model

Proof of Theorem 3.1: Without loss of generality, we consider µ = 1 and begin the
proof by showing the first part of the theorem. We recall that for each δ > 0 and as N
tends to infinity,

P

(∣∣∣ N∑
j=1

|ξ1
j | − log(N)

∣∣∣ ≥ δ log(N)

)
−→ 0.
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3 The Ternary Simple Model

For later use, the variable δ should be chosen such that δ < 1 − γ; there will be
another condition that results during the proof. Let Z̄k := {

∑N
j=1 |ξ1

j | = k} and
Zk := {

∑N
j=1 |ξ1

j | =
∑k

j=1 |ξ1
j | = k}. Using the notation

Aδ :=

{∣∣∣ N∑
j=1

|ξ1
j | − log(N)

∣∣∣ < δ log(N)

}
,

we estimate

P
(
∃i ≤ N : Ti(ξ

1) 6= ξ1
i

)
≤ P(Acδ) +

∑
k∈N:k/ log(N)
∈(1−δ,1+δ)

P
(
Z̄k
)
P
(
∃i ≤ N : Ti(ξ

1) 6= ξ1
i |Zk

)
≤P(Acδ) + P(Aδ) max

k∈N:k/ log(N)
∈(1−δ,1+δ)

P
(
∃i ≤ N : Ti(ξ

1) 6= ξ1
i |Zk

)
≤P(Acδ) + max

k∈N:k/ log(N)
∈(1−δ,1+δ)

P
(
∃i ≤ N : Ti(ξ

1) 6= ξ1
i |Zk

)
. (3.4)

We now examine P (Ti(ξ
1) 6= ξ1

i |Zk) for some arbitrary i > k as well as for arbitrary i ≤ k,
for fixed k ∈ ((1 − δ) log(N), (1 + δ) log(N)). First, let i > k. The probability can be
written in the following way:

P
(
Ti(ξ

1) 6= ξ1
i |Zk

)
= P

(
Ti(ξ

1) 6= 0|Zk
)

= P
(∣∣Si(ξ1)

∣∣ ≥ γ log(N)|Zk
)

=P

(∣∣∣∑
j 6=i

M∑
µ=1

ξ1
j ξ
µ
i ξ

µ
j

∣∣∣ ≥ γ log(N)
∣∣∣Zk) = P

(∣∣∣ k∑
j=1

M∑
µ=2

ξ1
j ξ
µ
i ξ

µ
j

∣∣∣ ≥ γ log(N)
∣∣∣Zk) . (3.5)

Before we will continue, we state some facts that will play an important role during the
proof.

First, for fixed i, the random variables (ξ1
j ξ
µ
i ξ

µ
j , 2 ≤ µ ≤ M , j 6= i) are conditionally

independent, given (ξµi , µ ≥ 2, ξ1
j , j ≤ N). To explain this, consider independent and

identically distributed random variables Z1, Z2, Z3 such that P(Z1 = 1) = P(Z1 = −1) =
1
2
. For each choice of x1, x2, x3 ∈ {−1, 1}, the events {Z1Z2Z3 = x3} and {Z1 = x1, Z2 =
x2} are independent. So, for fixed i, the conditional distribution of the random variables
ξ1
j ξ
µ
i ξ

µ
j , µ ≥ 2, j 6= i, given (ξµi , µ ≥ 2, ξ1

j , j ≤ N) is

P
[
ξ1
j′ξ

ν
i ξ

ν
j′ = 0

∣∣∣ξµi , µ ≥ 2, ξ1
j , j ≤ N

]
= P

[
ξ1
j′ξ

ν
i ξ

ν
j′ = 0

∣∣∣ξ1
j′ , ξ

ν
i

]
= 1− p

∣∣ξ1
j′ξ

ν
i

∣∣
P
[
ξ1
j′ξ

ν
i ξ

ν
j′ = ±1

∣∣∣ξµi , µ ≥ 2, ξ1
j , j ≤ N

]
= P

[
ξ1
j′ξ

ν
i ξ

ν
j′ = ±1

∣∣∣ξ1
j′ , ξ

ν
i

]
=
∣∣ξ1
j′ξ

ν
i

∣∣ · p
2
.

This yields for arbitrary subsets {j1, . . . , jr̃} ⊆ {1, . . . , N} \ {i} and {µ1, . . . , µs̃} ⊆
{2, . . . ,M} and xr,s ∈ {−1, 0, 1}, r ≤ r̃, s ≤ s̃:

P

(
r̃⋂
r=1

s̃⋂
s=1

{ξ1
jrξ

µs
i ξ

µs
jr

= xr,s}
∣∣∣ξµi , µ ≥ 2, ξ1

j , j ≤ N

)

=

r̃,s̃∏
r,s=1

[
1{|xr,s|=1}

1

2
· p · |ξ1

jrξ
µs
i |+ 1{|xr,s|=0}

(
1− |ξ1

jrξ
µs
i | · p

)]
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=

r̃,s̃∏
r,s=1

P
(
ξ1
jrξ

µs
i ξ

µs
jr

= xr,s

∣∣∣ξµi , µ ≥ 2, ξ1
j , j ≤ N

)
.

Note that the (ξ1
j ξ
µ
i ξ

µ
j , 2 ≤ µ ≤M , j 6= i) are, for fixed i, also conditionally independent,

given (|ξµi |, µ ≥ 2, |ξ1
j |, j ≤ N).

As next observation, the random variables

|ξµi |, µ ≥ 2,

are independent and identically Bernoulli distributed with parameter p. For each fixed
i and δ > 0, we conclude with the help of the exponential Chebyshev inequality and
t = log(1 + δ) > 0:

P

[ ∑M
µ=2 |ξ

µ
i |

αN/ log(N)
≥ 1 + δ

]
≤ e−α

N
log(N)

t(1+δ)E

[
exp

(
t
M∑
µ=2

|ξµi |

)]
=e−α

N
log(N)

t(1+δ) [1− p+ pet
]M−1 ≤ e−α

N
log(N)

t(1+δ)eMp(et−1)

=e−α
N

log(N)(t(1+δ)−et+1) = exp

[
−α N

log(N)
(log(1 + δ)(1 + δ)− δ)

]
.

We used the independence of the (ξµi , µ ≥ 2) from the first to the second line, the
inequality 1 +x ≤ ex, for all x ∈ R in the second line and the definition of M in the third.
Analogously we obtain, with t = − log(1− δ) > 0

P

[ ∑M
µ=2 |ξ

µ
i |

αN/ log(N)
≤ 1− δ

]
≤ eα

N
log(N)

t(1−δ)E

[
exp

(
−t

M∑
µ=2

|ξµi |

)]

≤eα
N

log(N)
t(1−δ)e(M−1)p(e−t−1) ≤ exp

[
−α N

log(N)
((1− δ) log(1− δ) + δ) + pδ

]
.

Note that there is, in contrary to the first estimation, the (negligible) term pδ, due to the
fact that we consider M −1 and that e−t−1 < 0 for t > 0. These two computations yield

P

[ ∑M
µ=2 |ξ

µ
i |

αN/ log(N)
/∈ (1− δ, 1 + δ)

]

≤2 exp

[
−α N

log(N)
·min

(
(1 + δ) log(1 + δ)− δ; (1− δ) log(1− δ) + δ

)
+ pδ

]
. (3.6)

Note that
min

(
(1 + δ) log(1 + δ)− δ; (1− δ) log(1− δ) + δ

)
> 0.

This bound will be needed later; the corresponding complementary event whose proba-
bility tends to 1 is called

Bδ(i) :=

{∣∣∣∣∣
M∑
µ=2

|ξµi | − α
N

log(N)

∣∣∣∣∣ < δα
N

log(N)

}
.
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3 The Ternary Simple Model

We want to examine the probability in (3.5) and intersect similarly to what we did in
(3.4):

P

[∣∣∣ k∑
j=1

M∑
µ=2

ξ1
j ξ
µ
i ξ

µ
j

∣∣∣ ≥ γ log(N)
∣∣∣Zk] ≤ P(Bδ(i)

c|Zk)+

∑
l∈N:l log(N)/(αN)
∈(1−δ,1+δ)

P

[
M∑
µ=2

|ξµi | = l
∣∣∣Zk] · P[∣∣∣ k∑

j=1

M∑
µ=2

ξ1
j ξ
µ
i ξ

µ
j

∣∣∣ ≥ γ log(N)
∣∣∣Zk ∩ { M∑

µ=2

|ξµi | = l
}]

≤P(Bδ(i)
c) + max

l∈N:l log(N)/(αN)
∈(1−δ,1+δ)

P

[∣∣∣ k∑
j=1

M∑
µ=2

ξ1
j ξ
µ
i ξ

µ
j

∣∣∣ ≥ γ log(N)
∣∣∣Zk ∩ { M∑

µ=2

|ξµi | = l
}]

.

In the last line, we used the fact that {
∑M

µ=2 |ξ
µ
i | = l} and Zk are independent.

Recall now that for fixed i, the ξ1
j ξ
µ
i ξ

µ
j , j 6= i, µ ≥ 2, are conditionally independent,

given (ξµi , µ ≥ 2, ξ1
j , j ≤ N). In addition, for fixed i, the conditional distribution of∑

j 6=i
∑M

µ=2 ξ
1
j ξ
µ
i ξ

µ
j , given (ξµi , µ ≥ 2, ξ1

j , j ≤ N), is completely determined by
∑N

j 6=i |ξ1
j |

and
∑M

µ=2 |ξ
µ
i |. In particular, if ζ1, ζ2, . . . are independent and identically distributed with

ζ1 ∼ ξ1
1 , we have, given (ξµi , µ ≥ 2, ξ1

j , j ≤ N),

∑
j 6=i

M∑
µ=2

ξ1
j ξ
µ
i ξ

µ
j ∼

∑
j 6=i:
ξ1j 6=0

∑
µ>1:ξµi 6=0

ξµj ∼

∑N
j 6=i |ξ1j |·

∑M
µ=2 |ξ

µ
i |∑

n=1

ζn,

where ∼ denotes identical distributions. This yields for i > k

P

[∣∣∣ k∑
j=1

M∑
µ=2

ξ1
j ξ
µ
i ξ

µ
j

∣∣∣ ≥ γ log(N)
∣∣∣Zk ∩ { M∑

µ=2

|ξµi | = l
}]

= P

[∣∣∣ k∑
j=1

l+1∑
µ=2

ξµj

∣∣∣ ≥ γ log(N)

]

and with the help of the exponential Chebyshev inequality, for t > 0

P

[∣∣∣ k∑
j=1

l+1∑
µ=2

ξµj

∣∣∣ ≥ γ log(N)

]
≤ 2e−γ log(N)t E

[
exp

(
t

k∑
j=1

l+1∑
µ=2

ξµj

)]

=2e−γ log(N)t E
[
exp

(
tξµj
)]lk

= 2e−γ log(N)t

[
1− p+

1

2
pet +

1

2
pe−t

]lk
=2e−γ log(N)t

[
1− p+ pcosh(t)

]lk
= 2e−γ log(N)t

[
1 + p(cosh(t)− 1)

]lk
. (3.7)

The function cosh(t) − 1 is positive on R\0. Using that k ≤ (1 + δ) log(N), l ≤ (1 +
δ)αN/ log(N), the last line is therefore bounded by

2e−γ log(N)t
[
1 + p(cosh(t)− 1)

]αN(1+δ)2

.
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Combining the results (3.4) to (3.7) yields

P(∃i ≤ N : ξ1
i = 0, Ti(ξ

1) 6= ξ1
i )

≤P(Acδ) +N

[
P(Bδ(N)c) + 2e−γ log(N)t

[
1 + p(cosh(t)− 1)

]αN(1+δ)2
]

≤P(Acδ) +N
[
P(Bδ(N)c) + 2e−γ log(N)t exp

[
log(N)α(1 + δ)2(cosh(t)− 1)

]]
. (3.8)

In the last line we again used the inequality 1 + x ≤ ex for x ∈ R. Due to the fact that
P(Acδ) vanishes as N tends to infinity and to the estimation in (3.6), the probability in
(3.8) tends to 0 if

N2e−γ log(N)t exp
[

log(N)α(1 + δ)2(cosh(t)− 1)
]

does. Let the function fδ,α,γ(t) be defined by

fδ,α,γ(t) := −γt+ α(1 + δ)2(cosh(t)− 1);

by inserting

t∗δ,α,γ := arsinh
(

γ

(1 + δ)2α

)
,

which is positive for our choice of δ, γ, α > 0, the last line of (3.8) converges to 0 if

fδ,α,γ(t
∗
δ,α,γ) < −1.

To reformulate this condition in terms of the function gγ defined in the theorem,

gγ(x) = −arsinh(x) + x−1 (cosh(arsinh(x))− 1) +
1

γ
,

we define
xδ,α,γ :=

γ

(1 + δ)2α
.

We can write
fδ,α,γ(t

∗
δ,α,γ) = fδ,α,γ(arsinh(xδ,α,γ)) = γgγ(xδ,α,γ)− 1.

A sufficient constraint for the convergence to 0 of the probability in (3.8) is

gγ(xδ,α,γ) < 0. (3.9)

We will come back to this later and continue with the study of the behaviour of those
neurons that are active in ξ1. We start as in the last part, that is, with (3.4), and consider
now i ≤ k. We thus analyse

max
k∈N:k/ log(N)
∈(1−δ,1+δ)

P
(
∃i ≤ k : Ti(ξ

1) 6= ξ1
i |Zk

)
.

The local field for i ≤ k is, conditional on Zk, equal to

Si(ξ
1) =

M∑
µ=1

∑
j 6=i

ξ1
j ξ
µ
i ξ

µ
j = ξ1

i

∑
j 6=i

|ξ1
j |+

M∑
µ=2

∑
j 6=i

ξ1
j ξ
µ
i ξ

µ
j = ξ1

i (k − 1) +
M∑
µ=2

k∑
j 6=i

ξ1
j ξ
µ
i ξ

µ
j .
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3 The Ternary Simple Model

The variable δ was chosen such that δ < 1−γ; the difference 1−γ−δ is therefore positive.
To obtain the stability of ξ1

i , the sum
∑M

µ=2

∑
j 6=i ξ

1
j ξ
µ
i ξ

µ
j must not become too large. In

fact, a necessary condition for the instability of neuron i ≤ k is∣∣∣∣∣
M∑
µ=2

k∑
j 6=i

ξ1
j ξ
µ
i ξ

µ
j

∣∣∣∣∣ > k − γ log(N)− 1,

and for k > (1− δ) log(N), this event is contained in∣∣∣∣∣
M∑
µ=2

k∑
j 6=i

ξ1
j ξ
µ
i ξ

µ
j

∣∣∣∣∣ ≥ (1− γ − δ) log(N)− 1.

In analogy to the computations for i > k, we estimate

max
k∈N:k/ log(N)
∈(1−δ,1+δ)

P
(
∃i ≤ k : Ti(ξ

1) 6= ξ1
i |Zk

)

≤ max
k∈N:k/ log(N)
∈(1−δ,1+δ)

k

P(Bδ(1)c) + max
l∈N:log(N)/(αN)
∈(1−δ,1+δ)

P

[∣∣∣∣∣
k∑
j 6=i

l+1∑
µ=2

ξµj

∣∣∣∣∣ ≥ (1− γ − δ) log(N)− 1

] .
To achieve with high probability stability of the active neurons,

max
k∈N:k/ log(N)
∈(1−δ,1+δ)

k max
l∈N:l log(N)/(αN)
∈(1−δ,1+δ)

P

[∣∣∣∣∣
k∑
j 6=i

l+1∑
µ=2

ξµj

∣∣∣∣∣ ≥ (1− γ − δ) log(N)− 1

]

must converge to 0. Again using an exponential Chebyshev inequality, this is bounded by

max
k∈N:k/ log(N)
∈(1−δ,1+δ)

k max
l∈N:l log(N)/(αN)
∈(1−δ,1+δ)

P

[∣∣∣∣∣
k∑
j 6=i

l+1∑
µ=2

ξµj

∣∣∣∣∣ ≥ (1− γ − δ) log(N)− 1

]
≤ max

k∈N:k/ log(N)
∈(1−δ,1+δ)

k max
l∈N:l log(N)/(αN)
∈(1−δ,1+δ)

2 exp [− log(N)(1− γ − δ)s+ s] exp [plk(cosh(s)− 1)]

for s > 0. Since cosh(s) − 1 is positive for each s > 0, the expression in the last line
is bounded by inserting k = (1 + δ) log(N) and l = αN

log(N)
(1 + δ). With fδ,α,1−γ−δ(s) =

−(1− γ − δ)s+ (1 + δ)2α(cosh(s)− 1) and

s∗δ,α,γ := arsinh
(

1− γ − δ
(1 + δ)2α

)
– note that s∗δ,α,γ > 0 for each choice of δ, α with 1− γ > δ > 0, δ, α > 0 – the last line of
the previous estimation is at most

(2 + 2δ) log(N) exp
[
s∗δ,α,γ + log(N)

(
−(1− γ − δ)s∗δ,α,γ + (1 + δ)2α(cosh(s∗δ,α,γ)− 1)

)]
=(2 + 2δ) log(N) exp

[
s∗δ,α,γ + log(N)fδ,α,1−γ−δ(s

∗
δ,α,γ)

]
. (3.10)
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We define the continuous function g : R→ R,

g(x) := −xarsinh(x) + cosh(arsinh(x))− 1. (3.11)

We observe g(0) = 0 and g′(x) = −arsinh(x), so g is strictly decreasing on R+, strictly
increasing on R− and negative on R\0. This function and its properties will play an
important role in this chapter, as first property, its negativity on R+. Recall that
xδ,α,1−γ−δ = 1−γ−δ

(1+δ)2α
. The last line of (3.10) converges to 0 if

fδ,α,1−γ−δ((s
∗
δ,α,γ)) =fδ,α,1−γ−δ(arsinh(xδ,α,1−γ−δ))

=(1 + δ)2α · g(xδ,α,1−γ−δ) < 0.

Due to the negativity of g on R+, this condition is fulfilled for each choice of δ > 0 such
that 1−γ > δ. The stability of the active neurons of ξ1 will thus simply restrict the value
of γ to the interval (0, 1). This is because δ > 0 can be chosen arbitrarily small in the
proof of the theorem.

The remaining condition to examine is the one formulated in (3.9). Recall that gγ =
−arsinh(x)+x−1 (cosh(arsinh(x))− 1)+ 1

γ
. We first observe that on R+, gγ(x) = 1

x
g(x)+ 1

γ

and thus

g′γ(x) = − 1

x2 g(x) +
1

x
g′(x) =

xarsinh(x)−
√

1 + x2 + 1

x2
− arsinh(x)

x
= x−2(1−

√
x2 + 1)

which is negative on R+. So gγ is strictly decreasing on R+. In addition, limx↘0 gγ(x) = 1
γ

and limx→∞ gγ(x) = −∞. The function has consequently a unique root yγ ∈ R+ and is
positive on (0, yγ) and negative on (yγ,∞).

If the capacity variable α is chosen such that

α <
γ

yγ
,

there is a δ′ > 0 that satisfies
γ

α(1 + δ′)2
> yγ.

For all δ > 0, δ ≤ δ′, inequality (3.9) holds. This guarantees stability with high probability
if we store at most M = αN2/ log(N)2 patterns.

We just proved the first part of the theorem. To show the reverse bound, we consider
again ξ1 and recall that the probability of the event Aδ = {

∑N
j=1 |ξ1

j |/ log(N) ∈ (1− δ, 1 +
δ)} tends to 1 for each δ > 0 as N tends to infinity. So we will restrict our considerations
to this event for some fixed δ > 0 (the conditions on δ will result from the proof). By
showing

lim
N→∞

min
k∈N:k/ log(N)
∈(1−δ,1+δ)

P
(
∃i > k : Ti(ξ

1) 6= 0|Zk
)

= 1,

we obtain the assertion of the theorem.
As our next step, we assert that the random variables

X1(k) =
M∑
µ=2

1{
∑
j≤k |ξ

µ
j |=1}, X2(k) =

M∑
µ=2

1{
∑
j≤k |ξ

µ
j |=2} and X3(k) =

M∑
µ=2

1{
∑
j≤k |ξ

µ
j |>2}
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3 The Ternary Simple Model

are Binomially distributed with parameters M − 1 and

p1(k) = kp(1− p)k−1, p2(k) =

(
k

2

)
p2(1− p)k−2

and

p3(k) = 1− (1− p)k − kp(1− p)k−1 −
(
k

2

)
p2(1− p)k−2

= 1−
[
1− kp+

(
k

2

)
p2 −

(
k

3

)
p3 +O(k4p4)

]
− kp

[
1− (k − 1)p+

(
k − 1

2

)
p2 +O(k3p3)

]
−
(
k

2

)
p2
[
1− (k − 2)p+O(k2p2)

]
=

(
k

3

)
p3 +O(k4p4),

respectively. Using the Chebyshev inequality and E[X1(k)] = (1 − p)k−1(Mpk − pk) as
well as V[X1(k)] = (M − 1)kp(1− p)k−1[1− kp(1− p)k−1] ≤Mkp, we know for any δ > 0
and k ≤ (1 + δ) log(N):

P

(
X1(k)

αk N
log(N)

/∈ (1− δ, 1 + δ)

)
≤ V(X1(k))

[δαkN/ log(N)−Mk(k − 1)p2 +O(pk3)]2

≤ Mkp

M2k2p2[δ − (k − 1)p+O(p2k2)]2
.

Note that the term Mk(k − 1)p2 +O(pk3) in the denominator is due to the fact that the
expectation is not exactlyMkp = αkN/ log(N). We obtain analogously, using E[X2(k)] =
α
(
k
2

)
(1− p)k−2 +O(p2) and V[X2(k)] ≤ α

(
k
2

)
,

P

(
X2(k)

α
(
k
2

) /∈ (1− δ, 1 + δ)

)
≤

α
(
k
2

)
[δα
(
k
2

)
− α

(
k
2

)
(k − 2)p+O(k4p2)]2

.

Both probablities tend to 0 as N tends to infinity. Finally, X3(k) vanishes with probability
converging to 1:

P (X3(k) 6= 0) ≤MP

(∑
j≤k

|ξMj | > 2

)
≤M

(
k

3

)
p3 +O(Mk4p4) −→ 0

as N tends to infinity. We denote the sets{ X1(k)

αk N
log(N)

∈ (1− δ, 1 + δ)
}
,
{X2(k)

α
(
k
2

) ∈ (1− δ, 1 + δ)
}
, {X3(k) = 0}

by Bδ(k), Cδ(k) and D(k), respectively.
We observe by similar considerations as on page 54 that for i 6= j, µ ≥ 2

P
[
ξ1
j ξ
µ
i ξ

µ
j = 0

∣∣∣ξ1
j

]
= 1− p2|ξ1

j |, P
[
ξ1
j ξ
µ
i ξ

µ
j = ±1

∣∣∣ξ1
j

]
=

1

2
p2|ξ1

j |
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and that conditionally on Zk,

(ξ1
j ξ
µ
i ξ

µ
j , µ ≥ 2, j ≤ k, i > k) ∼ (ξµi ξ

µ
j , µ ≥ 2, j ≤ k, i > k),

where ∼ denotes identical distributions. In particular, conditional on Zk,
M∑
µ=2

N∑
j=1

ξ1
j ξ
µ
i ξ

µ
j ∼

M∑
µ=2

k∑
j=1

ξµi ξ
µ
j .

This implies

P
(
∃i > k : Ti(ξ

1) 6= ξ1
i |Zk

)
=1− P

(
∀i > k : Ti(ξ

1) = ξ1
i |Zk

)
=1− P

(
∀i > k : |Si(ξ1)| < γ log(N)|Zk

)
=1− P

[
∀i > k :

∣∣∣ M∑
µ=2

∑
j≤k

ξ1
j ξ
µ
i ξ

µ
j

∣∣∣ < γ log(N)
∣∣∣Zk]

=1− P

[
∀i > k :

∣∣∣ M∑
µ=2

∑
j≤k

ξµi ξ
µ
j

∣∣∣ < γ log(N)

]
.

The sums
∑M

µ=2

∑
j≤k ξ

µ
i ξ

µ
j , i > k, are conditionally independent, given (ξµj , j ≤ k, µ ≥ 2).

This explains the transformation from the second to the third line in the subsequent
computation. Defining FNk := σ(ξµj , j ≤ k, µ ≥ 2), we estimate:

P

[
∀i > k :

∣∣∣ M∑
µ=2

∑
j≤k

ξµi ξ
µ
j

∣∣∣ < γ log(N)

]

=E(ξµj ,j≤k,µ≥2)

[
P

[
∀i > k :

∣∣∣ M∑
µ=2

∑
j≤k

ξµi ξ
µ
j

∣∣∣ < γ log(N)
∣∣∣FNk

]]

=E(ξµj ,j≤k,µ≥2)

P[∣∣∣ M∑
µ=2

∑
j≤k

ξµk+1ξ
µ
j

∣∣∣ < γ log(N)
∣∣∣FNk

]N−k
≤ max

Bδ(k)∩Cδ(k)∩D(k)
P

[∣∣∣ M∑
µ=2

∑
j≤k

ξµk+1ξ
µ
j

∣∣∣ < γ log(N)
∣∣∣FNk

]N−k
+ P((Bδ(k) ∩ Cδ(k) ∩D(k))c).

(3.12)

Since P((Bδ(k) ∩ Cδ(k) ∩ D(k))c) vanishes for the k of the set of interest, it suffices to
consider Bδ(k) ∩ Cδ(k) ∩D(k). It remains to show

lim
N→∞

max
k∈N:k/ log(N)
∈(1−δ,1+δ)

max
Bδ(k)∩Cδ(k)∩D(k)

P

[∣∣∣ M∑
µ=2

∑
j≤k

ξµk+1ξ
µ
j

∣∣∣ < γ log(N)
∣∣∣FNk

]N−k
= 0. (3.13)

We split the sum
∑M

µ=2

∑
j≤k ξ

µ
k+1ξ

µ
j into

M∑
µ=2

∑
j≤k

ξµk+1ξ
µ
j =

∑
µ>1:

∑
j≤k |ξ

µ
j |=0

∑
j≤k

ξµk+1ξ
µ
j +

∑
µ>1:

∑
j≤k |ξ

µ
j |=1

∑
j≤k

ξµk+1ξ
µ
j
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3 The Ternary Simple Model

+
∑

µ>1:
∑
j≤k |ξ

µ
j |=2

∑
j≤k

ξµk+1ξ
µ
j +

∑
µ>1:

∑
j≤k |ξ

µ
j |>2

∑
j≤k

ξµk+1ξ
µ
j

=
∑

µ>1:
∑
j≤k |ξ

µ
j |=1

∑
j≤k

ξµk+1ξ
µ
j +

∑
µ>1:

∑
j≤k |ξ

µ
j |=2

∑
j≤k

ξµk+1ξ
µ
j +

∑
µ>1:

∑
j≤k |ξ

µ
j |>2

∑
j≤k

ξµk+1ξ
µ
j (3.14)

and analyse the three remaining parts.
The third sum is zero on the set D(k). We continue with the second one. On Cδ(k),

the following conditional probability of a contribution of the second sum to the total sum
is bounded by

P

 ∑
µ>1:

∑
j≤k |ξ

µ
j |=2

∑
j≤k

ξµk+1ξ
µ
j 6= 0

∣∣∣FNk


≤P

(
∃µ > 1 :

∑
j≤k

|ξµj | = 2, ξµk+1 6= 0
∣∣∣FNk

)

≤X2(k) · P(ξ2
k+1 6= 0) = X2(k) · p ≤ (1 + δ)α

(
k

2

)
· p. (3.15)

It remains to examine the first summand in (3.14),∑
µ>1:

∑
j≤k |ξ

µ
j |=1

∑
j≤k

ξµk+1ξ
µ
j . (3.16)

As explained in the next paragraph, this is conditionally on FNk distributed as a random
walk with random length determined by a Binomial random variable with parameters
X1(k) and p.

Assume that X1(k) = x1 and that
∑

j≤k |ξ
µ
j | = 1 for µ ∈ {µ1, . . . , µx1}. Then

ξµrk+1

∑
j≤k

ξµrj = ξµrk+1ξ
µr
jr
,

1 ≤ r ≤ x1. The index jr is here chosen such that jr is the one and only element of
{1, . . . , k} with ξµrjr 6= 0.

A direct consequence of the observation at the beginning of the proof (p. 54) concerning
the random variables Z1 and Z2 is that for each r ≤ x1,

P
(
ξµrk+1ξ

µr
jr

= ±1
∣∣∣ξµrjr ) =

1

2
p|ξµrjr |, P

(
ξµrk+1ξ

µr
jr

= 0
∣∣∣ξµrjr ) = 1− p|ξµrjr |.

This yields

∑
µ:
∑
j≤k |ξ

µ
j |=1

∑
j≤k

ξµk+1ξ
µ
j ∼

∑
µ:
∑
j≤k |ξ

µ
j |=1

ξµk+1 ∼
X1(k)+1∑
µ=2

ξµk+1 (3.17)

and conditional on (ξµj , µ ≥ 2, j ≤ k), this is a sum of X1(k) independent and identically
distributed random variables, each one distributed as ξ2

k+1. Given X1(k), this is finally a
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random walk of random length, the length independent of the steps and the distribution
of the length given by a Binomially distributed random variable with parameters p and
X1(k).

As next step, we observe that the length-determining distribution can be approxi-
mated by a Poisson distribution with parameter X1(k)p. For x1 ∈ {1 . . . ,M − 1}, the
total variation distance of a Poisson(x1p) random variable whose probability weights are
denoted by πx1p(m), m ∈ N, and the Binomially distributed random variable

∑x1+1
µ=2 |ξ

µ
k+1|

is at most
∞∑
m=0

∣∣∣∣∣P
(
x1+1∑
µ=2

|ξµk+1| = m

)
− πx1p(m)

∣∣∣∣∣ ≤ 2p2x1

(see Lemma 2.4). Let, for x1 ∈ N, Rx1 denote a Binomially distributed random vari-
able with parameters x1 and p, Yx1p denote a Poisson distributed random variable with
parameter x1p and let Zn, n ∈ N, be identically distributed random variables such that

P(Zn = 1) = P(Zn = −1) =
1

2

and that
Rx1 , Yx1p, Z1, Z2, . . .

are independent.
We continue with the analysis of (3.17): with the objective to examine a random

walk whose length is given by a Poisson random variable (instead of a Binomial one), we
observe that

P

Rx1∑
n=1

Zn ≥ γ log(N)

 =
∞∑
m=0

P(Rx1 = m)P

[
m∑
n=1

Zn ≥ γ log(N)

]

=
∞∑
m=0

[P [Rx1 = m]− P [Yx1p = m]]P

[
m∑
n=1

Zn ≥ γ log(N)

]
+

∞∑
m=0

P [Yx1p = m]P

[
m∑
n=1

Zn ≥ γ log(N)

]

≥−
∞∑
m=0

∣∣∣P [Rx1 = m]− P [Yx1p = m]
∣∣∣+

∞∑
m=0

P [Yx1p = m]P

[
m∑
n=1

Zn ≥ γ log(N)

]

≥− 2p2x1 + P

Yx1p∑
n=1

Zn ≥ γ log(N)

 . (3.18)

Our last analysis of this theorem is thus directed at a random walk of random length;
this length is by now determined by a Poisson distributed random variable. This Poisson
random variable, whose parameter will be about log(N), is distributed as the sum of
independent Poisson random variables. Now the important observation is that it does not
matter in distribution if we run one random walk of a length determined by a Poisson
random variable with parameter w > 0, with w =

∑s
r=1wr, w1, . . . , wr > 0, or if we run
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3 The Ternary Simple Model

s independent random walks where the length of the rth random walk is determined by
a Poisson(wr) random variable, and consider their sum. Formally, if (Yw, Zn, n ∈ N) as
well as (Yw1 , . . . , Yws , Zn ∈ N) and (Yw1 , . . . , Yws , Zn,r, 1 ≤ r ≤ s, n ∈ N) are in each case
independent and Zn,r ∼ Z1 for each r ≥ 1, n ≥ 1, this is

Yw∑
n=1

Zn ∼
Yw1+...+Yws∑

n=1

Zn ∼
s∑
r=1

Ywr∑
n=1

Zn,r =:
s∑
r=1

Wr.

W1, . . . ,Ws are then independent and Wr is a random walk with random length given by
a Poisson(wr) random variable (such that Ywr , Zn,r, n ≥ 1 are independent).

The next step is to see that on Bδ(k), the equality

min
Bδ(k)

P

∣∣∣∣∣ ∑
µ:
∑
j≤k |ξ

µ
j |=1

∑
j≤k

ξµk+1ξ
µ
j

∣∣∣∣∣ ≥ γ log(N)
∣∣∣FNk


= min

Bδ(k)
P

∣∣∣X1(k)+1∑
µ=2

ξµk+1

∣∣∣ ≥ γ log(N)
∣∣∣FNk


= min

x1∈N:x1 log(N)/(αkN)
∈(1−δ,1+δ)

P

∣∣∣ Rx1∑
n=1

Zn

∣∣∣ ≥ γ log(N)

 (3.19)

holds, where Rx1 , Z1, . . . are independent and distributed as described above. Combined
with (3.18), we obtain

min
x1∈N:x1 log(N)/(αkN)

∈(1−δ,1+δ)

P

∣∣∣ Rx1∑
n=1

Zn

∣∣∣ ≥ γ log(N)


≥ min

x1∈N:x1 log(N)/(αkN)
∈(1−δ,1+δ)

P

Rx1∑
n=1

Zn ≥ γ log(N)


≥ min

x1∈N:x1 log(N)/(αkN)
∈(1−δ,1+δ)

P

( Ypx1∑
n=1

Zn ≥ γ log(N)

)
− 2p2(1 + δ)α

Nk

log(N)

≥ min
ρ∈(1−δ,1+δ)

P

(
Ykρα∑
n=1

Zn ≥ γ log(N)

)
− 2p(1 + δ)αk. (3.20)

Using the notation of the previous considerations, Ykρα is distributed as the sum of k
independent Poisson random variables with parameter ρα, each, i.e. s = k and wr = ρα,
r ∈ {1, . . . , k}.

These random walks with random length follow as independent and identically dis-
tributed random variables with, as we will see, finite moment generating function, a large
deviation principle by the application of Cramér’s theorem (see Lemma 2.4). The loga-
rithmic moment generating function of a random walk with Poisson length of parameter
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λ is equal to

Λλ(t) = log

[
E

(
exp t

Yλ∑
n=1

Zn

)]
= log

[
∞∑
m=0

P(Yλ = m)E

(
exp

(
t

m∑
n=1

Zn

))]

= log

[
∞∑
m=0

P(Yλ = m) (E (exp tZ1))m
]

= log

[
∞∑
m=0

P(Yλ = m)

(
1

2
et +

1

2
e−t
)m]

= log

[
e−λ

∞∑
m=0

λm

m!

(
1

2
et +

1

2
e−t
)m]

= log
[
e−λ+λcosh(t)

]
= λ(cosh(t)− 1).

The Legendre transform of Λλ is defined as

Λ∗λ(x) = sup
t∈R

(tx− Λλ(t)).

We determine
d

dt
(tx− λ(cosh(t)− 1)) = x− λ · sinh(t).

Since
d2

dt2
(tx− λ(cosh(t)− 1)) = −λ · cosh(t)

is negative on R,
t = arsinh

(x
λ

)
is the global maximum of tx− Λλ(x), t ∈ R. This yields

Λ∗λ(x) = arsinh
(x
λ

)
x− λ

(
cosh

(
arsinh

(x
λ

))
− 1
)
.

For independent random variables Y r
ρα, Zn,r, n, r ≥ 1, and Ykρα, Zn, n, k ≥ 1, respectively,

using the above notation, we obtain for each γ > 0 by the application of Cramér’s theorem:

lim
k→∞

1

k
log

P
Ykρα∑

n=1

Zn ≥ γk

 = lim
k→∞

1

k
log

P
 k∑

r=1

 Y rρα∑
n=1

Zn,r

 ≥ γk

 = −Λ∗ρα(γ).

We observe by simple transformations

1

log(N)
min

k∈N:k/ log(N)
∈(1−δ,1+δ)

log

P
 k∑

r=1

 Y rρα∑
n=1

Zn,r

 ≥ γ log(N)


≥(1− δ) min

k∈N:k/ log(N)
∈(1−δ,1+δ)

1

log(N)(1− δ)
log

P
 k∑

r=1

 Y rρα∑
n=1

Zn,r

 ≥ γk
1

1− δ


≥(1− δ) min

k∈N:k/ log(N)
∈(1−δ,1+δ)

1

k
log

P
 k∑

r=1

 Y rρα∑
n=1

Zn,r

 ≥ γk
1

1− δ

 (3.21)
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3 The Ternary Simple Model

and therefore

lim inf
N→∞

min
k∈N:k/ log(N)
∈(1−δ,1+δ)

1

log(N)
log

P
 k∑

r=1

 Y rρα∑
n=1

Zn,r

 ≥ γ log(N)


≥− (1− δ)Λ∗ρα

(
γ

1− δ

)
. (3.22)

For fixed x > 0, the function F (λ, x) : R2
+ → R, F (λ, x) := Λ∗λ(x) is decreasing in λ:

∂F (λ,x)
∂λ

= 1−
√

1 + x2

λ2
is negative for x, λ > 0. This yields

min
ρ∈(1−δ,1+δ)

lim inf
N→∞

min
k∈N:k/ log(N)
∈(1−δ,1+δ)

1

log(N)
log

P
Ykρα∑

n=1

Zn ≥ γ log(N)


= min

ρ∈(1−δ,1+δ)
lim inf
N→∞

min
k∈N:k/ log(N)
∈(1−δ,1+δ)

1

log(N)
log

P
 k∑

r=1

 Y rρα∑
n=1

Zn,r

 ≥ γ log(N)


≥− (1− δ)Λ∗(1−δ)α

(
γ

1− δ

)
. (3.23)

We finally resume and conclude, starting from (3.13) and using the considerations in
(3.15), (3.19) and (3.20) on the three summands in (3.14):

max
Bδ(k)∩Cδ(k)
∩D(k)

[
P

(∣∣∣ M∑
µ=2

∑
j≤k

ξµk+1ξ
µ
j

∣∣∣ < γ log(N)
∣∣∣FNk

)]N−k

≤

1 + (1 + δ)α

(
k

2

)
p− min

x1∈N:x1 log(N)/
(αkN)∈(1−δ,1+δ)

P

Rx1∑
n=1

Zn ≥ γ log(N)

N−k

≤

1 + (1 + δ)α

(
k

2

)
p+ 2p(1 + δ)αk − min

ρ∈(1−δ,1+δ)
P

Ykρα∑
n=1

Zn ≥ γ log(N)

N−k .
So there is an error with high probability, if

min
ρ∈(1−δ,1+δ)

lim inf
N→∞

min
k∈N:k/ log(N)
∈(1−δ,1+δ)

1

log(N)
log

P
Ykρα∑

n=1

Zn ≥ γ log(N)

 > −1.

Due to (3.21) and (3.23), this is fulfilled if

−(1− δ)Λ∗(1−δ)α
(

γ

1− δ

)
> −1.

Finally F (λ, x) is continuous in λ and x, and

lim
δ↘0
−(1− δ)Λ∗(1−δ)α

(
γ

1− δ

)
= −Λ∗α (γ) .
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Because δ can be chosen arbitrarily small, P (∃i ≤ N : Ti(ξ
1) 6= ξ1

i ) −→ 1 holds for any
α > 0 with

−Λ∗α (γ) > −1.

This condition can be written as

−γarsinh
(γ
α

)
+ α

(
cosh

(
arsinh

(γ
α

))
− 1
)
> −1

and is fulfilled if gγ(γ/α) > 0, i.e. if α > γ/yγ.

�

Proposition 3.2 Any threshold γ log(N) with γ ≥ 1 leads to instability of an fixed but
arbitrary stored pattern, with positive probability not converging to 0; each γ ≥ 1 is thus
an inadmissible threshold variable.

Proof of Proposition 3.2 Using γ ≥ 1 and µ = 1,

P

(
N∑
j=1

|ξ1
j | < γ log(N)

)
≥ P

(
N∑
j=1

|ξ1
j | < log(N)

)
−→ 1

2
.

This is a result of the two observations∣∣∣∣∣P
(

N∑
j=1

|ξ1
j | < log(N)

)
− P

(
Ylog(N) < log(N)

) ∣∣∣∣∣ ≤ 2p2N = 2p log(N),

Ylog(N) ∼ Poi(log(N)), and

P
(
Ylog(N) < log(N)

)
= P

(
Ylog(N) − log(N)√

log(N)
< 0

)
−→ 1

2

according to the Central Limit Theorem. We again assume that the non-zero entries are
exactly in the first k places if

∑N
j=1 |ξ1

j | = k. For an arbitrary i ≤ k, the local field of ξ1 is

Si(ξ
1) =

M∑
µ=1

N∑
j=1
j 6=i

ξ1
j ξ
µ
i ξ

µ
j = (k − 1)ξ1

i +
M∑
µ=2

k∑
j=1
j 6=i

ξ1
j ξ
µ
i ξ

µ
j .

If k < γ log(N), the neuron is definitely instable if sgn(
∑M

µ=2

∑k
j=1,j 6=i ξ

1
j ξ
µ
i ξ

µ
j ) 6= sgn(ξ1

i ),
and the probability of this event tends to 1

2
.

�

Proposition 3.3 The set of permissible threshold variables γ is the interval Γ = (0, 1).
For each γ ∈ (0, 1), the critical value α∗(γ), such that (0, α∗(γ)) is the set of admissible
capacity variables for γ and (α∗(γ),∞) is the set of inadmissible capacity variables for γ,
is α∗(γ) = γ/yγ with the root yγ of the function gγ.

67



3 The Ternary Simple Model

The critical value α∗ := sup{α > 0 : ∃γ ∈ (0, 1) : α is an admissible capacity variable
for γ} is equal to

α∗ =
1

y1

, −arsinh(y1) + y−1
1 (cosh(arsinh(y1))− 1) + 1 = 0, α∗ ≈ 0.3829. (3.24)

In particular, if α > α∗, we have for each γ ∈ (0, 1) used as threshold variable and
arbitrary µ

lim
N→∞

P(∃i ≤ N : Ti(ξ
µ) 6= ξµi ) = 1

and if α < α∗, there is some γ ∈ (0, 1) such that for the dynamics with threshold variable
γ, M = αN2/ log(N)2 stored patterns and arbitrary µ ≤M ,

lim
N→∞

P(∃i ≤ N : Ti(ξ
µ) 6= ξµi ) = 0.

In this case, there is a nonempty interval (γ∗(α), 1) of possible threshold variables γ such
that α is an admissible capacity variable for γ.

Proof of Proposition 3.3: First, we showed in the previous Proposition 3.2 that γ ≥ 1
leads to instability of the stored messages. We derived in the proof of Theorem 3.1 that
α fulfills the stability condition if α < γ/yγ, where yγ is the unique root of gγ in R+,
and leads to instability of the stored patterns if α > γ/yγ. For each γ ∈ (0, 1), there
is thus a nonempty interval (0, α∗(γ)) with α∗(γ) = γ/yγ such that (3.2) holds for each
α ∈ (0, α∗(γ)) and (3.3) holds for each α ∈ (α∗(γ),∞). The set of admissible threshold
variables is (0, 1).

To show that α∗ = 1
y1
, define the function G : R2

+ → R,

G(γ, x) := gγ(x), gγ(x) = −arsinh(x) + x−1 (cosh(arsinh(y1))− 1) +
1

γ
.

G is continuous and for fixed x strictly decreasing in γ. For this reason, γ < γ′ implies
yγ > yγ′ and therefore α∗(γ) < α∗(γ′).

Now let α > 1
y1
, y1 as defined in (3.24). We show that there is no γ ∈ (0, 1) such that

α is an admissible capacity variable for γ. Due to the definition of y1 and the properties
of yγ we obtain

α >
1

y1

>
γ

y1

>
γ

yγ

for each γ ∈ (0, 1) and consequently an arbitrary stored pattern is instable with high
probability if α is used as capacity variable, for each γ ∈ (0, 1). This shows that α∗ ≤ 1

y1
.

If in contrary α < 1
y1
, we show that there is some γ such that α ∈ (0, α∗(γ)). This

implies α∗ = 1
y1
. Due to the three facts that y1 is the root of g1, α < 1

y1
and that g1 is

strictly decreasing, we have

g1

(
1

α

)
< g1(y1) = 0.

Since G is continuous, there is an γ ∈ (0, 1) such that G(γ, γ/α) < 0 and α is an admissible
capacity variable for γ. In addition, we saw that α∗(γ) < α∗(γ′) if γ < γ′. There is thus
a nonempty interval (γ∗(α), 1), γ∗(α) = inf{γ ∈ (0, 1) : α ∈ (0, α∗(γ))}, such that α is
admissible for each γ ∈ (γ∗(α), 1) and for none γ ∈ (0, γ∗(α)). �
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Proposition 3.4 The capacity in the model with independent and identically distributed
spins per message drastically decreases if one wants all patterns to be stable. Precisely, in
the model using threshold γ log(N), γ ∈ (0, 1), there is at least one stored pattern that is
not stable, with positive probability not converging to 0, if Nβ = O(M),

β = γ log(γ)− γ + 1.

In contrary, there are exclusively stable patterns, with high probabillity, if

M = O(Nβ)

for some β such that
−γ log(γ) + γ − 1 < −β.

In particular, β ∈ (0, 1) because γ ∈ (0, 1).

Proof of Proposition 3.4: Concerning the proof of the last statement, assume that
the threshold is γ log(N), γ < 1, and that M ≤ CNβ, for some C > 0, and −β >
−γ log(γ) + γ − 1. Let δ > 0 be chosen such that −β > −(γ + δ) log(γ + δ) + γ + δ − 1
and that γ + δ < 1. The probability that a stored pattern has less than (γ + δ) log(N)
excited neurons is at most

P

(
N∑
j=1

|ξµj | ≤ (γ + δ) log(N)

)
≤ exp [t(γ + δ) log(N)] (1− p+ pe−t)N

≤ exp
[
log(N)[t(γ + δ) + (e−t − 1)]

]
≤ N−(γ+δ) log(γ+δ)+γ+δ−1.

In the same way, we obtain

P

(
N∑
j=1

|ξµj | ≥ 3 log(N)

)
≤ N−3 log(3)+3−1.

We observe that −3 log(3) + 2 ≈ −1.3 < −(γ + δ) log(γ + δ) + γ + δ − 1 ∈ (−1, 0) for
each γ + δ ∈ (0, 1). The excited as well as the inactive neurons will now be stable in each
pattern with high probability: for s, t > 0,

P (∃µ ≤M : ∃i ≤ N : Ti(ξ
µ) 6= ξµi ) ≤MP

(
∃i ≤ N : Ti(ξ

1) 6= ξ1
i

)
≤2MN−(γ+δ) log(γ+δ)+γ+δ−1 +MN max

k∈N:k/ log(N)∈(γ+δ,3)
P

(∣∣∣∣∣
M∑
µ=2

∑
j≤k

ξµNξ
µ
j

∣∣∣∣∣ ≥ γ log(N)

)

+M max
k∈N:k/ log(N)∈(γ+δ,3)

k P

(∣∣∣∣∣
M∑
µ=2

k∑
j=2

ξµ1 ξ
µ
j

∣∣∣∣∣ ≥ δ log(N)

)
≤2MN−(γ+δ) log(γ+δ)+γ+δ−1

+MN exp
[
−tγ log(N) +M3 log(N)p2(cosh(t)− 1) +O

(
M log(N)2p3

)]
+M3 log(N) exp

[
−sδ log(N) +M3 log(N)p2(cosh(s)− 1) +O

(
M log(N)2p3

)]
.
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3 The Ternary Simple Model

With arbitrary constants t > β+1
γ

and s > β
δ
(that can be chosen independently of N),

this tends to 0.
For the opposite bound, let us first observe that a pattern whose number of excited

neurons is too low, that is, below γ log(N), is not stable with positive probability not
tending to 0 because the signal term in the local field of the active neurons is not sufficiently
high (it is k − 1 if k neurons are active in the pattern). An arbitrary but fixed excited
neuron of the pattern has a positive probability of not being stable because the noise term
of the local field of ξµ in neuron i, ∑

ν 6=µ

∑
j 6=i

ξµj ξ
ν
i ξ

ν
j

has, with positive probability (≈ 1
2
), the wrong sign. Hence it is enough to recall the

results of Proposition 2.8. �

Proposition 3.5 If the model is altered in the way that the random variables ξµi , i ≤
N , are (for fixed µ) no longer independent, but there are exactly c excited neurons per
message, the lower bounds on α concerning the stability and error correction obtained in
Theorem 3.1 remain true. In addition, the stability of all patterns can be reached if

α <
γ

yγ/3
, α <

1− γ
y(1−γ)/2

where yγ is the unique root of the function

gγ(x) = −arsinh(x) + x−1 (cosh(arsinh(x))− 1) +
1

γ
.

Then
P (∃µ ≤M : ∃i ≤ N : Ti(ξ

µ) 6= ξµi ) −→ 0.

Proof of Proposition 3.5 As in the proof of Proposition 2.10, we determine, for i > c,
the following conditional exponential moment, given Zc:

E

[
exp

(
t

M∑
µ=2

c∑
j=1

ξ1
j ξ
µ
i ξ

µ
j

)∣∣∣Zc] = E

[
exp

(
t

c∑
j=1

ξMi ξ
M
j

)]M−1

=

[
1− c

N
+

c

N
E

(
exp

(
t

c∑
j=1

ξMi ξ
M
j

)∣∣∣{ξMi 6= 0}

)]M−1

=

[
1− c

N
+

c

N

(
c−1∑
n=0

(
c

n

) n∏
m=1

c−m
N −m

c−n−1∏
k=0

(
1− c− 1− n

N − 1− n− k

)
cosh(t)n

)]M−1

=

[
1 +

c2(c− 1)

N2
(cosh(t)− 1) +O

(
c5

N3

)]M−1

≤ exp
[
α(cosh(t)− 1)(c− 1) +O(c3/N)

]
.
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In the first line we used that
∑

j≤c ξ
1
j ξ
µ
i ξ

µ
j , µ ≥ 2 are conditionally independent, given

ξ1
j , j ≤ c, and that the conditional distribution of one of these sums, given Zc, is the same
as the distribution of

∑
j≤c ξ

µ
i ξ

µ
j . In the third line we used that the distribution of∑

j≤c

|ξµj |

is conditionally Hypergeometric, given {|ξµi | = 1}, with parameters N − c− 1 (failure), c
(success) and c− 1 (number of drawings). Finally, ξµi ξ

µ
j , j ≤ c are conditionally indepen-

dent, given |ξµi |, |ξ
µ
j |, j ≤ c, and identically distributed with

P
(
ξµi ξ

µ
j = 0

∣∣∣|ξµi |, |ξµj |) = 1− |ξµi ||ξ
µ
j |, P

(
ξµi ξ

µ
j = ±1

∣∣∣|ξµi |, |ξµj |) =
1

2
|ξµi ||ξ

µ
j |.

Conditional on {|ξµi | = 1,
∑

j≤k |ξ
µ
j | = n}, the exponential moment of t

∑
j≤c ξ

µ
i ξ

µ
j is thus

cosh(t)n.
This can be used to show a fixed pattern’s stability with high probability for small

enough α, as in the proof of Theorem 3.1. The lower bounds on α remain true.
If we consider all messages at the same time, the probability of at least one error is

bounded by

P (∃µ ≤M, ∃i ≤ N : Ti(ξ
µ) 6= ξµi )

≤M(N − c)P
(
∃i ≤ N : ξ1

i = 0, Ti(ξ
1) 6= 0

)
+McP

(
∃i ≤ N : ξ1

i 6= 0, Ti(ξ
1) = 0

)
.

The first summand, concerning the inactive neurons, differs from the one concerning one
fixed stored pattern by the factor M = αN2/ log(N)2; using the exponential moment
above, it tends to 0 if

−γarsinh
(γ
α

)
+ α

(
cosh

(
arsinh

(γ
α

))
− 1
)
< −3.

Using the termini of the proof of Theorem 3.1, this condition can be written in terms of
gγ/3 :

γgγ/3

(γ
α

)
< 0.

Since gγ/3 is strictly decreasing on R+, this is for α, γ > 0 equivalent to

α <
γ

yγ/3
.

Concerning the active neurons of a stored pattern, their noise term of the local field must
not exceed the threshold c− 1− γc = (1− γ)c− 1. We obtain the condition

−(1− γ)arsinh

(
1− γ
α

)
+ α

(
cosh

(
arsinh

(
1− γ
α

))
− 1

)
< −2.

In terms of g(1−γ)/2, this is

(1− γ)g(1−γ)/2

(
1− γ
α

)
< 0
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3 The Ternary Simple Model

and this is finally fulfilled if

α <
1− γ
y(1−γ)/2

.

�

Choosing the stored patterns among all messages with exactly c active neurons thus
improves the performance of the model.

In addition to the stability of the stored patterns, we are interested in the error-
correcting abilities of the network. We distinguish three types of errors. Suppose that a
stored message ξµ is destroyed. Then it can be corrupted by

1. deleting spins of neurons whose values are either 1 or -1, i.e. deactivate the corre-
sponding neurons (erasure),

2. reversing spins of excited neurons, i.e multiply them by −1; and finally

3. spuriously activating neurons whose state in ξµ is 0: map them either to 1 or to -1.

We can prove the following result for these three types of errors and, finally, for a message
concerned by all types of errors.

Corollary 3.6 (Corollary to Theorem 3.1:) Let ξµ be an arbitrary stored pattern.
Suppose that the number of stored messages is in any case at most M = αN2/ log(N)2,
α < γ

yγ
, if γ ∈ (0, 1) is used as threshold, to guarantee stability of the stored messages (see

Theorem 3.1).

1. Suppose that the pattern ξ̂µ1 is obtained by deleting at random %1 log(N) non-zero
spins in ξµ. Then the errors can, with high probability, be corrected in one step by
the retrieval dynamics, if %1 < 1− γ, where γ determines the threshold γ log(N). If
%1 > 1− γ, the pattern is never corrected, with high probability.

Other than in the Hopfield model, it is in particular possible to correct a number
of errors %1 log(N) (obtained by deleting entries), %1 > 0.5, more than half of the
non-zero entries of the message, if the threshold is small enough.

2. Concerning a pattern ξ̂µ2 obtained by multiplying %2 log(N) randomly chosen non-
zero spins of ξµ by −1, we can recover the original message ξµ in one step, with high
probability, if %2 satisfies

%2 <
1− γ

2
.

The pattern is never corrected, with high probability, if %2 >
1−γ

2
. In this case of

corruption it is not possible to correct more than 0.5 log(N) errors.

3. If %3 log(N) of the inactive neurons of ξµ have been spuriously activated, we can
correct these errors with high probability in the first step of the retrieval dynamics if
α satisfies

α <
γ

yγ(1 + %3)
,
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where yγ is again the unique root of the function gγ. This bound is also sharp con-
cerning the one step retrieval: the message is not corrected in the first step, if
α > γ

yγ(1+%3)
.

4. Finally, if ξ̂µ4 is a corrupted version of ξµ which combines these three types of errors,
i.e.: %1 log(N) of the activated neurons have been deactivated, %2 log(N) of the spins
have been inverted and %3 log(N) inactive neurons have been activated, either to 1
or to -1, the correct message will be recovered with high probability in one step, if %1

and %2 satisfy
%1 + 2%2 < 1− γ

and α satisfies
α <

γ

(1− %1 + %3)yγ
.

The second condition is not supplementary to the stability condition (3.1), if %1 ≥ %3.
If %1 < %3 and α > γ

(1−%1+%3)yγ
, the pattern is not corrected in one step, with high

probability. Finally, the pattern is not corrected in the first step, with high probability,
if %1 + 2%2 > 1− γ.

Proof: Without loss of generality, we consider ξ1, assuming that the active neurons of ξ1

are exactly in the places 1, . . . , k for some k ∈ N, k/ log(N) ∈ (1− δ, 1 + δ). We keep the
notation of Theorem 3.1.

We begin with the first case and assume that %1 log(N) of the active neurons of ξ1

are deactivated in ξ̂1
1 . We suppose that α fulfills the stability condition of Theorem 3.1.

Then the inactive neurons will also be stable with high probability if some of the non-zero
entries are deleted. To see this, consider for i > k

Si(ξ̂
1) :=

∑
j 6=i

M∑
µ=1

ξ̂1
j ξ
µ
i ξ

µ
j =

∑
j≤k,ξ̂1j 6=0

M∑
µ=2

ξ1
j ξ
µ
i ξ

µ
j .

The only difference to the proof of the previous theorem is that the exterior sum has
k − %1 log(N) summands instead of k, if there are k activated neurons in the message.
Using again Aδ and Bδ(i), we show by the same arguments as in the proof of Theorem 3.1
that the probability of turning a deactivated neuron into 1 or −1 is bounded by

P(∃i : ξ1
i = 0, Ti(ξ̂

1) 6= 0) ≤ P(Acδ) +NP(Bδ(N)c)+

N max
k∈N:k/ log(N)
∈(1−δ,1+δ)

max
l∈N:l log(N)/

(αN)∈(1−δ,1+δ)

e−tγ log(N)(1 + p(cosh(t)− 1))l(k−%1 log(N)).

The term cosh(t)− 1 is positive for t > 0, so

(1 + p(cosh(t)− 1))l(k−%1 log(N)) ≤ (1 + p(cosh(t)− 1))lk

and the last line is upper bounded by inserting l = αN(1+δ)/ log(N), k = (1+δ) log(N).
We are now in the same situation as in the proof of Theorem 3.1 concerning the stability
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3 The Ternary Simple Model

of the inactive neurons. Since their stability is provided with high probability if (3.1) is
fulfilled, they also are stable in ξ̂1

1 , with probability converging to 1.
Concerning the active neurons, we have for any i ≤ k

Si(ξ̂
1
1) =

∑
j 6=i

M∑
µ=1

ξ̂1
1jξ

µ
i ξ

µ
j =

∑
j≤k,j 6=i,ξ̂11j 6=0

ξ1
j ξ

1
i ξ

1
j +

∑
j≤k,j 6=i,ξ̂11j 6=0

M∑
µ=2

ξ1
j ξ
µ
i ξ

µ
j

= ξ1
i (k − %1 log(N)− |ξ̂1

1i|) +
∑

j≤k,j 6=i,ξ̂11j 6=0

M∑
µ=2

ξ1
j ξ
µ
i ξ

µ
j .

The difference between active neurons of ξ1 concerned by the deletion and active neurons
of ξ1 not concerned by the deletion again is negligible. To reach that an active neuron of ξ1

is not corrected after the first step or does not keep its correct value, respectively, the sum
on the right hand side of the last line must exceed the value k− %1 log(N)− γ log(N)− 1.
There are two differences compared to the proof of Theorem 3.1: there are less summands
in the random term of the local field and the threshold to exceed to reach instability is
decreased by %1 log(N). We obtain analogously to this proof

max
k∈N:k/ log(N)∈(1−δ,1+δ)

P(∃i ≤ N : ξ1
i 6= 0, Ti(ξ̂

1) = 0|Zk)

≤ max
k∈N:k/ log(N)∈(1−δ,1+δ)

k P

(∣∣∣ k−%1 log(N)∑
j=1

M∑
µ=2

ξµ1 ξ
µ
j

∣∣∣ ≥ ( k

log(N)
− %1 − γ

)
log(N)− 1

)
≤(1 + δ) log(N)

[
P(Bδ(1)c) + e−t(1−δ−%1−γ) log(N)+t (1 + p(cosh(t)− 1))(1+δ)(1+δ−%1)αN

]
.

The steps we made are the same as in the proof of Theorem 3.1 or the previous proof
concerning the stability of the inactive neurons and are therefore not explained in detail.

With t = arsinh((1 − δ − %1 − γ)/((1 + δ)(1 + δ − %1)α)), the wanted convergence is
reached for each %1, %1 < 1 − γ if δ is chosen such that 0 < δ < 1 − γ − %1 because the
function g (see (3.11)) is negative on R+.

To show the reverse bound, consider %1 > 1 − γ. For an active neuron of ξµ, the
absolute value of the signal term coming from message ξµ is with high probability not big
enough to exceed the threshold: on Aδ, it is at most (1+δ−%1) log(N). So the probability
of turning ξ̂1

1 into (0, . . . , 0) is for k ≤ (1 + δ) log(N) at least

P(∀i ≤ k : |Si(ξ̂1
1)| < γ log(N)|Zk) ≥ 1− kP(|S1(ξ̂1

1)| ≥ γ log(N)|Zk)

≥1− 2kP

[
M∑
µ=2

(1+δ−%1) log(N)+1∑
j=2

ξµ1 ξ
µ
j ≥ (γ − 1− δ + %1) log(N)

]
.

Analogously to the computations concerning the case %1 < 1−γ, this vanishes as N tends
to infinity, if δ < %1 + γ − 1.

We do not prove the statements concerning the other three cases in detail, because the
proofs are very similar to the one of Theorem 3.1 and to the first part of this proof. There
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are only two things to observe: first, for arbitrary i ≤ N , the probability that
∑l

µ=1 ξ
µ
i

exceeds a threshold, e. g.,

P

(
l∑

µ=1

ξµi ≥ γ log(N)

)
,

is for each choice of t > 0 and l′ ≤ l bounded by

P

(
l∑

µ=1

ξµi ≥ γ log(N)

)
≤ e−tγ log(N)(1 + p(cosh(t)− 1))l

≤e−tγ log(N)(1 + p(cosh(t)− 1))l
′
.

We can thus use upper bounds received for sums of bigger length (this is what we did in
the first part of the proof when we explained the high probability of the stability of the
inactive neurons in ξ̂1 by the one of the stability of the inactive neurons in ξ1 where the
length of the sum in the noise term of the local field is larger).

Second, we have to examine the effects of the corruption on the local fields in the
different cases:

1. This case has already been examined.

2. If we multiply the values of %2 log(N) activated neurons by -1, which are, without loss
of generality, neurons i = 1, . . . , %2 log(N), this does not cause any supplementary
requirements on α to guarantee the stability of the inactive neurons of ξ1. Their
local field is for some i > k equal to

Si(ξ̂
1
2) =

∑
j≤k

M∑
µ=1

ξ̂1
2 jξ

µ
i ξ

µ
j =

∑
j≤%2 log(N)

M∑
µ=2

(
− ξ1

j

)
ξµi ξ

µ
j +

∑
%2+1≤j≤k

M∑
µ=2

ξ1
j ξ
µ
i ξ

µ
j

∼
∑
j≤k

M∑
µ=2

ξµi ξ
µ
j .

The probability P(|Si(ξ̂1
2)| > γ log(N)) remains the same as the corresponding prob-

ability in the proof concerning the stability of ξ1 in Theorem 3.1 because the same
number of neurons is active in the two patterns.

For any active neuron i ≤ k of ξ1, the local field is

Si(ξ̂
1
2) =

(
k − 2%2 log(N)− 1ξ̂1i=ξ1i

)
ξ1
i −

%2·
log(N)∑
j 6=i

M∑
µ=2

ξ1
j ξ
µ
i ξ

µ
j +

k∑
j 6=i,j>
%2·log(N)

M∑
µ=2

ξ1
j ξ
µ
i ξ

µ
j .

The remaining computations are thus made as in the proof of Theorem 3.1 con-
cerning the stability of the active neurons of a message ξµ. The signal term is just
decreased by %2 log(N); due to the results on page 54, the conditional distribution
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3 The Ternary Simple Model

of the noise term, given Zk, does not change, compared to the distribution of the
noise term of the input pattern ξ1. To have Ti(ξ̂1) 6= ξ1

i , it is necessary that

∣∣∣−
%2·

log(N)∑
j 6=i

M∑
µ=2

ξ1
j ξ
µ
i ξ

µ
j +

k∑
j 6=i,j>
%2·log(N)

M∑
µ=2

ξ1
j ξ
µ
i ξ

µ
j

∣∣∣ > k − 2%2 log(N)− γ log(N)− 1.

The probability P(∃i ≤ k : Ti(ξ̂
1) 6= ξ1

i |Zk) then vanishes for each k ∈ N, k/ log(N) ∈
(1− δ, 1 + δ), if 1− δ − 2%2 − γ > 0. Combined with the fact that Aδ tends to 1 for
each δ > 0 the assertion follows immediately, if 2%2 < 1− γ.
If 2%2 > 1 − γ, for an active neuron in ξ1, the absolute value of the signal term in
Si(ξ̂

1
2) coming from pattern ξ1 is at most k − 2%2 log(N) and with high probability

smaller than (1 + δ − 2%2) log(N). Since δ can be chosen such that δ < γ − 1 + 2%2,
the probability of turning the pattern into (0, . . . , 0) in the first step of the dynamics
tends to 1.

3. If %3 log(N) of the inactive neurons have been activated, assuming that these are
the neurons k + 1, . . . , k + %3 log(N), the local field is for any i > k equal to

Si(ξ̂
1
3) =

∑
j≤k

M∑
µ=2

ξ1
j ξ
µ
i ξ

µ
j +

∑
k+1≤j≤

k+%3 log(N),j 6=i

M∑
µ=2

ξ̂1
3 jξ

µ
i ξ

µ
j .

We can thus refer to the proof of Theorem 3.1 concerning the stability of the inactive
neurons, with the difference that the length of the exterior sum in the local field
is k + %3 log(N) instead of k, because there are k + %3 log(N) active neurons. The
exact value of ξ̂1

3i, k + 1 ≤ i ≤ k + %3 log(N), does not play any role but only the
fact that the neuron is activated. We obtain

P(∃i ≤ N : ξ1
i = 0, Ti(ξ̂1

3) 6= 0)

≤Ne−tγ log(N)elog(N)(cosh(t)−1)(1+δ)(1+δ+%3)α + P(Acδ) +NP(Bδ(N)c);

the only difference to (3.8) is that α(1 + δ) is replaced by α(1 + δ + %3). The
convergence of this term to 0 is ensured if

α(1 + %3) < yγ, i.e. α <
yγ

1 + %3

as mentioned in the Lemma.

The excited neurons of ξ1, i.e. neurons 1, . . . , k, possess a local field that is equal to

Si(ξ̂
1
3) =(k − 1) · ξ1

i +
∑

j≤k,j 6=i

M∑
µ=2

ξ1
j ξ
µ
i ξ

µ
j +

∑
k+1≤j≤

k+%3 log(N)

M∑
µ=2

ξ̂1
3 jξ

µ
i ξ

µ
j .
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The signal term of the local field of these neurons remains unchanged compared
to ξ1 and the increased number of active neurons does not change the result: for
k/ log(N) ∈ (1− δ, 1 + δ),

P
(
∃i ≤ k : Ti(ξ̂1

3) 6= ξ1
i |Zk

)
≤2(1 + δ) log(N)

(
e−(1−δ−γ) log(N)telog(N)(cosh(t)−1)(1+δ)(1+δ+%3)α + P(Bδ(1)c)

)
for each t > 0. Comparing this with (3.10), we observe that the probabiity tends to
0 if 1− δ − γ > 0 due to the negativity of the function g.

Concerning the reverse bound on α, consider the neurons that are not activated in
ξ̂1. Then with high probability, there is at least one of them that is activated by
the dynamics if the bound on α is exceeded. The proof works identically as in the
proof of Theorem 3.1: the only difference is that potential signals can come from
k + %3 log(N) instead of k neurons.

4. Finally we have to examine the case where all these errors are combined. Errors of
the first and second kind (as considered in 1. and 2.) decrease the absolute value
of the signal term of the local field of the active neurons by %1 log(N) + 2%2 log(N).
These errors are corrected and those active neurons of ξ1 that are not affected by the
corruption remain stable, if %1 + 2%2 < 1− γ. If %1 + 2%2 > 1− γ, the active neurons
of ξ1 are all deactivated in the first step of the dynamics, with high probability.
This is proven analogously to 1. or 2.; the fact that the number of active neurons is
increased by the spuriously activated neurons does not change the result.

Concerning the inactive neurons, the relevant information is the number of active
neurons in ξ̂1. If more neurons are deleted than spuriously activated, the inactive
neurons of ξ1 are inactive after one step of the dynamics, applied to ξ̂1, with high
probability. If %1 < %3, we can continue as in 3.: the supplementary condition to
the stability condition α < γ/yγ then is

α <
γ

yγ(1− %1 + %3)

to correct (if they have been corrupted), respectively keep (if they are the same in
ξ1 and ξ̂1

4) the inactive neurons of ξ1. Again, this bound is sharp concerning the one
step retrieval.

�

Remark 3.7 The errors of the first and second kind (corruption of active neurons) affect
the choice of γ. If %1 log(N) deleted neurons shall be corrected, γ < 1−%1 and if %2 log(N)
reversed spins shall be corrected, γ < 1 − 2%2. For a fixed γ and α according to the
stability conditions, it is possible to correct a certain number of errors, without changing
α. On the contrary, an adaption of α cannot lead to stability in this case, if too many
neurons are corrupted. In addition, the model is more vulnerable to a corruption in form
of multiplication by −1 as to deletion.
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3 The Ternary Simple Model

For fixed γ, α decreases antiproportionally with 1 + %3, if %3 log(N) neurons are cor-
rupted by the third type of error (spuriously activation) and shall be corrected. If α(γ)
is the critical capacity variable for γ and %3 log(N) neurons are spuriously activated, the
errors are corrected, with high probability, if α < α∗(γ)/(1 + %3).

Remark 3.8 The energy function

H(σ) := −1

2

N∑
i 6=j
i,j=1

σiσjJij + γ log(N)
N∑
j=1

σ2
j

is associated to the dynamics of the present model. It is possible to prove the existence
of energy valleys of this Hamiltonian. However, the proof is very similar to the proof of
Theorem 2.15 and does not lead to an increased capacity by a less restrictive notion of the
capacity. The radii of the valleys are of order log(N), the depths of order log(N)2.
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4 The Willshaw Model

The model to which this chapter is devoted was proposed in a paper by Willshaw (see [44]).
As in chapters 2 and 3, the neuron set is V = {1, . . . , N} for some N ∈ N. The set of edges
is enlarged by adding the self-loops {1}, . . . {N}. The model uses, as Amari’s model, the
configuration space {0, 1}N : the neurons can be active or inactive. The major difference
to Amari’s model is that also the synaptic weights are binary. A number of M patterns
ξ1, . . . , ξM is stored; the information of their spins is used to built the synaptic weights.
The weight Jij does not depend on the number of messages in which neurons i and j are
activated together; it rather indicates whether there is any µ with ξµi ξ

µ
j = 1 (that is to

say, whether there is any message that contains both neurons) or not. Even though there
is more information contained in Amari’s model, Willshaw’s model offers better storage
capacities than Amari’s model. This can be understood considering the fact that the
additional information contained in Amari’s model does not lead to any improvement of
the performance but only favours errors: if one stabs the dynamics in a stored message,
the neurons that are not excited in this message can accumulate more signals than in
the Willshaw model. The synaptic efficacy Jij counts the number of messages in which
neurons i and j are both activated and the local fields can easier become too large. This
is prevented in the Willshaw model, whereas the important information to recognise a
stored pattern, i.e., the information that the participating neurons are contained in the
same message, is still contained in the synaptic efficacy. All the neurons belonging to
a stored message are interconnected which means that the synaptic efficacies among all
these neurons are 1. Here it is important that the model is sparse and there are only a
few synaptic weights that are 1.

As in the previous chapters, we can use two possible settings for the model. For the
first one we assume that the (ξµi ) are i.i.d 0− 1 random variables with success probability
p = logN

N
. For the second version we choose the M messages uniformly at random from

all sets of M messages with exactly c = logN active neurons. We begin with the analysis
of the model with the first setting, because in this case the messages as well as all their
spins are independent.

In the Willshaw model, the synaptic efficacies are defined by

Jij = Θ

(
M∑
µ=1

ξµi ξ
µ
j − 1

)
=

{
1 ∃µ : ξµi ξ

µ
j = 1

0 otherwise.

Θ is the Heaviside function, with Θ(x) = 1 if x ≥ 0 and Θ(x) = 0 for x < 0. Especially
Jii is defined in this model and it is 1 if there is at least one message that contains neuron
i. The model benefits from admitting a self-signal, which means that we consider the
local field S̄i(σ) =

∑N
j=1 Jijσj instead of Si(σ) =

∑
j 6=i Jijσj; we will see that it improves

performance to modify Si in this way. This modification is called “memory effect”. Edges
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4 The Willshaw Model

whose synaptic weight is 1 are denoted as active; we sometimes call an active edge a
connection (even though, strictly speaking, each pair of neurons is connected in the graph,
but possibly by an inactive edge that cannot transmit signals).

There are two different types of dynamics to be considered. The first one, the threshold
dynamics comparable to the dynamics used e. g., in Amari’s model, can be applied to both
versions. Formally, we use a parallel dynamics whose i-th component sets for an input
σ ∈ {0, 1}N

Ti(σ) = Θ
(
S̄i(σ)− h

)
with a fixed threshold h = γlogN , for some γ ∈ (0, 1].

The second setting of the model also allows for the application of another retrieval
dynamics. It keeps the neurons with the highest values of the local field S̄i(σ) active.
Formally, let the ordered values of S̄i, 1 ≤ i ≤ N , be denoted by S̄(1) ≥ S̄(2) ≥ . . . ≥
S̄(c) ≥ . . . ≥ S̄(N). A neuron i is activated if and only if S̄i(σ) ≥ S̄(c). This procedure is
called “Winner takes all”-algorithm (WTA algorithm, for short). The above dynamics is
not appropriate for the first version of the model, because a stored pattern might consist
of less than c active neurons. The WTA dynamics activates by construction at least c
neurons and the stored pattern would definitely not be stable.

Finally, there is a variation of this second dynamics that is also applicable to the
first setting where the ξµj , µ ≤ M , j ≤ N, are independent. In this variation only the
most active neurons are activated, that is, all neurons with a value S̄i(σ) = S̄(1); all other
neurons are deactivated. Compared to the WTA dynamics using S̄(c), this dynamics using
S̄(1) does not change the first step (and therefore the behaviour of the one-step retrieval)
if the input is a partially erased version ξ̃µ of a stored message ξµ or a stored message.
This is only true if S̄ is used. The variation using S̄(1) is also applicable if in the second
setting the fixed number of neurons per message is unknown.

The first section deals with the convergence of the three different dynamics of this
model; the second one contains an analysis of the stability and error correcting behaviour
as well as a short view on the energy landscape of the Willshaw model using the threshold
dynamics. In the third section, we analyse the Willshaw model with WTA algorithm and
show that it offers the best behaviour of the binary models. In the whole chapter, we use
the notation of Aδ, Zk and Z̄k used in Chapter 2.

4.1 Dynamical Properties of the Willshaw Model

As described in the introduction of this chapter, we consider three different dynamics for
the Willshaw model:

1. the threshold dynamics using the fixed threshold h = γ log(N),

2. the WTA dynamics using the variable threshold h = S̄(1),

3. the WTA dynamics using the variable threshold h = S̄(c).

The first version uses a fixed threshold, whereas the second and third work with variable
thresholds that are determined in each step of the dynamics. Note that in all cases we
consider the memory effect, i.e., use S̄. We consider, in all three cases, a parallel dynamics.
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4.1 Dynamical Properties of the Willshaw Model

In this section we show the following results:

1. choosing a fixed threshold h enforces convergence of the dynamics, if the input is a
partially deleted stored pattern or a stored pattern,

2. choosing the threshold h = S̄(1), the performance does not benefit from iterating
more than once,

3. choosing a variable h = S̄(c) can lead to oscillation effects in the dynamics.

Theorem 4.1 The dynamics of the Willshaw model with threshold dynamics (with a fixed
threshold h) definitely converges if the input pattern is a partially deleted version of a stored
pattern ξµ or a stored pattern.

Proof of Theorem 4.1: Let ξ̃µ be a partially erased version of ξµ. We denote by kµ
the number of activated neurons of ξµ. If kµ < h, none of the neurons gets a signal
that is higher than kµ which means that ξ̃µ is turned into (0, . . . , 0) in one step of the
parallel dynamics. One step of the dynamics here means the updating of all neurons, so
the pattern after one step is (T1(ξ̃µ), . . . , TN(ξ̃µ)).

If kµ ≥ h, we introduce the sequence

ξ̃µ(0) := ξ̃µ

ξ̃µ(t+ 1) := T
(
ξ̃µ(t)

)
=
(

(T1(ξ̃µ(t)), . . . , TN(ξ̃µ(t))
)

t ∈ N,

and the sequence (aµ(t))t≥0 ,

aµ(t) = {i ∈ {1, . . . , N} : ξ̃µi (t) = 1}, t ∈ N0.

We will show the following proposition:

Proposition 4.2 If h ≤ kµ, the sequence (aµ(t))t≥0 is increasing with respect to inclusion.

Proof: We prove the assertion by induction. Firstly, we observe that aµ(0) ⊆ aµ(1): each
activated neuron is part of the stored message ξµ and thus

∀i, j ∈ aµ(0) : Jij = 1

which implies S̄i(ξ̃µ) = kµ ≥ h for all i ∈ aµ(0). This proves the base clause.
Then suppose that aµ(t) ⊆ aµ(t + 1) holds for some arbitrary t ∈ N. By definition

of the dynamics, each i ∈ aµ(t + 1) gets at least h signals. So we have, for fixed i,
|{j ∈ aµ(t) : Jij = 1}| ≥ h. According to the induction hypothesis, aµ(t) ⊆ aµ(t + 1)
and therefore |{j ∈ aµ(t + 1) : Jij = 1}| ≥ h. This implies that i ∈ aµ(t + 2) and that
aµ(t+ 1) ⊆ aµ(t+ 2). �

Proposition 4.2 implies that (aµ(t))t≥0 converges.

�
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4 The Willshaw Model

t = 0 t = 1 t = 2k, k ≥ 1 t = 2k + 1, k ≥ 1

Figure 4.1: The oscillation of the WTA dynamics in the Willshaw model using h = S̄(1).
The model contains N = 5 neurons and the number of activated neurons in a
stored message is c = 2. Active edges are visualised.

Theorem 4.3 Choosing a variable h, that is, one of the WTA dynamics, can lead to
oscillation effects, even if the input is a partially erased stored pattern.

Proof: To see this, we propose an example where N = 5 and c = 2. We firstly choose
the threshold h = S̄(1). Let us consider the stored messages

(ξµ)1≤µ≤6 =




1
1
0
0
0




1
0
1
0
0




1
0
0
1
0




0
1
0
0
1




0
0
1
0
1




0
0
0
1
1


 .

Let the input pattern be the partially erased pattern

ξ̃1(0) =


1
0
0
0
0

 .

Then, due to the memory effect, the subsequent two outputs of the dynamics are

(
ξ̃1(t)

)
0≤t≤2

=




1
0
0
0
0




1
1
1
1
0




1
0
0
0
0




and thus ξ̃1(2t+ 1) = ξ̃1(1), ξ̃1(2t) = ξ̃1(2) for each t ∈ N.
If we use the variable threshold h = S̄(c) instead, in our example S̄(2), this will also

lead to an oscillation of the output patterns:

(
ξ̃1(t)

)
0≤t≤4

=




1
0
0
0
0




1
1
1
1
0




1
0
0
0
1




0
1
1
1
0




1
0
0
0
1


 ,
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4.1 Dynamical Properties of the Willshaw Model

t = 0 t = 1 t = 2k, k ≥ 1 t = 2k + 1, k ≥ 1

Figure 4.2: The oscillation of the WTA dynamics in the Willshaw model using h = S̄(2).
The model contains N = 5 neurons and the number of activated neurons in a
stored message is c = 2.

here we have ξ̃1(2t) = ξ̃1(2) and ξ̃1(2t+ 1) = ξ̃1(3) for each t ∈ N.
In the figures, only the active edges are drawn, even though actually all edges exist in

the graph, but some of them are inactive and cannot transmit signals.

�

Interestingly, the WTA dynamics using h = S̄(1) does not benefit from further iterations,
if the input is a stored or a partially erased stored pattern.

Theorem 4.4 Consider the Willshaw model where the threshold is chosen as h = S̄(1).
Choose as input a partially erased version ξ̃µ 6= (0, . . . , 0) of a stored message ξµ or the
stored pattern itself. Then the dynamics converges if and only if it converges in one step.
In particular, it can only converge to ξµ if it does so in one iteration.

Proof: We use the same notations as in the proof of Theorem 4.1. We denote by h(t)
the value of the threshold at step t. There are two cases to consider:

1. After the first iteration, the activated neurons in ξ̃µ(1) are completely interconnected
(in the sense that the synaptic weights corresponding to their connecting edges are
all 1). Due to the memory effect, we have

h(1) =
N∑
i=1

ξ̃µi (1).

Since h(0) is at most the number of activated neurons in the input pattern that is a
partially erased version of a stored pattern and thus the edges among its activated
neurons are all active, we observe that

h(0) =
N∑
i=1

ξ̃µi .

The neurons activated in ξ̃µ(1) are thus exactly those neurons that are connected
by active edges to each initially activated neuron. In particular, aµ(0) ⊆ aµ(1).
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4 The Willshaw Model

The local field of the inactive neurons in ξ̃µ(1) is thus smaller than h(1) because
they have not been activated by the first step of the dynamics and did not receive a
signal from each of the initially activated neurons. Since additionally the threshold
h(1) is reached by each active neuron in ξ̃µ(1), we observe ξ̃µ(t) = ξ̃µ(1) for t ≥ 2.

2. There are i′ and j′ such that ξ̃µi′(1) = ξ̃µj′(1) = 1 but Ji′j′ = 0, i.e., after the first
step, there are activated neurons whose connecting edge is inactive. In this case
ξ̃µ(1) 6= ξµ because the edges between neurons of a stored pattern are active.

We fix such a pair i′ and j′. As we saw in the first part,

h(0) =
N∑
i=1

ξ̃µi

and the neurons activated in ξ̃µ(1) are those neurons that are connected by an
active edge to each initially activated neuron. Consequently, aµ(0) ⊆ aµ(1) and the
activated neurons of ξµ are contained in aµ(1).

Since at least all neurons activated at step 0 are connected by active edges to all
neurons activated at step 1, we obtain

h(1) =
N∑
i=1

ξ̃µi (1).

Consequently, ξ̃µi (2) = 0 for each i that is not connected by an active edge to every
other neuron of aµ(1), at least for the two neurons i′ and j′. This implies ξ̃µ(1) 6=
ξ̃µ(2). Since h(1) =

∑N
i=1 ξ̃

µ
i (1), the neurons activated in ξ̃µ(2) are exactly those

that receive signals from all neurons in ξ̃µ(1). In particular the initially activated
neurons are connected by active edges to all activated neurons in ξ̃µ(1) and we
obtain aµ(0) ⊆ aµ(2). In addition, we saw that aµ(0) ⊆ aµ(1). So each one of the
activated neurons in ξ̃µ(2) is also activated in ξ̃µ(1) because it receives signals from
each activated neuron in ξ̃µ(1) and therefore also by each activated neuron in ξ̃µ(0);
this implies aµ(2) ⊆ aµ(1).

The threshold h(2) is at most
∑N

i=1 ξ̃
µ
i (2). Since aµ(2) ⊆ aµ(1) and each initially

activated neuron is actively connected to each neuron of ξ̃µ(1), hence also to each
neuron of ξ̃µ(2), it collects

∑N
i=1 ξ̃

µ
i (2) signals and we deduce

h(2) =
N∑
i=1

ξ̃µi (2).

The neurons activated at step 3 are thus the neurons that get signals from each
activated neuron of ξ̃µ(2). But the activated neurons of ξ̃µ(2) are connected by active
edges to each activated neuron of ξ̃µ(1), so aµ(1) ⊆ aµ(3). Since aµ(0) ⊆ aµ(2), each
neuron connected to all neurons of ξ̃µ(2) and therefore activated in ξ̃µ(3) is connected
to every i ∈ aµ(0) and thus also activated in ξ̃µ(1). We conclude aµ(3) ⊆ aµ(1) and
ξ̃µ(1) = ξ̃µ(3). This yields

ξ̃µ(2t+ 1) = ξ̃µ(1) and ξ̃µ(2t) = ξ̃µ(2), t ∈ N.
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4.2 The Willshaw Model with Threshold Dynamics

We observed that ξ̃µ(1) 6= ξ̃µ(2). The dynamics does thus not converge.

�

Remark 4.5 In the Willshaw model with WTA dynamics using S̄(1), the dynamics started
in a partially erased stored pattern either converges in one step or does not converge. For
the Hopfield model, Burshtein in [12] showed that a correction of a pattern in a certain
Hamming distance %N of a stored message is corrected in at most q steps, q depending on
% and on the number of stored patterns. In particular, he showed that there is a distance
such that the dynamics requires exactly 2 steps to correct the pattern. Multiple steps are
indeed important in the Hopfield model, but do not to lead to an improved performance in
the considered case.

4.2 The Willshaw Model with Threshold Dynamics

TheWillshaw model with threshold dynamics as described in the introduction offers higher
bounds on α (in dependence on γ) for the capacity and also a better error correcting
behaviour than Amari’s model.

4.2.1 Capacity and Error Correction

A first approach to obtain a lower bound on the capacity of the Willshaw model can be
made by using the results of the second chapter.

Proposition 4.6 Suppose that in the Willshaw model with i.i.d. random variables
(ξµj , µ ≤ M, j ≤ N), the threshold dynamics with threshold h = γ log(N), 0 < γ < 1,
is used and M = αN2/(logN)2 patterns are stored. For an arbitrary message ξµ, we have

lim
N→∞

P(∀i ≤ N : Ti(ξ
µ) = ξµi ) = 1

if α fulfills the two conditions
α < γ

and
−γ log

(γ
α

)
+ γ − α < −1.

Proof: The statement of the proposition is a direct consequence of Theorem 2.1. The
only fact one has to observe is that the synaptic efficacies among the activated neurons
of ξ1 are 1 and consequently the dynamics keeps these neurons activated if the message
consists of enough activated neurons. Formally, if ξ1

i = 1, the local field is

S̄i(ξ
1) =

N∑
j=1

ξ1
jJij =

N∑
j=1

ξ1
j ,

because Jij = 1 for all i, j with ξ1
j = ξ1

i = 1. Since γ < 1, the probability P[
∑N

j=1 ξ
1
j ≥

γ log(N)] tends to 1.
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4 The Willshaw Model

On the other hand, for each i with ξ1
i = 0, the probability of turning ξ1

i into a 1 by
the dynamics is given by

P
(
Ti(ξ

1) = 0
)

= P

(
N∑
j=1

ξ1
jJij ≥ γ log(N)

)
.

But the local field in Willshaw’s model is bounded by the one of Amari’s model: denoting
by S̄Wi and SAm the local fields and by JWi

ij and JAm
ij the synaptic efficacies defined in the

corresponding models, we observe

S̄Wi
i (ξ1) =

N∑
j=1

ξ1
jJ

Wi
ij =

N∑
j 6=i

ξ1
jJ

Wi
ij =

N∑
j 6=i

ξ1
j Θ

(
M∑
µ=1

ξµi ξ
µ
j − 1

)

≤
N∑
j 6=i

ξ1
j

M∑
µ=1

ξµi ξ
µ
j =

N∑
j 6=i

ξ1
jJ

Am
ij = SAm

i (ξ1).

So
P
(
∃i ≤ N : ξ1

i = 0, TWi
i (ξ1) 6= 0

)
≤ P

(
∃i ≤ N : ξ1

i = 0, TAm
i (ξ1) 6= 0

)
with the dynamics TAm of Amari’s model and TWi of the Willshaw model. Thus the lower
bound on α obtained for Amari’s model is also a lower bound on α for the Willshaw model
with threshold dynamics.

�

Remark 4.7 In the Willshaw model, it is not possible to use threshold variables γ > 1
because the synaptic efficacies are binary: the S̄i are bounded by the number of activated
neurons per message. If the messages are chosen uniformly from the set of patterns with
exactly c non-zero spins, a threshold γc with γ > 1 implies convergence to (0, . . . , 0) of
every stored pattern in the first step. If the spins are independent and identically Bernoulli
distributed with parameter p, the probability of Acδ vanishes for each δ > 0, especially for
0 < δ < γ − 1, and an arbitrary stored pattern is turned to (0, . . . , 0) in the first step,
with probability converging to 1. If in this model γ = 1, the probability of turning ξµ into
(0, . . . , 0) tends to 1/2, whereas γ = 1 is an admissible threshold variable in the version
with exactly c activated neurons per message. Depending on γ, the (preliminary) lower
bounds on the storage capacity obtained in Proposition 4.6 are thus smaller as the ones
obtained for Amari’s model because there is no option to increase the value γ to reach a
higher capacity. As we will see, Proposition 4.6 underestimates the real storage capacity
of Willshaw’s model that will be revealed to perform better than Amari’s model, even by
only using threshold variables γ < 1.

For the Willshaw model with threshold dynamics and i.i.d. distributed spins ξµj , we try
to improve the results obtained in Proposition 4.6 by dealing with the characteristical
properties of the dynamics. The local field of a neuron counts the number of activated
neurons to which it is connected (their common synaptic efficacy is positive). Fix a stored
message, e. g., ξ1, and some neuron i. To examine the behaviour of the dynamics, we will
determine the distribution of the number of activated neurons in ξ1 to which a neuron i
is connected.
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4.2 The Willshaw Model with Threshold Dynamics

Lemma 4.8 In the Willshaw model with i.i.d. spins ξµj , µ ≤M , j ≤ N , suppose that one
of the messages, e. g., ξ1, consists of k 1’s and that k ≤ (1 + δ) log(N) for some δ > 0.
Let i ∈ {1, . . . , N} be chosen such that ξ1

i = 0. The distribution of the number of active
neurons in ξ1 to which neuron i is connected is asymptotically Binomially distributed with
parameters k and p̃ := 1− e−α. As N →∞, we have for m ∈ {0, . . . , k}:

P

(
N∑
j=1

ξ1
jJij = m

∣∣∣Z̄k) =

(
k

m

)
(1− e−α)me−α(k−m) [1 + o(1)] .

For each i with ξ1
i = 1, we have

∑N
j=1 ξ

1
jJij = k.

Proof of Lemma 4.8: Without loss of generality, we assume that the activated neurons
are exactly the first k ones. Let m ∈ {0, . . . , k} and i > k. In addition, let J̄ij denote the
synaptic weight that only takes into account the messages ξ2, . . . , ξM :

J̄ij := Θ

(
M∑
µ=2

ξµi ξ
µ
j − 1

)
.

For i > k, define X (i) := {µ ≥ 2 : ξµi = 1}. The probability of interest is transformed into

P

[
N∑
j=1

ξ1
jJij = m

∣∣∣Zk] = P

[
k∑
j=1

J̄ij = m

]

=

(
k

m

)
P
[
∀j ≤ m : J̄ij = 1,∀j ∈ {m+ 1, . . . , k} : J̄ij = 0

]
=

(
k

m

) ∑
B⊆{2,...,M}

P [X (i) = B]P
[
∀j ≤ m : J̄ij = 1,∀j > m, j ≤ k : J̄ij = 0

∣∣∣X (i) = B
]
.

The distribution of the size of X (i) is Binomial with parameters M − 1 and p. The
probability

P
[
∀j ≤ m : J̄ij = 1,∀j > m, j ≤ k : J̄ij = 0

∣∣∣X (i) = B
]

only depends on |B|. It is, for some arbitrary set B ⊆ {2, . . . ,M} with |B| = n, equal to

P
[
∀j ≤ m : J̄ij = 1,∀j > m, j ≤ k : J̄ij = 0

∣∣∣X (i) = B
]

= [1− (1− p)n]m (1− p)n(k−m).

Consequently,∑
B⊆{2,...,M}

P [X (i) = B]P
[
∀j ≤ m : J̄ij = 1,∀j > m, j ≤ k : J̄ij = 0

∣∣∣X (i) = B
]

=
M−1∑
n=0

(
M − 1

n

)
pn(1− p)M−1−n [1− (1− p)n]m (1− p)n(k−m)

=
M−1∑
n=0

(
M − 1

n

)
pn(1− p)M−1−n(1− p)n(k−m)

m∑
l=0

(
m

l

)
(−1)l(1− p)nl
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=
m∑
l=0

(
m

l

)
(−1)l

[
p(1− p)k−m+l + 1− p

]M−1
.

We just applied the Binomial formula, the definition of the Binomial distribution and
our observations until now. The next step takes into account that k = O(log(N)), p =
log(N)/N , the series representation of the logarithm (at argument 1 + x, for |x| < 1) and
finally the size of M :[

p(1− p)k−m+l + 1− p
]M−1

=
[
p
(
1− p(k −m+ l) +O(p2(k −m+ l)2

)
+ 1− p

]M−1

=
[
1− p2(k −m+ l) +O

(
p3(k −m+ l)2

)]M−1

= exp
[
(M − 1) log

(
1− p2(k −m+ l) +O

(
p3(k −m+ l)2

))]
= exp

[
(M − 1)

(
−p2(k −m+ l) +O

(
p3(k −m+ l)2

))]
= exp

[
−α(k −m+ l) +O

(
p(k −m+ l)2

)]
= exp [−α(k −m+ l)]

(
1 +O

(
p(k −m+ l)2

))
.

This result is used to determine(
k

m

) m∑
l=0

(
m

l

)
(−1)l

[
p(1− p)k−m+l + 1− p

]M−1

=

(
k

m

) m∑
l=0

(
m

l

)
(−1)l exp [−α(k −m+ l)]

(
1 +O

(
log(N)

N
(k −m+ l)2

))
=

(
k

m

)
e−α(k−m)

(
1− e−α

)m
(1 + o(1)) .

The second statement of the Lemma follows immediately because the synaptic efficacies
among the active neurons of ξ1 are 1.

�

With this information we can now improve the results of Proposition 4.6.

Theorem 4.9 In the Willshaw model with i.i.d. random variables ξµj , µ ≥ 2, j ≤ N ,
threshold dynamics using the threshold h = γ log(N), γ ∈ (0, 1), and number of stored
patterns M = αN2/(logN)2, an arbitrary but fixed pattern ξµ is stable with high probabil-
ity, i.e.,

lim
N→∞

P (∀i ≤ N : Ti(ξ
µ) = ξµi ) = 1 (4.1)

if α satisfies
α < − log(1− γ)

and additionally

−γ log

(
γ

1− e−α

)
+ (1− γ) log

(
e−α

1− γ

)
< −1. (4.2)
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4.2 The Willshaw Model with Threshold Dynamics

This bound is sharp: for each α with 1.) α < − log(1− γ) and

−γ log

(
γ

1− e−α

)
+ (1− γ) log

(
e−α

1− γ

)
> −1 (4.3)

or 2.) α ≥ − log(1 − γ), an arbitrary stored message is not stable with probability con-
verging to 1:

lim
N→∞

P(∃i ≤ N : Ti(ξ
µ) 6= ξµi ) = 1. (4.4)
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Figure 4.3: Critical capacity variable α∗(γ) in dependence on the threshold variable γ for
the Willshaw model with threshold dynamics

Proof of Theorem 4.9: We consider an arbitrary µ, e. g., µ = 1. The event Aδ denotes
again Aδ =

{∑N
j=1 ξ

1
j ∈ ((1− δ) log(N), (1 + δ) log(N))

}
. The probability of Aδ tends to

1. In addition, the event {
∑N

j=1 ξ
1
j =

∑k
j=1 ξ

1
j = k} is denoted by Zk.

We begin the proof by showing that the active neurons of ξ1 are stable with high
probability. To see that they receive with high probability a signal that is sufficiently
strong, we consider some δ < 1− γ and obtain for i with ξ1

i = 1:

P
(
Ti(ξ

1) = 1
)

=P

[
N∑
j=1

ξ1
jJij ≥ γ log(N)

]
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4 The Willshaw Model

=P

[
N∑
j=1

ξ1
j ≥ γ log(N)

]
≥ P(Aδ),

which tends to 1. This holds in particular independently of the choice of α.
We continue with the behaviour of the inactive neurons of ξ1. Firstly,

P
(
∃i ≤ N : ξ1

i = 0, Ti(ξ
1) 6= ξ1

i

)
≤P(Aδ) max

k∈N:k/ log(N)∈(1−δ,1+δ)
P
(
∃i ≤ N : ξ1

i = 0, Ti(ξ
1) 6= ξ1

i |Zk
)

+ P(Acδ)

≤ max
k∈N:k/ log(N)∈(1−δ,1+δ)

P
(
∃i > k : Ti(ξ

1) 6= 0|Zk
)

+ P(Acδ).

In Lemma 4.8 we showed that the asymptotic distribution of
∑k

j=1 J̄ij for some fixed i > k
is Binomial with parameters k and p̃ = 1 − e−α. Let a random variable with Binomial
distribution with parameters k and p̃ be denoted by Rk,p̃. The conditional probability of
the last line is then bounded by

P
(
∃i > k : Ti(ξ

1) 6= 0|Zk
)
≤ (N − k)P

(
TN(ξ1) 6= 0|Zk

)
=(N − k)P

[
k∑
j=1

J̄Nj ≥ γ log(N)

]
≤(N − k)P [Rk,p̃ ≥ γ log(N)] · (1 + o(1)).

The probability P [Rk,p̃ ≥ γ log(N)] is maximal for the maximal value of k, k = b(1 +
δ) log(N)c, which is without loss of generality assumed to be a natural number. The
probability is bounded with the help of the exponential Chebyshev inequality:

(N − k) P [Rk,p̃ ≥ γ log(N)] · (1 + o(1))

≤N P
[
R(1+δ) log(N),p̃ ≥ γ log(N)

]
· (1 + o(1))

≤N exp
[
− tγ log(N)

] [
1− (1− e−α) + (1− e−α)et

](1+δ) log(N)
(1 + o(1)).

Minimising in t yields

t∗γ,δ,α = log

(
γe−α

(1 + δ − γ)(1− e−α)

)
as minimal argument; t∗γ,δ,α is positive, if α < − log(1 − γ/(1 + δ)). We assumed that
α < − log(1− γ) and can thus choose an appropriate δ in the beginning of the proof.

Finally the condition

− γ log

(
γ

1− e−α

)
+ (1 + δ − γ) log

(
e−α

1 + δ − γ

)
+ (1 + δ) log(1 + δ) < −1

should be fulfilled in order to enforce the probability to converge to 0. Obviously,

lim
δ↘0
−γ log

(
γ

1− e−α

)
+ (1 + δ − γ) log

(
e−α

1 + δ − γ

)
+ (1 + δ) log(1 + δ)

= −γ log

(
γ

1− e−α

)
+ (1− γ) log

(
e−α

1− γ

)
.
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4.2 The Willshaw Model with Threshold Dynamics

So, if the condition

−γ log

(
γ

1− e−α

)
+ (1− γ) log

(
e−α

1− γ

)
< −1

is fulfilled, as in the formulation of the theorem, δ can be chosen appropriately small to
obtain

−γ log

(
γ

1− e−α

)
+ (1 + δ − γ) log

(
e−α

1 + δ − γ

)
+ (1 + δ) log(1 + δ) < −1.

Thus we have
lim
N→∞

P
(
∃i ≤ N : Ti(ξ

1) 6= ξ1
i

)
= 0

for this choice of α. This proves the first part of the theorem.
For the second part of the proof, we first assume that α < − log(1− γ) and that (4.3)

holds. The probability of an error is bounded by

P
(
∃i ≤ N : Ti(ξ

1) 6= ξ1
i

)
≥P
(
∃i ≤ N : ξ1

i = 0, Ti(ξ
1) 6= 0

)
≥P(Aδ) min

k∈N:k/ log(N)∈(1−δ,1+δ)
P
(
∃i > k : Ti(ξ

1) 6= 0|Zk
)

≥P(Aδ) min
k∈N:k/ log(N)∈(1−δ,1+δ)

[
1− P

(
∀i > k : Ti(ξ

1) = 0|Zk
)]
.

(4.5)

For an arbitrary realisation (xµj )µ≥2,j≤k ∈ {0, 1}k(M−1) of (ξµj )µ≥2,j≤k, the events
{
Ti(ξ

1) =

0
}
, i > k, are conditionally independent, given {(ξµj )µ≥2,j≤k = (xµj )µ≥2,j≤k}. We therefore

obtain

P
(
∀i > k : Ti(ξ

1) = 0|Zk
)

= P

(
∀i > k :

k∑
j=1

J̄ij < γ log(N)

)

=E(ξµj )µ≥2,j≤k

[
P

(
∀i > k :

k∑
j=1

J̄ij < γ log(N)
∣∣∣FNk

)]

=E(ξµj )µ≥2,j≤k

(P( k∑
j=1

J̄Nj < γ log(N)
∣∣∣FNk

))N−k


=E(ξµj )µ≥2,j≤k

(1− P

(
k∑
j=1

J̄Nj ≥ γ log(N)
∣∣∣FNk

))N−k
 . (4.6)

As we will see, it suffices to analyse the contribution of messages that contain exactly one
of the k activated neurons of ξ1, to

∑k
j=1 J̄Nj. We therefore examine the event

B̄δ(k) :=

{
∀j ≤ k :

∑
µ≥2

1{
∑
j≤k ξ

µ
j =1} ξ

µ
j ∈

[
(1− δ) αN

log(N)
,∞
)}

.
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4 The Willshaw Model

The sum
∑

µ≥2 1{
∑
j≤k ξ

µ
j =1}ξ

µ
j is for each fixed j ≤ k Binomially distributed with param-

eters M − 1 and p̂ := p(1− p)k−1.
We bound the probability of B̄δ(k)c to show that it tends to 0:

P(B̄δ(k)c) =P
[
∃j ≤ k :

∑
µ≥2

1{
∑
j≤k ξ

µ
j =1}ξ

µ
j /∈

[
(1− δ) αN

log(N)
,∞
)]

≤kP
[∑
µ≥2

1{
∑
j≤k ξ

µ
j =1}ξ

µ
1 < (1− δ) αN

log(N)

]
≤k exp [Mp(1− δ)t]

(
1 + p̂

(
e−t − 1

))M−1

≤k exp
[
Mp (−(1− δ) log (1− δ)− δ) +O(Mp2k)

]
.

This implies that P(B̄δ(k)c) tends to 0.
Now for some i > k, the number of active edges between neuron i and excited neurons

of ξ1 is at least

∑
j≤k

J̄ij =
∑
j≤k

Θ

(
M∑
µ=2

ξµi ξ
µ
j − 1

)
≥
∑
j≤k

Θ

(
M∑
µ=2

1{
∑
j≤k ξ

µ
j =1}ξ

µ
i ξ

µ
j − 1

)
.

In addition, for each j ≤ k and i > k, the conditional probabilities

P

[
Θ

(
M∑
µ=2

1{
∑
j≤k ξ

µ
j =1}ξ

µ
i ξ

µ
j − 1

)
= 1
∣∣∣FNk

]
= 1− (1− p)

∑M
µ=2 1{

∑
j≤k ξ

µ
j
=1}ξ

µ
j

are increasing in
∑M

µ=2 1{
∑
j≤k ξ

µ
j =1} ξ

µ
j . Furthermore, for fixed i > k, the events{

Θ

(
M∑
µ=2

1{
∑
j≤k ξ

µ
j =1}ξ

µ
i ξ

µ
j − 1

)
= 1

}
, j ≤ k

are conditionally independent, given {(ξµj )µ≥2,j≤k = (xµj )µ≥2,j≤k} for an arbitrary realisa-
tion (xµj )µ≥2,j≤k of (ξµj )µ≥2,j≤k.

Without loss of generality, assume that (1− δ) αN
log(N)

∈ N. We define the event

B̂δ(k) :=

{
∀j ≤ k :

∑
µ≥2

1{
∑
j≤k ξ

µ
j =1}ξ

µ
j = (1− δ) αN

log(N)

}
.

Due to the conditional independence mentioned above and the fact that the conditional
probability of an active edge between i and j, j ≤ k, is increasing in

∑M
µ=2 1{

∑
j≤k ξ

µ
j =1}ξ

µ
j ,

we obtain

min
B̄δ(k)

P

[∑
j≤k

Θ

(
M∑
µ=2

1{
∑
j≤k ξ

µ
j =1}ξ

µ
i ξ

µ
j − 1

)
≥ γ log(N)

∣∣∣FNk
]

≥P

[∑
j≤k

Θ

(
M∑
µ=2

1{
∑
j≤k ξ

µ
j =1}ξ

µ
i ξ

µ
j − 1

)
≥ γ log(N)

∣∣∣B̂δ(k)

]
.
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4.2 The Willshaw Model with Threshold Dynamics

These considerations allow to bound the last line of (4.6):

E(ξµj )µ≥2,j≤k

(1− P

(∑
j≤k

J̄Nj ≥ γ log(N)
∣∣∣FNk

))N−k


≤E(ξµj )µ≥2,j≤k

(1− P

[∑
j≤k

Θ

(
M∑
µ=2

1{
∑
j≤k ξ

µ
j =1}ξ

µ
Nξ

µ
j − 1

)
≥ γ log(N)

∣∣∣FNk
])N−k


≤max

B̄δ(k)

(
1− P

[∑
j≤k

Θ

(
M∑
µ=2

1{
∑
j≤k ξ

µ
j =1}ξ

µ
Nξ

µ
j − 1

)
≥ γ log(N)

∣∣∣FNk
])N−k

+ P
(
B̄δ(k)c

)
≤

(
1− P

[∑
j≤k

Θ

(
M∑
µ=2

1{
∑
j≤k ξ

µ
j =1}ξ

µ
Nξ

µ
j − 1

)
≥ γ log(N)

∣∣∣B̂δ(k)

])N−k

+ P
(
B̄δ(k)c

)
.

The conditional distribution of
∑

j≤k Θ
(∑M

µ=2 1{
∑
j≤k ξ

µ
j =1}ξ

µ
Nξ

µ
j − 1

)
, given B̂δ(k), is

P

[∑
j≤k

Θ

(
M∑
µ=2

1{
∑
j≤k ξ

µ
j =1}ξ

µ
Nξ

µ
j − 1

)
= m

∣∣∣B̂δ(k)

]

=

(
k

m

)
P

[
∀j ≤ k : Θ

(
M∑
µ=2

1{
∑
j≤k ξ

µ
j =1}ξ

µ
Nξ

µ
j − 1

)
= 1j≤m

∣∣∣∣∣B̂δ(k)

]

=

(
k

m

)
(1− p)(1−δ)α N

log(N)
(k−m)

[
1− (1− p)(1−δ)α N

log(N)

]m
. (4.7)

With the help of the series expansion of the logarithm and the one of the exponential
function, we obtain

(1− p)(1−δ)α N
log(N)

(k−m) = elog(1−p)(1−δ)α N
log(N)

(k−m)

=e−(1−δ)α(k−m)+O(p(k−m)) = e−(1−δ)α(k−m) [1 +O(p(k −m))] = e−(1−δ)α(k−m)[1 + o(1)]

and, using that p = log(N)/N and m ≤ k = O(log(N)),[
1− (1− p)(1−δ)α N

log(N)

]m
=
[
1− elog(1−p)(1−δ)α N

log(N)

]m
=
[
1− e−(1−δ)α−p 1

2
(1−δ)α+O(p2)

]m
=

[
1− e−(1−δ)α

(
1− p1

2
(1− δ)α +O(p2)

)]m
=
[
1− e−(1−δ)α]m ·(1 +

e−(1−δ)α(p1
2
(1− δ)α +O(p2))

1− e−(1−δ)α

)m

=
[
1− e−(1−δ)α]m · (1 +O(log(N)2/N)

)
=
[
1− e−α(1−δ)]m (1 + o(1)). (4.8)

Finally (
k

m

)
(1− p)(1−δ)α N

log(N)
(k−m)

[
1− (1− p)(1−δ)α N

log(N)

]m
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=

(
k

m

)
e−α(1−δ)(k−m)

[
1− e−α(1−δ)]m (1 + o(1)).

Rk, 1−e−(1−δ)α again denotes a Binomially distributed random variable with parameters k
and 1− e−α(1−δ). Inequality (4.5) as well as the subsequent conclusions imply

P
(
∃i ≤ N : Ti(ξ

1) 6= ξ1
i

)
≥ P(Aδ) min

k∈N:k/ log(N)
∈(1−δ,1+δ)

[
1− P

(
∀i > k : Ti(ξ

1) = ξ1
i |Zk

)]
≥ P(Aδ)·

min
k∈N:k/ log(N)
∈(1−δ,1+δ)

[
1−

[
1− P

(
Rk, 1−e−(1−δ)α ≥ γ log(N)

)
(1 + o(1))

]N−k − P(B̄δ(k)c)
]
.

The minimum of P
(
Rk, 1−e−(1−δ)α ≥ γ log(N)

)
is realised by the argument k = d(1 −

δ) log(N)e. The probability thus tends to 1 if the equation

lim inf
N→∞

1

log(N)
log
[
P
(
Rd(1−δ) log(N)e, 1−e−(1−δ)α ≥ γ log(N)

)]
> −1 (4.9)

holds. Using Lemma 2.4 and that the Legendre transform Λ∗p(x) of a Bernoulli random
variable with parameter p ∈ (0, 1) is

Λ∗p(x) = x log

(
x

p

)
− (1− x) log

(
1− p
1− x

)
,

we see that

lim inf
N→∞

1

log(N)
log
[
P
(
Rd(1−δ) log(N)e, 1−e−(1−δ)α ≥ γ log(N)

)]
≥(1− δ) lim inf

N→∞

1

d(1− δ) log(N)e
log

[
P
(
Rd(1−δ) log(N)e, 1−e−(1−δ)α ≥

γ

1− δ
d(1− δ) log(N)e

)]
=− (1− δ)

[
γ

1− δ
log

(
γ

(1− δ)(1− e−α(1−δ))

)
−
(

1− γ

1− δ

)
log

(
e−α(1−δ)

1− γ
1−δ

)]

=− γ log

(
γ

(1− δ)(1− e−α(1−δ))

)
+ (1− δ − γ) log

(
e−α(1−δ)

1− γ
1−δ

)
for γ > (1− δ)(1− e−α(1−δ)), that is, α < − 1

1−δ log(1− γ
1−δ ) (which is fulfilled if δ is small

enough and α < − log(1− γ)). Hence the condition (4.9) holds if

−γ log

(
γ

(1− δ)(1− e−α(1−δ))

)
+ (1− δ − γ) log

(
e−α(1−δ)

1− γ
1−δ

)
> −1. (4.10)

If now
−γ log

(
γ

1− e−α

)
+ (1− γ) log

(
e−α

1− γ

)
> −1,

as formulated in the Theorem, the variable δ can be chosen in dependence on γ and α
such that (4.10) is fulfilled, since by continuity we have

lim
δ↘0
− γ log

(
γ

(1− δ)(1− e−α(1−δ))

)
+ (1− δ − γ) log

(
e−α(1−δ)

1− γ
1−δ

)
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=− γ log

(
γ

1− e−α

)
+ (1− γ) log

(
e−α

1− γ

)
.

Finally, this yields
lim
N→∞

P
(
∃i ≤ N : Ti(ξ

1) 6= ξ1
i

)
−→ 1

for each α < − log(1− γ) that satisfies (4.3).
If α ≥ − log(1−γ), we choose some α′ < − log(1−γ) such that (4.3) holds. We will see

in the proof of the next proposition that this is possible for each γ ∈ (0, 1). The probability
of having at least one inactive neuron that gets too many signals clearly increases in the
number of stored patterns. Since this probability tends to 1 if α′N2/ log(N)2 patterns are
stored, it also does if αN2/ log(N)2 patterns are stored. This finishes the proof.

�

Proposition 4.10 In the situation of Theorem 4.9, there is for each γ a critical α∗(γ),
such that (4.1) holds for 0 < α < α∗(γ) and (4.4) holds for α > α∗(γ). In particular,
the set of admissible capacity variables is nonempty for each γ ∈ (0, 1). Each γ ≥ 1 is
inadmissible.

The critical value

α∗ := sup
{
α > 0 : ∃γ ∈ (0, 1) : α is an admissible capacity variable for γ

}
is equal to

α∗ = − log(1− e−1) ≈ 0.45.

For each α < α∗, there is a nonempty interval (γ∗(α), 1) such that (γ∗(α), 1) contains ad-
missible threshold variables for α and (0, γ∗(α)) contains inadmissible threshold variables
for α.

Proof: The functions f̃ : R+ → R, fγ : (0, γ]→ R, γ ∈ (0, 1),

f̃(α) := 1− e−α, fγ(x) := −γ log
(γ
x

)
+ (1− γ) log

(
1− x
1− γ

)
are continuous and strictly increasing on R+ and strictly increasing on (0, γ), respectively.
In particular, limx↘0 fγ(x) = −∞ and fγ(γ) = 0. So, there is a unique root xγ of fγ + 1
in (0, γ), and for x ∈ (0, γ), we know

fγ(x) < −1⇔ x < xγ, fγ(x) > −1⇔ x > xγ.

For fixed γ, the fact that f̃ is strictly increasing implies that (4.2) holds for 0 < α <
− log(1 − xγ) and (4.3) holds for α > − log(1 − xγ). In particular, xγ < γ and therefore
− log(1 − xγ) < − log(1 − γ). Thus the whole set (0,− log(1 − xγ)) contains exclusively
admissible capacity variables and (− log(1− xγ),∞) only contains inadmissible capacity
variables; α∗(γ) = − log(1−xγ). The choice of γ ≥ 1 is inadmissible, because P(

∑N
j=1 ξ

1
j <

log(N)) tends to 1/2 and the synaptic weights are binary.

95



4 The Willshaw Model

Finally, to determine α∗, we state that for fixed α, the continuous function

fα : (0, 1)→ R, fα(γ) := −γ log

(
γ

1− e−α

)
+ (1− γ) log

(
e−α

1− γ

)
is strictly increasing on (0, 1

1+e2
), strictly decreasing on ( 1

1+e2
, 1) and

lim
γ↘0
−γ log

(
γ

1− e−α

)
+ (1− γ) log

(
e−α

1− γ

)
= −α > −1,

lim
γ↗1
−γ log

(
γ

1− e−α

)
+ (1− γ) log

(
e−α

1− γ

)
= log

(
1− e−α

)
.

This implies that the set of possible threshold variables for α is of the form (γ∗(α), 1) and
that α∗(γ) is strictly increasing in γ. In particular, α∗ = − log(1− e−1), because for each
α > − log(1 − e−1), we have fα(γ) > −1 for each γ ∈ (0, 1) and for α < − log(1 − e−1),
there is some γ ∈ (0, 1) such that fα(γ) < −1.

�

Corollary 4.11 In the Willshaw model with independent and identically distributed pat-
terns and spins using the threshold dynamics with threshold γ log(N), γ ∈ (0, 1) let a
number of M = αN2/ log(N)2 patterns be stored, with α such that the stability conditions
α < − log(1− γ), (4.2) of Theorem 4.9 are fulfilled.

1. Let ξ̂µ be a partially erased version of an arbitrary message ξµ, where at most
%1 log(N) of the 1s have been deleted at random, 0 < %1 < 1. If %1 < 1 − γ,
the probability of a one step correction of ξ̂µ into ξµ tends to 1:

lim
N→∞

P
(
∀i ≤ N : Ti(ξ̂

µ) = ξµi

)
= 1.

If on the other hand %1 > 1− γ,

lim
N→∞

P
(
∃i ≤ N : Ti(ξ̂

µ) 6= ξµi

)
= 1.

In this case we can even conclude

lim
N→∞

P
(
∀n ≥ 1 ∃in ≤ N : (T n)in (ξ̂µ) 6= ξµin

)
= 1.

If %1 = 1− γ,

lim inf
N→∞

P
(
∀n ≥ 1 ∃in ≤ N : (T n)in (ξ̂µ) 6= ξµin

)
> 0.

2. If we consider a message ξ̃µ obtained by randomly activating %2 log(N) additional
neurons, 0 < %2 < 1, the probability of correcting the message in one step to ξµ

tends to 1 if α fulfills α < − log(1− γ/(1 + %2)) and

−γ log

(
γ

1− e−α

)
+ (1 + %2 − γ) log

(
e−α

1 + %2 − γ

)
+ (1 + %2) log(1 + %2) < −1.

(4.11)
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This bound is again sharp concerning the one step correction: if either α < − log(1−
γ/(1 + %2)) and

−γ log

(
γ

1− e−α

)
+ (1 + %2 − γ) log

(
e−α

1 + %2 − γ

)
+ (1 + %2) log(1 + %2) > −1

(4.12)

or α ≥ − log(1 − γ/(1 + %2)), the message is not corrected in one step, with high
probability.

3. If finally ξ̄µ is a randomly corrupted message such that %1 log(N) activated neu-
rons have been deactivated and %2 log(N) inactive neurons of ξµ have randomly been
activated, 0 < %1 < 1, the probability of a correction in one step tends to 1 if 1.)

%1 < 1− γ

and, in case %1 < %2, if the conditions 2.a) α < − log(1− γ/(1− %1 + %2)) and 2.b)

− γ log

(
γ

1− e−α

)
+ (1− %1 + %2 − γ) log

(
e−α

1− %1 + %2 − γ

)
+ (1− %1 + %2) log(1− %1 + %2) < −1

are fulfilled. If %2 > %1, the bound in 2. is sharp concerning the one-step retrieval.

Proof: Concerning the first point, we cannot correct a number %1 log(N) of deleted entries
if %1 > 1− γ : since the synaptic efficacies are binary, the local field of a neuron i can be
at most k − %1 log(N), where k is the number of 1’s in ξµ. For 0 < δ < %1 − 1 + γ and
each k ≤ (1 + δ) log(N),

k − %1 log(N) ≤ (1 + δ − %1) log(N) < γ log(N).

Due to P(Aδ) → 1 for Aδ = {
∑N

j=1 ξ
µ
j / log(N) ∈ (1 − δ, 1 + δ)}, the pattern ξ̂1 is turned

to (0, . . . , 0) in the first step, with high probability:

P
(
∀i ≤ N : Ti(ξ̂

µ) = 0
)
≥ P(Aδ) −→ 1.

In this case ξ1 can never be recovered.
If %1 = 1− γ, ξ̂µ is turned to (0, . . . , 0) with positive probability because

lim
N→∞

P

(
N∑
j=1

ξµj < log(N)

)
=

1

2
.

If in contrary %1 < 1− γ, we choose δ < 1− γ − %1. The activated neurons of ξµ receive
k − %1 log(N) signals if the input message is the corrupted pattern ξ̂µ and ξµ consists of
k active neurons. On Aδ,

k − %1 log(N) ≥ (1− δ − %1) log(N) > γ log(N);
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4 The Willshaw Model

so these neurons remain activated or are reactivated if they have been deactivated to
obtain ξ̂µ.

The inactive neurons of ξµ get a lower signal if ξ̂µ is the input vector of the dynamics
compared to the situation where ξµ is the input and are thus stable if ξµ is stable, which
is the case with high probability because one of the conditions of the theorem is that the
stability conditions α < − log(1− γ) and (4.2) are fulfilled.

Concerning 2., if in ξ̃µ a number of %2 log(N) neurons is spuriously activated, the
inactive neurons of ξµ are more likely to be activated by the dynamics. The only difference
to the proof of the previous theorem is that the number of potential neurons from which
signals can come is increased and equal to k + %2 log(N) instead of k if k is the number
of activated neurons in ξµ. We can adopt Lemma 4.8 and see that the distribution of
the number of activated neurons in ξ̃µ to which a fixed neuron i > k is connected by an
active edge is asymptotically Binomial with parameters k + %2 log(N) and 1 − e−α. The
rest of the proof of Theorem 4.9 can almost literally be repeated and we obtain that the
probability of a correction in one step tends to 0 if γ > (1 + %2)(1− e−α) and (4.11) holds
and to 1 if either γ ≤ (1 + %2)(1− e−α) or if γ > (1 + %2)(1− e−α) and (4.12) holds.

In the last case, where %1 log(N) neurons have been deactivated and %2 log(N) neurons
have spuriously been activated, these two conditions are combined. The neurons belonging
to ξµ get at least k−%1 log(N) signals, which exceeds the threshold with high probability if
%1 < 1−γ, whereas the remaining neurons can potentially get signals from k−%1 log(N)+
%2 log(N) neurons, which leads in case %2 > %1 to the sharp bound formulated in the
corollary.

�

Remark 4.12 Again, if one wants to correct a certain number of erased entries, one
must choose an appropriately small γ and the critical capacity variable α∗(γ) decreases
with γ. A correction of a number of % log(N) spuriously active neurons also decreases the
maximal capacity variable: if xγ is the root of fγ + 1 in (0, γ), as defined in the proof of
Proposition 4.10, α must fulfill α < − log(1− xγ/(1 + %)) instead of α < − log(1− xγ).

Theorem 4.13 The bounds on α concerning the stability and error correction of the
Willshaw model obtained so far are also valid if the M = N2/c2 messages are chosen
uniformly among all patterns with exactly c = log(N) active neurons.

Proof: We only give a short summary because the proof is very similar to the one of
Theorem 4.9. We consider ξ1, assuming that the first c neurons are active. Concerning
the lower bound on α, we consider the random variables

X2(c) =
M∑
µ=2

1{
∑
j≤c ξ

µ
j =2} and X3(c) =

M∑
µ=2

1{
∑
j≤c ξ

µ
j >2},

each Binomially distributed with parameters M − 1 and p̃2 =
(
c
2

) c(c−1)
N(N−1)

(1 +O(c2/N)) =(
c
2

)
c2

N2 (1 +O(c2/N)) and p̃3 =
(
c
3

)
c3

N3 (1 +O(c2/N)), respectively. As in the previous proof
of Theorem 3.1, die probabilities of the sets

Cδ(c) =

{
X2(c)

α
(
c
2

) ∈ (1− δ, 1 + δ)

}
, D(c) = {X3(c) = 0}
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4.2 The Willshaw Model with Threshold Dynamics

tend to 1. This is also true for the event

B̃δ(c) :=

{
∀j ≤ c :

∑
µ≥2

1{
∑
j≤c ξ

µ
j =1} ξ

µ
j ∈

(
−∞, (1 + δ)

αN

log(N)

)}
,

similar to the computation on page 92, using that for each j ≤ c, P(1{∑j≤c ξ
µ
j =1} ξ

µ
j =

1) = c/N(1 + O(c2/N)). To obtain stability of ξ1, we need
∑c

j=1 J̄ij < γc for all i > c.
We first consider the distribution of∑

j≤c

Θ

(
M∑
µ=2

1{
∑
j≤c ξ

µ
j =1}ξ

µ
i ξ

µ
j − 1

)

instead of
∑

j≤c J̄ij =
∑

j≤c Θ(
∑M

µ=2 ξ
µ
i ξ

µ
j − 1).

Similarly to the considerations on pages 92 - 94 and the computations in (4.7) and
(4.8), by replacing p (the probability of activating neuron i in a message, given that
exactly one of the first c neurons is already active), by (c− 1)/(N − c), we can bound the
probability

P

(∑
j≤c

Θ

(
M∑
µ=2

1{
∑
j≤c ξ

µ
j =1}ξ

µ
i ξ

µ
j − 1

)
≥ γc

∣∣∣B̃δ(c)

)
≤ P

(
Rc, 1−e−(1+δ)α ≥ γc

)
(1 + o(1)).

Since additionally the following probability vanishes, as N tends to infinity:

P

∃i > c :
∑

µ:
∑
j≤c ξ

µ
j =2

ξµi > 1
∣∣∣Cδ(c)

 ≤ (N − c)
(
α(1 + δ)

(
c
2

)
2

)
p2 −→ 0,

we obtain

P

(
∃i > c :

c∑
j=1

J̄ij ≥ γc

)
≤ P ((Bδ(c) ∩ Cδ(c) ∩D(c))c) +

(N − c)
(
α(1 + δ)

(
c
2

)
2

)
p2 + (N − c)P

(
Rc−2, 1−e−(1+δ)α ≥ γc− 2

)
(1 + o(1)).

This vanishes, if

−γ log

(
γ

1− e−α

)
+ (1− γ) log

(
e−α

1− γ

)
< −1

by choosing an appropriate δ > 0.
Concerning the opposite bound, the situation is more complicated as in the model with

i.i.d. spins. First, we can proceed as in the proof of Theorem 4.9. Again the probability
of the event B̄δ = {∀j ≤ k :

∑
µ≥2 1{

∑
j≤k ξ

µ
j =1} ξ

µ
j ∈ [(1 − δ)αN/ log(N),∞)} tends to 1.

Additionally, the sum
∑c

j=1 J̄ij is estimated to be at least

c∑
j=1

J̄ij ≥
c∑
j=1

Θ

 ∑
µ:
∑c
j=1 ξ

µ
j =1

ξµi ξ
µ
j − 1

 .
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4 The Willshaw Model

Now, given a realisation of ξµj , µ ≥ 2, j ≤ c, the events{
c∑
j=1

Θ
( ∑
µ:
∑c
j=1 ξ

µ
j =1

ξµi ξ
µ
j − 1

)
≥ γc

}
, i > c,

are not conditionally independent (in contrary to the other version of the model). For
arbitrary (xµj )j≤c,µ≥2 ∈ {0, 1}c(M−1), the (ξµi ), i > c, µ ≥ 2, are conditionally negatively
associated, given {(ξµj )j≤c,µ≥2 = (xµj )j≤c,µ≥2}: for fixed µ, (ξµi , i > c) is conditionally Multi-
variate Hypergeometrically distributed with parameters N−c (number of characteristics),
c−

∑
j≤c x

µ
j (number of drawings) and (1, . . . , 1) (vector of multiplicity of the character-

istics), because there are exactly c active neurons per message. So the (ξµi , i > c, µ ≥ 2),
are conditionally negatively associated as union of independent sets of the conditionally
negatively associated random variables (ξµi , i > c), µ ≥ 2. The variables

c∑
j=1

Θ

 ∑
µ:
∑c
j=1 ξ

µ
j =1

ξµi ξ
µ
j − 1

 , i > c

are, for fixed (ξµj )j≤N,µ≥2, coordinatewise increasing functions using disjoint subsets of the
negatively associated random variables (ξµi , i > c, µ ≥ 2) and therefore also conditionally
negatively associated, given {(ξµj )j≤c,µ≥2 = (xµj )j≤c,µ≥2}. We obtain, with Lemma 2.12 4.,

P

∀i > c :
c∑
j=1

Θ

 ∑
µ:
∑c
j=1 ξ

µ
j =1

ξµi ξ
µ
j − 1

 < γc
∣∣∣FNc


=P

[
∀i > c : 1∑c

j=1 Θ

(∑
µ:

∑c
j=1

ξ
µ
j
=1

ξµi ξ
µ
j −1

)
≥γc

= 0
∣∣∣FNc

]

≤P

 c∑
j=1

Θ

 ∑
µ:
∑c
j=1 ξ

µ
j =1

ξµNξ
µ
j − 1

 < γc
∣∣∣FNc

N−c .
The rest of the proof of Theorem 4.9 can now be modified for this version of the model.
We consider B̄δ and compute analogously the probabilities in (4.7) and (4.8), using c−1

N−c
instead of p in the computations, because we consider patterns with exactly one active
neuron out of the neurons 1, . . . , c. This is a negligible difference and does not change the
result. We obtain the upper bound on α : the pattern is instable if

−γ log

(
γ

1− e−α

)
+ (1− γ) log

(
e−α

1− γ

)
> −1.

The proofs concerning the error correction can be adapted in the same way.

�
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4.2 The Willshaw Model with Threshold Dynamics

Theorem 4.14 If at most M = o(Nβ), β = γ log(γ)− γ + 1, messages are stored in the
first setting of the model (i.i.d. spins), these are stable with high probability: then

lim
N→∞

P(∃µ ≤M : T (ξµ) 6= ξµ) = 0.

If in contrary Nβ = o(M), β = γ log(γ) − γ + 1, there is, with high probability, at least
one pattern that is not stable:

lim
N→∞

P(∃µ ≤M : T (ξµ) 6= ξµ) = 1.

In particular, in this case

lim
N→∞

P(∃µ ≤M : T (ξµ) = (0, . . . , 0)) = 1.

In the second version of the model, with exactly c active neurons per stored message, all
patterns are stable with high probability, if M ≤ αN2/ log(N)2, such that

−γ log

(
γ

1− e−α

)
+ (1− γ) log

(
e−α

1− γ

)
< −3.

Proof: The first two statements follow immediately from Proposition 2.8. If on the one
hand M = o(Nβ), β = γ log(γ)− γ + 1, there are with high probability enough activated
neurons (≥ γc) in each message, and we showed in Proposition 2.8 that the inactive
neurons in Amari’s model are stable for this choice of M . Since their local field is in
the Willshaw model smaller than in Amari’s model, the messages are also stable in the
Willshaw model, with high probability.

On the other hand, if M is too large, there are not enough activated neurons (< γc)
in at least one message and since the synaptic efficacies are binary, the activated neurons
get in this case a signal that is too low; the whole message is turned into (0, . . . , 0).

The last claim follows analogously to the computations of the precedent Theorem 4.13.
To take the number of messages M into account, one to observes that MP(B̃δ(c)

c) and
MP(Cδ(c)

2) vanish, where B̃δ(c) and Cδ(c) are defined as in the proof of Theorem 4.13);
in addition, one has to consider messages with 3 and 4 active neurons in the set {1, . . . , c}.
However, these only lead to a negligible number of connections and do not change the
result as N and c tend to infinity. In fact,

MNP(Rc−x, 1−e−(1+δ)α ≥ γ log(N))

vanishes for fixed x (x is 11 in the worst case) if −γ log(γ/(1−e−α))+(1−γ) log(e−α/(1−
γ)) < −3 and δ is appropriately chosen.

�

In the next section, we analyse the capacity of the Willshaw model with WTA dynamics.
As we will see, the bound of the latter model is of another form as the one we found for
the first version: the WTA dynamics outperforms the threshold dynamics. However, they
both lead to the same maximal capacity for γ ≈ 1, whereas they give different bounds
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4 The Willshaw Model

for the error correcting case. This is reasonable because using a threshold variable near
1, an error concerning the inactive neurons of ξµ occurs if one of the inactive neurons is
connected to almost all of the activated neurons. The WTA dynamics will produce an
error if one of them is connected to every of the active neurons.

In computer simulations the threshold dynamics in the Willshaw model is outper-
formed by WTA (see [18]). Our theoretical results support this observation.

4.2.2 Energy function of the Willshaw Model with Threshold
Dynamics

The Willshaw model with threshold dynamics is related to the following Hamiltonian
function:

Proposition 4.15 The function H, defined by

H(σ) = −1

2

∑
i 6=j

σiσjJij +
N∑
i=1

σi [−Jii + γ log(N)]

is decreasing along steps of the sequential dynamics T̄ = T̄1 ◦ . . . ◦ T̄N .

The term Jii is chosen for the reason that this model includes self-loops of the neurons.

Proof: Suppose that one spin of σ ∈ {0, 1}N has been updated. Then, using T̄i(σ) =
(σ1, . . . , Ti(σ), . . . , σN), the Hamiltonians evaluated in σ and T̄i(σ) differ by

H(T̄i(σ))−H(σ) = [Ti(σ)− σi]

(
−

N∑
j=1

Jij + γ log(N)

)

which is, in each possible case of updating, non-positive due to the updating rules. Con-
cretely, if an activated neuron is deactivated, we know that

Ti(σ)− σi = −1 and
N∑
j=1

Jij < γ log(N);

in the opposite case, we have

Ti(σ)− σi = 1 and
N∑
j=1

Jij ≥ γ log(N)

which leads in both cases to nonpositivity of the difference of the values of the energy
function.

�
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4.2 The Willshaw Model with Threshold Dynamics

The question then is: can we determine energy barriers, i.e. are there Hamming spheres
around the message ξµ such that on each point on the Hamming sphere of a certain radius,
the energy is at least higher than the energy of ξµ plus a given constant? We suppose, as
in the previous models, a radius of η log(N), with η < 1. A pattern in Hamming-distance
η log(N) of a given message, e. g., ξ1, is uniquely characterised by the k1 places where
a neuron of ξ1 has been activated and the k2 places where a 1 has been deleted, with
k1 + k2 = η log(N). These sets are denoted by J1 and J2, respectively. The pattern that
differs from ξ1 in exactly the spins of the neurons belonging to J is denoted by ξ1

J . We
assume without loss of generality that

ξ1
i = 1 for i ≤ k, ξ1

i = 0 for i > k

for some fixed k ∈ N, k/ log(N) ∈ (1− δ, 1 + δ), and consider

J2 = {k − k2, . . . , k}, J1 = {k + 1, . . . , k + k1}.

As in Amari’s model, we can show that there exist energy valleys around a fixed but
arbitrary stored pattern. As in Theorem 2.15, we do not obtain a higher capacity than
concerning the perfect retrieval (Theorem 4.9), but the result shows that every corrupted
pattern on the sphere has a higher energy than the stored pattern. In Corollary 4.11, we
only consider a fixed corrupted pattern.

Theorem 4.16 In the Willshaw model with threshold algorithm, for γ ∈ (0, 1) used as
threshold variable and α as capacity variable, such that α < γ and

−γ log
(γ
α

)
+ γ − α < −1,

there are η > 0 and ε > 0 such that

lim
N→∞

P
(
∃J ⊆ {1, . . . , N} : |J | = η log(N), H(ξ1)−H(ξ1

J) ≥ −ε log(N)2
)

= 0

for the Hamiltonian function defined in Proposition 4.15.

Proof: Suppose that there are k active neurons in ξ1. Since Jii = 1 for all neurons that
are active in ξ1 and Jii ≤ 1, the difference of the Hamiltonian functions evaluated in ξ1

and ξ1
J is bounded from above by

H(ξ1)−H(ξ1
J) = −1

2

∑
i,j:i 6=j

Jijξ
1
i ξ

1
j +

N∑
i=1

ξ1
i [−Jii + γ log(N)]

+
1

2

∑
i,j:i 6=j

Jijξ
1
Jiξ

1
Jj −

N∑
i=1

ξ1
Ji [−Jii + γ log(N)]

≤ −
(
k

2

)
+

(
k − k2

2

)
+[γ log(N)− 1] [k2 − k1] +

∑
i,j:i∈{1,...,k−k2},
j∈{k+1,...,k+k1}

Jij +
1

2

∑
i,j:i 6=j,(i,j)∈
{k+1,...,k+k1}2

Jij
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= −kk2 +
k2

2

2
+
k2

2
+ [γ log(N)− 1] [k2 − k1] +

∑
i,j:i∈{1,...,k−k2},
j∈{k+1,...,k+k1}

Jij +
1

2

∑
i,j:i 6=j,(i,j)∈
{k+1,...,k+k1}2

Jij.

The random variable

Y (k, k1, k2) :=
∑

i,j:i∈{1,...,k−k2},
j∈{k+1,...,k+k1}

Jij +
1

2

∑
i,j:i 6=j,(i,j)∈
{k+1,...,k+k1}2

Jij

denotes the number of positive synaptic efficacies on edges within the set of neurons
{k + 1, . . . , k + k1} (without loops) and between neurons of the latter set and neurons of
the set {1, . . . , k − k2}. We are interested in estimating the following probability

P

[
Y (k, k1, k2) ≥ kk2 − k2

2/2− k2/2 + [γ log(N)− 1][k1 − k2]− ε log(N)2

]
such that the product of this estimation of the probability with the number of possible
patterns on the Hamming sphere with radius η log(N) (assumed to be a natural number),
centred in ξµ, converges to 0. Using

Y (1)
µ (k, k1) :=

k1∑
j=k+1

ξµj , Y (2)
µ (k, k2) :=

k−k2∑
j=1

ξµj ,

this number is bounded from above by

Y (k, k1, k2) ≤
M∑
µ=2

(
Y

(1)
µ (k, k1)

2

)
+ Y (1)

µ (k, k1)Y (2)
µ (k, k2).

To be precise, the variables Y (1)
µ and Y (2)

µ depend, of course, on k1, k2 and k, but we omit
this in the notation. To estimate the probability, we determine the moment generating
function of the random variables: as in the proof of Theorem 2.15, we can for t < 1

η

estimate:

E

[
exp

(
t
M∑
µ=2

(
Y

(1)
µ

2

)
+ Y (1)

µ Y (2)
µ

)]

=

[
k1∑
i1=0

k−k2∑
i2=0

(
k1

i1

)(
k − k2

i2

)
pi1+i2 (1− p)k1+k−k2−i1−i2 et((

i1
2 )+i1i2)

]M−1

=

[
(1− p)k+k1−k2 + (k1 + k − k2)p(1− p)k+k1−k2−1 +

(
k1

2

)
p2et

+

(
k − k2

2

)
p2 + (k − k2)k1p

2et +O(p3(k + k1)4)

]M−1

=

[
1 + p2

(
−
(
k + k1 − k2

2

)
+

(
k1

2

)
et +

(
k − k2

2

)
+ (k − k2)k1e

t

)
+O(p3(k + k1)4)

]M−1
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=

[
1 + p2

((
k1

2

)
(et − 1) + (k − k2)k1(et − 1)

)
+O(p3(k + k1)4)

]M−1

≤ exp

[
α

((
k1

2

)
(et − 1) + (k − k2)k1(et − 1)

)]
(1 + o(1)).

By the application of the exponential Chebyshev inequality, we obtain

P

[
Y (k, k1, k2) ≥ kk2 − k2

2/2− k2/2 + γ log(N)(k1 − k2)− k1 + k2 − ε log(N)2

]
≤ exp

(
−t
[
kk2 − k2

2/2− k2/2 + γ log(N)(k1 − k2)− k1 + k2 − ε log(N)2
])

exp

[
α

((
k1

2

)
(et − 1) + (k − k2)k1(et − 1)

)]
(1 + o(1)). (4.13)

By intersecting with Aδ, it suffices to consider

P
(
∃J ⊆ {1, . . . , N} : |J | = η log(N), H(ξ1)−H(ξ1

J) ≥ −ε log(N)2|Zk
)

≤η log(N) max
k1∈N:0≤k1≤η log(N)

(
N

k1

)(
k

k2

)
P
(
H(ξ1)−H(ξ1

J̃k1
) ≥ −ε log(N)2|Zk

)
(4.14)

for k/ log(N) ∈ (1 − δ, 1 + δ), with J̃k1 := {k − k2 + 1, . . . , k} ∪ {k + 1, . . . , k + k1},
k2 = η log(N)− k1. We take into account that η log(N) = k1 + k2: similarly to the proof
in Chapter 2, by inserting the last two lines of (4.13) and replacing k2 by η log(N) − k1,
we see that the maximal value is either attained in k1 = 0 or in k1 = η log(N).

If k1 = 0, the second exponential in (4.13) vanishes. We observe

η log(N)

(
k

η log(N)

)
P
(
H(ξ1)−H(ξ1

J̃0
) ≥ −ε log(N)2|Zk

)
−→ 0

if kk2 − k2
2/2− k2

2 − γ log(N)k2 − ε log(N)2 > 0, which is fulfilled if

ε < %(1− δ − %/2− γ).

For k1 = η log(N) and k ≤ (1 + δ) log(N), the probability in (4.13) is at most

exp

[
−tγ log(N)k2

1 + tk1 + tε log(N)2 + α

((
k1

2

)
(et − 1) + kk1(et − 1)

)]
≤ exp

[
−t log(N)2 (γη − ε) + α log(N)2(et − 1)

(
η2

2
+ η(1 + δ)

)
+O(log(N))

]
.

Using t = log( γη−ε
α(η2/2+η(1+δ))

), the last line in (4.14) vanishes, if

−
(
γ − ε

η

)
log

(
γ − ε/η

α(η/2 + 1 + δ)

)
+ α

(
γ − ε/η

α(η/2 + 1 + δ)
− 1

)(η
2

+ 1 + δ
)
< −1.

We are now in the same situation as in the proof of Theorem 2.15. It is possible to find
ε > 0, η > 0 such that all the named conditions are fulfilled (including t < 1/η), if α < γ
and −γ log(γ/α) + γ − α < −1.

�
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4 The Willshaw Model

4.3 Capacity and Error Correction of the Willshaw
Model with WTA Dynamics

Content of this section is the Willshaw model with WTA dynamics as described in the
introduction of this chapter. We first consider the behaviour of the one step retrieval. Our
first observation involves the difference between the dynamics using the variable thresholds
S̄(c) and S̄(1):

Remark 4.17 Consider the Willshaw model with WTA dynamics in the version with
stored messages containing exactly c active neurons. There is no difference in the first
step of the WTA dynamics between the usage of the variable thresholds S̄(c) and S̄(1), as
long as we consider a partially erased version of a stored pattern or the stored pattern
itself as input.

This can easily be understood: assume that f of the activated neurons have been erased;
f = 0 in the case of the correct pattern. The S̄i are bounded by the number of activated
neurons in the input, because the synaptic weights are binary. The highest possible value,
that is, c − f , is at least attained by the c neurons of the stored pattern. Consequently
we have S̄(c) = S̄(1). This is only true if self-loops are accepted: otherwise the inactive
neurons in a partially erased pattern get c − f , the non-erased c − f − 1 signals, and
we cannot guarantee S̄(1) = S̄(c). In particular, for all the results obtained for S̄(1), it is
important to respect self-loops.

The WTA dynamics using S̄(1) can also be applied if the messages do not consist
of exactly c neurons, but whose spins (ξµi , i ≤ N), are independent and identically dis-
tributed. We begin with the analysis of this version, but can afterwards show that the
obtained results are also valid for the model with stored patterns chosen uniformly from
the set of all messages with exactly c active neurons.

Theorem 4.18 Consider the Willshaw model with patterns such that ξµj , µ ≥ 1, j ≤
N , are independent and identically distributed. Assume that in the model with WTA
dynamics using S̄(1) a number of M = αN2/(logN)2 patterns has been stored. Then for
α < − log(1− e−1) and for any fixed µ

lim
N→∞

P (∀i ≤ N : Ti(ξ
µ) = ξµi ) = 1.

This bound is sharp: for α > − log(1− e−1) and any fixed µ, we have

lim
N→∞

P (∃i ≤ N : Ti(ξ
µ) 6= ξµi ) = 1.

If % logN , 0 ≤ % < 1 of the initially activated neurons of message ξµ have been erased at
random to obtain ξ̃µ, we have for α < − log(1− e−1/(1−%)) and any fixed µ:

lim
N→∞

P
(
∀i ≤ N : Ti(ξ̃

µ) = ξµi

)
= 1.

Again, this bound is sharp: For α > − log(1− e−1/(1−%)) we have for any fixed µ

lim
N→∞

P
(
∃i ≤ N : Ti(ξ̃

µ) 6= ξµi

)
= 1.
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4.3 Capacity and Error Correction of the Willshaw Model with WTA Dynamics

Proof of Theorem 4.18: We just prove the second part of the theorem. By setting f
to 0, we obtain the first part. We again assume that k neurons in the message ξ1 are
active, with k/ log(N) ∈ (1− δ, 1 + δ) for some small δ > 0, and that ξ1

i = 1 for i ≤ k and
ξ1
i = 0 for i ≥ k + 1.

Assume that f of the k active neurons are erased. Let ξ̃1 ∈ {0, 1}N be the version of
ξ1 corrupted in the way that ξ̃1

i = 1 for i ≤ k − f and ξ̃1
i = 0 for i ≥ k − f + 1. The S̄i

are bounded by

S̄i(ξ̃
1) =

k−f∑
j=1

Jij ≤ k − f,

but the activated neurons of ξ1 have positive synaptic efficacies among them coming from
their common activation in ξ1, so

S̄i(ξ̃
1) = k − f, i ≤ k.

The value of S̄(1) is thus equal to k − f and therefore Ti(ξ̃1) = ξ1
i for each i ≤ k.

Obviously, we have T (ξ̃1) 6= ξ1 if there exists some i ≥ k + 1, such that neuron i also
attains k−f signals, which is possible if and only if the synaptic efficacies between neuron
i and each of the k − f activated neurons is 1.

Lemma 4.8 can be modified to an arbitrary subset of the activated neurons of ξ1,
e. g., {1, . . . , k − f}. The probability that a fixed neuron i, i > k, has non-zero synaptic
efficacies with every of the first k − f neurons is then

P

(
k−f∑
j=1

J̄ij = k − f

)
= (1− e−α)k−f [1 + o(1)] .

This can be used to bound

P

(
∃i ≥ k + 1 :

k−f∑
j=1

J̄ij = k − f

)
≤N(1− e−α)k−f [1 + o(1)]

= exp
[
log(N) + (k − f) log(1− e−α)

]
[1 + o(1)] .

Taking the maximum over all k ∈ N such that k/ log(N) ∈ (1− δ, 1 + δ) yields

P
(
∃i ≤ N : ξ1

i = 0, Ti(ξ̃
1) = 1

)
≤ max

k∈N:k/ log(N)∈(1−δ,1+δ)
P
(
∃i > k : Ti(ξ̃

1) = 1|Zk
)

+ P(Acδ)

≤ exp
[
log(N) + (1− δ − %) log(N) log(1− e−α)

]
[1 + o(1)] + P(Acδ).

This tends to 0 if

(1− δ − %) log(1− e−α) < −1, i.e. α < − log
(
1− e−1/(1−δ−%)

)
.
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4 The Willshaw Model

Let α < − log
(
1− e−1/(1−%)

)
. Then, due to the fact that P(Aδ) → 1 and by choosing δ

such that (1− δ − %) log(1− e−α) < −1, we obtain

P
[
∃i ≤ N : Ti

(
ξ̃1
)
6= ξ1

i

]
→ 0

as desired.
It remains to prove the reverse bound on the storage capacity. We assume that M ≥

αN2/ log(N)2 for some α > − log(1− e−1/(1−%)). To show that there will be an error with
high probability, the proof of the corresponding part of Theorem 4.9 can almost literally
be repeated. There are only two differences:

1. If f 6= 0, it suffices to condition on a realisation of the variables ξµi , µ ∈ {1, . . . ,M},
i ≤ k − f , instead of i ≤ k; the corresponding events change to B̄δ(k − f) and
B̂δ(k − f), respectively. The probability of B̄δ(k − f) tends, of course, also to 1, as
it is included in B̄δ(k). The minimum of the conditional probabilities is attained on
B̂δ(k − f).

2. After having stated that

∑
j≤k−f

Θ

(
M∑
µ=2

ξµi ξ
µ
j − 1

)
≥
∑
j≤k−f

Θ

(
M∑
µ=2

1{
∑
j≤k−f ξ

µ
j =1}ξ

µ
i ξ

µ
j − 1

)
,

it suffices to compute the probability in (4.7) and (4.8) for m = k − f :

P

[ ∑
j≤k−f

Θ

(
M∑
µ=2

1{
∑
j≤k−f ξ

µ
j =1}ξ

µ
i ξ

µ
j − 1

)
= k − f

∣∣∣B̂δ(k − f)

]
=
[
1− e−α(1−δ)]k−f [1 + o(1)] .

We obtain

P
(
∃i ≤ N : Ti(ξ̃

1) 6= ξ1
i

)
≥P(Aδ) min

k/ log(N)∈
(1−δ,1+δ)

[
1− P

(
B̄δ(k − f)c

)
−
(

1−
[
1− e−α(1−δ)]k−f [1 + o(1)]

)N−k]

This converges to 1 if

(1− δ − %) log
[
1− e−α(1−δ)] > −1. (4.15)

We consider an α with
α > − log

(
1− e−1/(1−%)

)
;

obviously δ can be chosen small enough such that (4.15) holds and thus the probability
converges to 1. This finishes the proof.

�
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4.3 Capacity and Error Correction of the Willshaw Model with WTA Dynamics

Proposition 4.19 The results concerning the one-step retrieval of the WTA dynamics
using S̄(1) obtained in this section are also valid if the stored messages contain exactly c
active neurons and either S̄(1) or S̄(c) is used: for a fixed stored pattern ξµ, stability is
reached if α < − log (1− e−1) and a partially erased pattern, with %c erased neurons, is
corrected in one step, if α < − log(1− e−1/(1−%)). Both bounds are sharp.

Proof: Take a stored pattern ξµ and assume that f (possibly f = 0) of the c active
neurons have been deactivated. The pattern ξµ is not recovered in the first step if and
only if there is a neuron not belonging to the pattern that is linked by active edges to each
one of the active neurons of ξ̃µ. To prove that the bounds coincide, we refer to the proof
of Theorem 4.13. The difference to this proof is that we are interested in the probability
that none or at least one, respectively, of the neurons not belonging to ξµ is connected by
an active edge to every one of the c − f activated neurons of ξµ or ξ̃µ, instead of to at
least γc of them.

�

Remark 4.20 Both dynamics used in the Willshaw model allow to reach a better capacity
than Amari’s model and the Ternary simple model.

If we are only interested in the stability of stored patterns, we set γ / 1 and see that
the threshold dynamics is as efficient as the WTA algorithm. But as soon as we analyse
the error correcting abilities of the network, we see that the WTA algorithm outperforms
the threshold dynamics and reaches explicitly better values. To correct % log(N) deleted
neurons, some γ < 1−% must be used, and the critical capacity variable in dependence on
γ is smaller than − log(1 − e−1/(1−%)). However, this comparison is not fair because the
WTA algorithm uses the information of all local fields to update a fixed neuron, whereas
the threshold algorithm only needs the information of the local field of the concerned to
update it.

The Willshaw model with WTA dynamics is also able to correct patterns with spuriously
activated neurons:

Proposition 4.21 In all versions of the Willshaw model with WTA dynamics (i.i.d. spins
or patterns with exactly c activated neurons; dynamics using h = S̄(1) or S̄(c)), a corrupted
version of ξµ can be corrected in one step if

1. %2c additional neurons are spuriously activated and α < − log(1− 1/(1 + %2)),

− 1

1 + %2

log

(
1

(1 + %2)(1− e−α)

)
+

(
1− 1

1 + %2

)
log

(
e−α

1− 1
1+%2

)
< −1

or if
2. %1c neurons of ξµ have been deleted, %2c ones are spuriously activated and α <

− log(1− %1/(1− %1 + %2)),

− 1− %1

1− %1 + %2

log

(
1− %1

(1− %1 + %2)(1− e−α)

)
+

[
1− 1− %1

1− %1 + %2

]
log

(
e−α

1− 1−%1
1−%1+%2

)
< −1.
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4 The Willshaw Model

Proof: The proofs concerning the i.i.d. spins and the patterns with exactly c activated
neurons are very similar. We prove the proposition for the second version; in the first
version it is necessary to take Aδ into account, but the result is not changed.

In both dynamics, the messages are corrected in one step, if none of the neurons not
belonging to ξµ gets more signals than the neurons of ξµ. In the first case, the correct
neurons get at least c signals, in the second case at least (1 − %1)c signals. Analogously
to the proofs of Lemma 4.8 and of Theorem 4.9, we see that for an arbitrary neuron not
belonging to ξµ, the number of incoming signals is asymptotically Binomially distributed
with parameters 1 − e−α and (1 + %2)c and (1 − %1 + %2)c, respectively. This yields the
statement of the proposition.

�

Theorem 4.22 In the Willshaw model with exactly c activated neurons per message and
WTA dynamics using either S̄(1) or S̄(c), all patterns are stable with high probability, if

α < − log
(
1− e−3

)
.

Proof: In each message, there are exactly c activated neurons. The pattern ξµ is not
stable if there is at least one neuron not belonging to ξµ that is connected by active
edges to each of its activated neurons. We consider ξ1 and can proceed as in the proof of
Theorem 4.13 or alternatively modify the proof of Lemma 4.8: the distribution of X (i)
remains the same as in the model with i.i.d. spins (Binomial with parameters c/N and
M − 1), and for each B ⊆ {2, . . . ,M − 1},

P
[
∀j ≤ c : J̄ij = 1

∣∣∣X (i) = B
]

is in the model with exactly c active neurons per message upper bounded by

P
[
J̄i1 = 1

∣∣∣X (i) = B
]c
,

because the J̄ij = Θ(
∑M

µ=2 ξ
µ
i ξ

µ
j − 1), j ≤ c, are for each (xµ)2≤µ≤M ∈ {0, 1}M−1 condi-

tionally negatively associated on {(ξµi )2≤µ≤M = (xµ)2≤µ≤M}. We are then in the situation
of the proof of Lemma 4.8 and only need to replace p by c−1

N−1
in the rest of the proof; this

does not change the result. This yields, for i > c,

P
[
∀j ≤ c : J̄ij = 1

]
≤ (1− e−α)c(1 + o(1)).

So

P (∃µ ≤M : ∃i ≤ N : Ti(ξ
µ) 6= ξµi )

≤MN
(
1− e−α

)c
(1 + o(1)) ≤ exp

[
3 log(N) + c log(1− e−α)

]
(1 + o(1)).

This immediately yields the statement of the theorem.

�
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4.3 Capacity and Error Correction of the Willshaw Model with WTA Dynamics

Finally, with the help of the first section of this chapter, we can shortly analyse the
behaviour of the dynamics concerning the mutiple step retrieval.

Proposition 4.23 In the Willshaw model with either independent and identically dis-
tributed spins or exactly c activated neurons per stored message and the WTA dynamics
with h = S̄(1), suppose that the input is a partially erased version of a stored pattern
with %c deleted spins. Then the pattern is corrected if and only if it is corrected in one
step. In particular, the bounds on α derived in Theorem 4.18 are also sharp concerning
the retrieval process involving multiple steps: if α < − log(1 − e−1/(1−%)), the message is
corrected (in one step); if α > − log(1 − e−1/(1−%)), the dynamics does never converge to
the correct pattern (both with high probability).

In the second version, using S̄(c), the pattern is corrected with high probability, if α <
− log(1− e−1/(1−%)). If it is not corrected in the first step, it can benefit from further steps
of the dynamics.

Proof: We showed in the first section of this chapter that the dynamics using the variable
threshold h = S̄(1) either converges in the first step or does not converge. This shows that
the sharp bounds derived concerning the one-step retrieval are also valid for the multiple-
step retrieval.

Since the first step of S̄(c) coincides with the first step of S̄(1), the dynamics S̄(c)

converges in the first step if α < − log(1− e−1/(1−%)).

�
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5 The Sparse Blume-Emery-Griffiths
Model

The model analysed in this chapter is called Blume-Emery-Griffiths model (Blume, Emery
and Griffiths, [7]). It uses a ternary state space and has been introduced by Blume, Emery
and Griffiths as a three-state spin glass model to study phase separation of liquid He3-He4

mixtures. The model has been analysed by Löwe and Vermet in [31] for fixed activity p
not depending on the size of the network. They showed the existence of lower bounds on
the capacity; these bounds are decreasing with the activity p.

Again, we consider a neural network of N neurons, N ∈ N, V = {1, . . . , N}. The state
space of the neurons is the set S = {−1, 0, 1} and the edge set is E = {{i, j} : i, j ∈ V, i 6=
j}. The setup is firstly the same as in the Ternary simple threshold network: M patterns
ξµ ∈ {−1, 0, 1}N , 1 ≤ µ ≤ M , whose values are indicated by the random variables ξµj ,
1 ≤ j ≤ N , 1 ≤ µ ≤ M , are stored. The (ξµj , 1 ≤ µ ≤ M, 1 ≤ j ≤ N) are independent
and identically distributed, such that

P(ξµj = 0) = 1− pN = 1− log(N)

N
,

P(ξµj = ±1) =
1

2
pN =

log(N)

2N
.

We will omit the index and write p instead of pN but have in mind that p depends on N .
The information of the stored patterns is processed in two expressions: on the one hand,
in

Jij :=
M∑
µ=1

ξµi ξ
µ
j , i 6= j, i, j ∈ {1, . . . , N}

and on the other hand, in

Kij :=
1

(1− p)2

M∑
µ=1

ηµi η
µ
j , i 6= j, i, j ∈ {1, . . . , N}

with
ηµi := (ξµi )2 − p.

This distinguishs this model from the previous models where only Jij is built. The Kij are
an indicator of common activation in a pattern: stored messages in which both neurons i
and j are active or inactive have a positive impact, messages where one neuron is active
and the other one is inactive have a negative impact. Given a pattern σ ∈ {−1, 0, 1}N ,
the local field is again given by

Si(σ) :=
∑
j 6=i

Jijσj =
∑
j 6=i

M∑
µ=1

ξµi ξ
µ
j σj;
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5 The Sparse Blume-Emery-Griffiths Model

additionally, the function
θi(σ) :=

∑
j 6=i

Kijσ
2
j

is defined.
The dynamics originally used in the Blume-Emery-Griffiths model in [31] is the dy-

namics T̃ : given a pattern σ ∈ {−1, 0, 1}N , it assigns to neuron i the new spin

T̃i(σ) := sgn (Si(σ)) Θ
(∣∣Si(σ)

∣∣+ θi(σ)
)
.

The Heaviside function Θ is again defined by Θ(x) = 1[0,∞)(x). A randomly chosen pattern
has, in expectation, log(N) non-zero values (out of the total number of N neurons); this
is why we will call it the sparse Blume-Emery-Griffiths model (BEG model, for short). As
we will see, the model as defined so far is outperformed by the Ternary simple threshold
model of Chapter 3, if we do not adapt it to the sparsity. The new dynamics is of a similar
form, including additionally a threshold term: the i−th component of T assigns to neuron
i the value

Ti(σ) := sgn (Si(σ)) Θ
(∣∣Si(σ)

∣∣+ θi(σ)− γ log(N)
)
.

We can show that we obtain stability of an arbitrary stored pattern with high probability,
if T and a suitable α are used, with the best maximal capacity of the four models analysed
so far.

5.1 Stability of the Stored Patterns in the Original
BEG Model

The BEG model in the extremely sparse version with pN = log(N)/N depending on N
first provides a remarkably worse capacity than the Ternary simple threshold model and
Amari’s model: ifM = αN2/ log(N)2 messages are stored, a randomly chosen message ξµ
is not stable with positive probability not converging to zero. In fact, a randomly chosen
inactive neuron of ξµ is mapped to a non-zero value with positive probability.

The BEG model does thus not work as sparse version with this grade of sparsity
without being modified.

Proposition 5.1 In the original BEG model with activity p = log(N)/N and M =
αN2/ log(N)2 stored patterns, the stored patterns are instable with positive probability:
that is,

lim inf
N→∞

P
(
T̃ (ξµ) 6= ξµ

)
> 0

for a fixed but arbitrary 1 ≤ µ ≤M .

Proof: We consider message ξ1 and consider without loss of generality the case where ξ1

consists of k active neurons which are the first neurons 1, . . . , k. The corresponding event
is denoted by Zk. It suffices to show that at least one of the inactive neurons is activated
with non-vanishing probability. In fact, this is even true for an arbitrary neuron i, i > k.
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To see this, we observe that an inactive neuron i > k is mapped to a non-zero value if
the Heaviside-function of |Si(ξ1)|+ θi is 1: this happens if

|Si(ξ1)|+ θi(ξ
1) ≥ 0

which is equivalent to

∣∣∣ M∑
µ=1

∑
j 6=i

ξ1
j ξ
µ
i ξ

µ
j

∣∣∣ ≥ − 1

(1− p)2

M∑
µ=1

∑
j 6=i

(
ξ1
j

)2
ηµi η

µ
j .

We will now show that with positive, non-vanishing probability,

− 1

(1− p)2

M∑
µ=1

∑
j 6=i

(
ξ1
j

)2
ηµi η

µ
j < 0 (5.1)

which implies Θ(|Si(ξ1)|+ θi(ξ
1)) = 1.

To analyse the left hand side of (5.1), we first insert the values for µ = 1, assuming
that exactly the first k neurons in ξ1 are activated:

− 1

(1− p)2

M∑
µ=1

∑
j 6=i

(
ξ1
j

)2
ηµi η

µ
j =

kp

1− p
− 1

(1− p)2

M∑
µ=2

∑
j≤k

ηµi η
µ
j

which is negative if

kp(1− p) <
M∑
µ=2

∑
j≤k

ηµi η
µ
j . (5.2)

The left hand side of (5.2) is smaller than 1, if k ≤ (1 + δ) log(N). Since

P(Aδ) = P

(
(1− δ) log(N) <

N∑
j=1

|ξ1
j | < (1 + δ) log(N)

)
−→ 1

as N tends to infinity, it suffices to show that

lim inf
N→∞

min
k∈N:k/ log(N)
∈(1−δ,1+δ)

P
[
∃i > k : T̃i(ξ

1) 6= 0|Zk
]
≥ lim inf

N→∞
min

k∈N:k/ log(N)
∈(1−δ,1+δ)

P
[
T̃N(ξ1) 6= 0|Zk

]

≥ lim inf
N→∞

min
k∈N:k/ log(N)
∈(1−δ,1+δ)

P

(
M∑
µ=2

∑
j≤k

ηµNη
µ
j ≥ 1

)
(5.3)

is positive. To shorten the expressions, we denote by U(N) the random variable

U(N) :=
M∑
µ=2

|ξµN | ∼ Bin(M − 1, p).
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U(N) is Binomially distributed with parameters M − 1 = α N2

log(N)2
− 1 and p. Without

loss of generality, we replace M − 1 by M to obtain a better readability. This does not
change the result. Again, using the Chebyshev inequality, we obtain

P
(

(1− δ)Nα
log(N)

< U(N) <
(1 + δ)Nα

log(N)

)
−→ 1

for each δ > 0 as N tends to infinity. We again call the set{
U(N) log(N)

Nα
∈ (1− δ, 1 + δ)

}
=: Bδ(N).

It then suffices to consider the set Bδ(N): we observe

P

(
M∑
µ=2

∑
j≤k

ηµNη
µ
j ≥ 1

)
≥ P(Bδ(N)) min

m∈N:m log(N)/
(Nα)∈(1−δ,1+δ)

P

[
M∑
µ=2

∑
j≤k

ηµNη
µ
j ≥ 1

∣∣∣U(N) = m

]
.

Now, for neuron N , we define the following two random variables, depending on k:

V (k,N) :=
∑

µ:|ξµN |=1

k∑
j=1

|ξµj |

and

W (k,N) :=
∑

µ:|ξµN |=0

k∑
j=1

|ξµj |.

We fix k and omit the reference to the dependence on N and k in the next computation
in order to write V , W and U instead. The sum in (5.3) is transformed into

M∑
µ=2

k∑
j=1

ηµNη
µ
j =

∑
µ:|ξµN |=1

k∑
j=1

(1− p)ηµj +
∑

µ:|ξµN |=0

k∑
j=1

(−p)ηµj

=V (1− p)2 + (Uk − V )(−p)(1− p) +W (1− p)(−p) + ((M − U)k −W ) p2

=V − V p− Ukp−Wp+Mp2k = V − V p− Ukp−Wp+ αk. (5.4)

Assume that U(N) = m. Then V (k,N) is Binomially distributed with parameters km
and p. We can use the Berry-Esseen-bound:

Lemma 5.2 (Berry-Esseen) [6],[15] Let X1, X2 . . . be independent and identically dis-
tributed random variables with

E(X1) = 0, E(X2
1 ) = σ2 > 0, E(|X1|3) <∞.

Then there is a constant C > 0 such that for all n ∈ N, denoting by Φ the distribution
function of the Standard Normal distribution,

sup
x∈R

∣∣∣∣∣P
(∑n

i=1Xi√
σ2n

≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ CE(|X1|3)

σ3
√
n

.
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This yields∣∣∣∣∣P
(
V (k,N)− kmp√

p(1− p)km
≤ b
∣∣∣U(N) = m

)
− Φ(b)

∣∣∣∣∣ ≤ Cp(1− p) ((1− p)2 + p2)

p(1− p)
√
p(1− p)km

.

For k,m of the considered sets, i.e. fulfilling

|k − log(N)| ≤ δ log(N), |m− αN/ log(N)| ≤ δαN/ log(N),

the right hand side is at most equal to

Cp(1− p) ((1− p)2 + p2)

p(1− p)
√
p(1− p)km

≤ C ((1− p)2 + p2)√
(1− p)α(1− δ)2 log(N)

and therefore vanishing as N tends to infinity. In particular, this implies

P
(
V (k,N) ∈

(
kmp+ 0.1

√
kmp(1− p), kmp+ 3

√
kmp(1− p)

) ∣∣U(N) = m
)

≥Φ(3)− Φ(0.1)− 2C
1− 2p+ 2p2√

(1− p)α(1− δ)2 log(N)

for the choice of k and m made above.
The same argumentation holds for W (k,N) – conditionally on {U(N) = m}, W (k,N)

is Binomially distributed with parameters (M−1−m)k and p. Without loss of generality,
we again replace (M − 1−m)k by (M −m)k for a better readability. The Berry Esseen
bound is in this case∣∣∣∣∣P

(
W (k,N)− (M −m)kp√

p(1− p)(M −m)k
≤ b
∣∣∣U(N) = m

)
− Φ(b)

∣∣∣∣∣ ≤ Cp(1− p) ((1− p)2 + p2)√
p3(1− p)3(M −m)k

and this also tends to 0 for our choice of k and m. We conclude

P
(
W (k,N) ∈

(
(M −m)kp− 3

√
(M −m)kp(1− p), (M −m)kp−

0.1
√

(M −m)kp(1− p)
∣∣∣U(N) = m

)
≥Φ(−0.1)− Φ(−3)− 2C

1− 2p+ 2p2√
log(N)(1− δ)α(1− p)[N/ log(N)− 1− δ]

.

We will see that for an arbitrary but fixed choice of k and m, such that k and m are
chosen as described above, and with

F (k,m,N) :=
{
V (k,N) ∈

(
kmp+ 0.1

√
kmp(1− p), kmp+ 3

√
kmp(1− p)

)}
and

G(k,m,N) :=
{
W (k,N) ∈

(
(M −m)kp− 3

√
(M −m)kp(1− p),

(M −m)kp− 0.1
√

(M −m)kp(1− p)
)}
,
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we have

{U(N) = m} ∩
{ M∑
µ=2

∑
j≤k

ηµNη
µ
j ≥ 1

}
⊇ {U(N) = m} ∩ F (k,m,N) ∩G(k,m,N).

This yields

lim inf
N→∞

P
(
∃i ≤ N : ξ1

i = 0, Ti(ξ
1) 6= 0

)
≥ lim inf

N→∞
P(Aδ)P(Bδ(N)) min

k,m∈N:k/ log(N),
m log(N)/(αN)∈(1−δ,1+δ)

P

[
M∑
µ=2

∑
j≤k

ηµNη
µ
j ≥ 1

∣∣∣U(N) = m

]

≥ lim inf
N→∞

P(Aδ)P(Bδ(N)) min
k,m∈N:k/ log(N),

m log(N)/(αN)∈(1−δ,1+δ)

P
[
F (k,m,N) ∩G(k,m,N)

∣∣∣U(N) = m
]

>0.

To show the precedent claim, we write

U(N) = m = ρ2αN/ log(N), k = ρ1 log(N),

with ρ1, ρ2 ∈ (1− δ, 1 + δ), as well as

V (k,N) = ρ1ρ2α log(N) + ρ3

√
ρ1ρ2α log(N)(1− p)

and
W (k,N) = αρ1 [N − ρ2 log(N)]− ρ4

√
αρ1 [N − ρ2 log(N)] (1− p)

ρ3, ρ4 ∈ (0.1, 3). Recalling the last term of (5.4), we transform

V (k,N)− V (k,N)p− U(N)kp−W (k,N)p+ αk

=ρ3

√
ρ1ρ2α log(N)(1− p)− log(N)2

N
ρ1ρ2α− ρ3

log(N)

N

√
ρ1ρ2α log(N)(1− p)

− αρ1 log(N) +
log(N)2

N
ρ1ρ2α +

log(N)

N
ρ4

√
αρ1 [N − ρ2 log(N)] (1− p) + αρ1 log(N)

=ρ3

√
ρ1ρ2α log(N)(1− p) +O

(
log(N)√

N

)
≥ 1

if N is large enough.
Consequently, with positive probability not converging to zero, a randomly chosen

inactive neuron of message ξ1 is turned into a 1 or a -1 and ξ1 is not a fixed point of the
dynamics.

�

Remark 5.3 The sparsity of the model poses problems in the original version. For a
stored pattern used as input and an inactive neuron i of the pattern, the negative signal
term in θi (the part of θi coming from the stored pattern itself) is too small: on the one
hand, there are only a few active neurons, on the other hand, p is very small and the
resulting threshold can easily be exceeded by the noise term of θi.
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5.2 Stability and Error Correction in the Sparsity
Adopted BEG Model

To adopt the dynamics of the BEG model to the sparsity of the patterns, we add a
threshold and change the dynamics slightly into

Ti(σ) := sgn (Si(σ)) Θ
(∣∣Si(σ)

∣∣+ θi(σ)− γ log(N)
)

with the functions defined at the beginning of the chapter. This adoption now allows to
store up to M = αN2/ log(N)2 patterns such that an arbitrary one is stable with high
probability if α is appropriately chosen and N tends to infinity:

Theorem 5.4 In the BEG network with activity p = log(N)/N, the dynamics T =
(T1, . . . , TN), defined by

Ti(σ) := sgn (Si(σ)) Θ
(∣∣Si(σ)

∣∣+ θi(σ)− γ log(N)
)
,

provides
lim
N→∞

P (∃i ≤ N : Ti(ξ
µ) 6= ξµi ) = 0

for any arbitrary but fixed µ, if the following conditions are fulfilled:

0 < γ < 2

and
α <

γ

x∗γ − 1

with the unique root x∗γ in (1,∞) of the function

gγ(x) := x

(
1 +

2

γ
− log(x)

)
− 1− 2

γ
.

This bound is sharp: if
α >

γ

x∗γ − 1
,

an arbitrary stored pattern is instable with high probability:

lim
N→∞

P (∃i ≤ N : Ti(ξ
µ) 6= ξµi ) = 1.

Proof of Theorem 5.4: Without loss of generality, we consider message ξ1. First, we
observe that there are two principal types of errors which can occur, namely:

• a 0 is turned into a 1 or to a -1

• a non-zero spin is turned to a 0 or multiplied by (-1).
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Figure 5.1: Critical capacity variable α∗(γ) = γ/(x∗γ − 1) in dependence on the threshold
variable γ for the BEG model

To begin with the proof, keeping the notation of the previous chapters, we recall that we
can estimate

P
(
∃i ≤ N : Ti(ξ

1) 6= ξ1
i

)
≤P(Aδ) max

k∈N:k/ log(N)
∈(1−δ,1+δ)

P
(
∃i ≤ N : Ti(ξ

1) 6= ξ1
i |Zk

)
+ P(Acδ).

The probability P(Acδ) tends to 0 and it suffices to examine the conditional probabilities,
given Zk, for k belonging to the set mentioned above.

We begin with the analysis of the first kind of error: to this purpose, we fix k and take
some i ≥ k + 1, e. g., i = k + 1. An error in this place occurs if |Sk+1(ξ1)| + θk+1(ξ1) −
γ log(N) ≥ 0, i.e., if∣∣∣∣∣ ∑

j 6=k+1

M∑
µ=1

ξ1
j ξ
µ
k+1ξ

µ
j

∣∣∣∣∣ ≥ − 1

(1− p)2

∑
j 6=k+1

(
ξ1
j

)2
M∑
µ=1

ηµk+1η
µ
j + γ log(N). (5.5)
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Since we consider i = k+1 and Zk, i.e., ξ1
k+1 = 0 and additionally ξ1

j = 0 for j > k+1,
the left hand side of (5.5) is equal to∣∣∣∣∣ ∑

j 6=k+1

M∑
µ=1

ξ1
j ξ
µ
k+1ξ

µ
j

∣∣∣∣∣ =

∣∣∣∣∣ ∑
j 6=k+1

ξ1
j ξ

1
j ξ

1
k+1 +

k∑
j=1

M∑
µ=2

ξ1
j ξ
µ
k+1ξ

µ
j

∣∣∣∣∣ =

∣∣∣∣∣
k∑
j=1

M∑
µ=2

ξ1
j ξ
µ
k+1ξ

µ
j

∣∣∣∣∣.
We multiply the random part of the term on the right-hand side of (5.5) by (1− p)2 and
observe that

−
∑
j 6=k+1

(
ξ1
j

)2
M∑
µ=1

ηµk+1η
µ
j = −

k∑
j=1

[
η1
k+1η

1
j +

M∑
µ=2

ηµk+1η
µ
j

]

=−
k∑
j=1

[
(−p) (1− p) +

M∑
µ=2

ηµk+1η
µ
j

]
= kp(1− p)−

k∑
j=1

M∑
µ=2

ηµk+1η
µ
j .

After these transformations, the inequality (5.5) becomes∣∣∣∣∣
k∑
j=1

M∑
µ=2

ξ1
j ξ
µ
k+1ξ

µ
j

∣∣∣∣∣ > kp

(1− p)
− 1

(1− p)2

k∑
j=1

M∑
µ=2

ηµk+1η
µ
j + γ log(N).

This is either fulfilled if

k∑
j=1

M∑
µ=2

[
ξ1
j ξ
µ
k+1ξ

µ
j +

1

(1− p)2
ηµk+1η

µ
j

]
>

kp

(1− p)
+ γ log(N)

or if
k∑
j=1

M∑
µ=2

[
−ξ1

j ξ
µ
k+1ξ

µ
j +

1

(1− p)2
ηµk+1η

µ
j

]
>

kp

(1− p)
+ γ log(N).

We recall that for independent and identically distributed random variables Z1, Z2, Z3 such
that P(Z1 = 1) = P(Z1 = −1) = 1

2
, the events {Z1Z2Z3 = x3} and {Z1 = x1, Z2 = x2} are

independent for each choice of x1, x2, x3 ∈ {−1, 1}. The same is true for {Z1Z2Z3 = x3}
and {Z1 = x1} for arbitrary x1, x3 ∈ {−1, 1} as well as for {Z1Z2 = x2} and {Z1 = x1}
for arbitrary x1, x2 ∈ {−1, 1}. In particular, the conditional distribution of Z1Z2Z3 with
respect to an arbitrary realisation of Z1Z2 is the same as the distribution of Z3.

So for fixed i, the conditional distribution of ξ1
j′ξ

µ
i ξ

µ
j′ , for j

′ 6= i, given ξ1
j , 1 ≤ j ≤ N ,

is

P
(
ξ1
j′ξ

µ
i ξ

µ
j′ = ±1

∣∣ ξ1
j , j ≤ N

)
=
p2

2
|ξ1
j′|, P

(
ξ1
j′ξ

µ
i ξ

µ
j′ = 0

∣∣ ξ1
j , j ≤ N

)
= 1− |ξ1

j′|p2

which is the distribution of ξµi ξ
µ
j′ , if |ξ1

j′ | = 1. Given an arbitrary realisation of ξ1
j , j ≤ N ,

and for fixed i, the

(ξ1
j ξ
µ
i ξ

µ
j , j 6= i, µ ≥ 2) and (|ξ1

j |ξ
µ
i ξ

µ
j , j 6= i, µ ≥ 2)
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are identically distributed and we can conclude that conditional on Zk, the sum∑N
j 6=i
∑M

µ=2 ξ
1
j ξ
µ
i ξ

µ
j has the same distribution as

k∑
j 6=i

M∑
µ=2

ξµi ξ
µ
j .

In addition, conditional on Zk, we have for some arbitrary i

N∑
j=1,j 6=i

M∑
µ=2

ξ1
j ξ
µ
i ξ

µ
j +

1

(1− p)2

(
ξ1
j

)2
ηµi η

µ
j ∼

∑
j≤k,j 6=i

M∑
µ=2

ξµi ξ
µ
j +

1

(1− p)2
ηµi η

µ
j

and ∑
j≤k,j 6=i

M∑
µ=2

ξµi ξ
µ
j +

1

(1− p)2
ηµi η

µ
j ∼

∑
j≤k,j 6=i

M∑
µ=2

−ξµi ξ
µ
j +

1

(1− p)2
ηµi η

µ
j ,

because the sums
N∑

j=1,j 6=i

M∑
µ=2

(
ξ1
j

)2
ηµi η

µ
j ,

k∑
j=1,j 6=i

M∑
µ=2

ηµi η
µ
j

are measurable with respect to |ξµj |, 1 ≤ j ≤ N , 1 ≤ µ ≤M and the sums

N∑
j=1,j 6=i

M∑
µ=2

ξ1
j ξ
µ
i ξ

µ
j ,

k∑
j=1,j 6=i

M∑
µ=2

ξµi ξ
µ
j

are symmetrically distributed with respect to these random variables. We obtain for the
inactive neurons of ξ1:

P
[
∃i ≥ k + 1 : Ti(ξ

1) 6= 0|Zk
]

≤NP
[
Tk+1(ξ1) 6= 0|Zk

]
≤ 2NP

[∑
j≤k

M∑
µ=2

ξµk+1ξ
µ
j +

1

(1− p)2
ηµk+1η

µ
j >

kp

1− p
+ γ log(N)

]
.

In the last line, we used the previous considerations. With the intention to give an upper
bound on this probability, we use the exponential Chebyshev inequality: for t > 0,

P

[∑
j≤k

M∑
µ=2

ξµk+1ξ
µ
j +

1

(1− p)2
ηµk+1η

µ
j >

kp

1− p
+ γ log(N)

]

≤ exp

[
−t
(

kp

1− p
+ γ log(N)

)]
E

[
exp

(
t
∑
j≤k

M∑
µ=2

ξµk+1ξ
µ
j +

1

(1− p)2
ηµk+1η

µ
j

)]
.

The M messages are independent: this yields

E

[
exp

(
t
∑
j≤k

M∑
µ=2

ξµk+1ξ
µ
j +

1

(1− p)2
ηµk+1η

µ
j

)]
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=E

[
exp

(
t
∑
j≤k

ξMk+1ξ
M
j +

1

(1− p)2
ηMk+1η

M
j

)]M−1

=

[
(1− p) ·

[
(1− p)et

p2

(1−p)2 + pe−t
p

1−p

]k
+ p ·

[
(1− p)e−t

p
1−p +

1

2
pe2t +

1

2
p

]k]M−1

.

Remembering the argumentation at the beginning of the proof, it is enough to analyse
the conditional probability for each k ∈ N satisfying k/ log(N) ∈ (1 − δ, 1 + δ). We use
the series representation of the exponential function in combination with the Binomial
formula, for t not depending on N :[

(1− p) ·
(

(1− p)et
p2

(1−p)2 + pe−t
p

1−p

)k
+ p ·

(
(1− p)e−t

p
1−p +

1

2
pe2t +

1

2
p

)k]M−1

=

[
(1− p)

[
(1− p)

(
1 +

tp2

(1− p)2
+O(p4)

)
+ p

(
1− tp

1− p
+O(p2)

)]k

+p

[
(1− p)

(
1− tp

1− p
+O(p2)

)
+

1

2
pe2t +

1

2
p

]k]M−1

=

[
(1− p)

[
1 +O(p3)

]k
+ p

[
1− tp

1− p
− 1

2
p+

1

2
pe2t +O(p2)

]k]M−1

=

[
1 + kp2

(
1

2
e2t − 1

2
− t

1− p

)
+O(p3k2)

]M−1

≤ exp

[
kα

(
1

2
e2t − 1

2
− t

1− p

)
+O

(
Mp3k2

)]
= exp

[
kα

(
1

2
e2t − 1

2
− t
)

+O
(
pk2
)]
.

(5.6)
In the last steps we used the inequality 1 + x ≤ ex for each x ∈ R as well as the number
of stored patterns M = αN2/ log(N)2.

In combination with the previous steps of the proof, the following conditional proba-
bility is at most

P
(
∃i ≥ k + 1 : Ti(ξ

1) 6= 0|Zk
)

≤ exp

(
log(N) + log(2)− tkp

1− p
− tγ log(N) + kα

(
1

2
e2t − 1

2
− t
))(

1 +O
(
pk2
))
.

Since we conditioned on Aδ, the second line must vanish for each k such that k/ log(N) ∈
(1 − δ, 1 + δ). Anticipating that the variable t will not depend on N and assuming that
k = ρ log(N) for some ρ ∈ (1− δ, 1 + δ), the exponent is equal to

log(N)− tγ log(N) + ρ log(N)α

(
1

2
e2t − 1

2
− t
)

+ o(log(N)). (5.7)

Convergence to zero of P (∃i ≤ N : ξ1
i = 0, Ti(ξ

1) 6= 0) is reached if there is for each ρ ∈
(1− δ, 1 + δ) some tα,γ,ρ > 0 depending on ρ, γ and α such that

hα,γ,ρ(tα,γ,ρ) := −tα,γ,ργ + ρα

(
1

2
e2tα,γ,ρ − 1

2
− tα,γ,ρ

)
< −1.
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Using the global minimum of hα,γ,ρ,

t∗α,γ,ρ :=
1

2
log

(
1 +

γ

ρα

)
, t∗α,γ,ρ > 0

the dominant term in (5.7) is equal to

log(N)− t∗α,γ,ργ log(N) + ρ log(N)α

(
1

2
e2t∗α,γ,ρ − 1

2
− t∗α,γ,ρ

)
= log(N)

[
1− γ 1

2
log

(
1 +

γ

ρα

)
+

1

2
ρα

(
1 +

γ

ρα

)
− 1

2
ρα− 1

2
ρα log

(
1 +

γ

ρα

)]
= log(N)fα,ρ(xα,γ,ρ)

with
fα,ρ(x) := 1 +

1

2
ρα (−x log(x) + x− 1)

and
xα,γ,ρ := 1 +

γ

ρα
.

To let the conditional probability tend to 0, the condition

fα,ρ(xα,γ,ρ) < 0

must be fulfilled for each ρ ∈ (1 − δ, 1 + δ). For fixed γ and α, fα,ρ(xα,γ,ρ) is continuous
in ρ, ρ ∈ R+. If for fixed γ, α, the inequality fα,1(xα,γ,1) < 0 holds true, then also

fα,ρ(xα,γ,ρ) < 0 ∀ρ ∈ (1− δ, 1 + δ)

if δ > 0 is small enough. For a fixed pair of γ and α such that fα,1(xα,γ,1) < 0, δ can be
chosen in dependence of α and γ. The satisfaction of the inequality fα,1(xα,γ,1) < 0 implies
therefore the desired convergence to zero of the probability P (∃i ≤ N : ξ1

i = 0, Ti(ξ
1) 6= 0).

It remains thus to determine the set {α > 0 : fα,1(xα,γ,1) < 0} for fixed γ. Multiplying
by 2/α and replacing 1/α by (xα,γ,1−1)/γ allows to reformulate the condition fα,1(xα,γ,1) <
0 in terms of the in Theorem 5.4 defined function: it holds if

gγ(xα,γ,1) := xα,γ,1

(
1 +

2

γ
− log(xα,γ,1)

)
− 1− 2

γ
< 0.

The function gγ(0,∞)→ R has two roots, one is equal to 1, the other one is bigger than
1 (and bigger than the extremal point x̂γ = e2/γ). The derivative g′γ(x) = 2/γ − log(x) is
positive on (0, x̂γ) and negative on (x̂γ,∞). Let x∗γ be the unique root of gγ bigger than
1. The function gγ is negative on the intervals (0, 1) and (x∗γ,∞) and positive on (1, x∗γ).
We choose α depending on γ such that

α <
γ

x∗γ − 1
. (5.8)

Then each pair of γ > 0 and α > 0 chosen subject to these conditions provides

P
[
∃i ≤ N : ξ1

i = 0, Ti(ξ
1) 6= 0

]
−→ 0
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as N tends to infinity. Due to conditions following from subsequent calculations, γ must
be chosen such that

γ ∈ (0, 2). (5.9)

We now analyse the second type of error. We choose an arbitrary neuron that is
activated in ξ1; assuming that Zk holds, we take i = 1. The neuron is not mapped to its
original value if either

|S1(ξ1)|+ θ1(ξ1)− γ log(N) < 0 (5.10)

or if the two conditions

|S1(ξ1)|+ θ1(ξ1)− γ log(N) > 0 (5.11)

and

sgn(S1(ξ1)) 6= ξ1
1 (5.12)

hold.
Without loss of generality, we set ξ1

1 = 1. Due to the symmetric distribution of∑
µ

∑
j ξ

1
j ξ
µ
i ξ

µ
j , the case ξ1

1 = −1 is run analogously. Inequality (5.10) is either satisfied if

|S1(ξ1)| = S1(ξ1), S1(ξ1) + θ1(ξ1)− γ log(N) < 0 (5.13)

or if

|S1(ξ1)| = −S1(ξ1), − S1(ξ1) + θ1(ξ1)− γ log(N) < 0. (5.14)

Condition (5.12) is necessary for (5.14). So the probability of having an error, given Zk
and ξ1

1 = 1, is bounded by the sum of the two probabilities

P
(
S1(ξ1) + θ1(ξ1)− γ log(N) < 0, |S1(ξ1)| = S1(ξ1)

∣∣∣Zk ∩ {ξ1
1 = 1}

)
(5.15)

and

P
(
sgn(S1(ξ1)) 6= 1|Zk ∩ {ξ1

1 = 1}
)
. (5.16)

The probability in (5.16) is transformed into

P
[
sgn(S1(ξ1)) 6= 1|Zk ∩ {ξ1

1 = 1}
]

=P

[
k − 1 +

N∑
j=2

M∑
µ=2

ξ1
j ξ
µ
1 ξ

µ
j < 0

∣∣∣Zk] = P

[
−

N∑
j=2

M∑
µ=2

ξ1
j ξ
µ
1 ξ

µ
j > k − 1

∣∣∣Zk] .
Conditionally on Zk, the distribution of

∑N
j=2

∑M
µ=2 ξ

1
j ξ
µ
1 ξ

µ
j is symmetric and identical

with the distributions of
k∑
j=2

M∑
µ=2

ξµ1 ξ
µ
j

d∼ −
k∑
j=2

M∑
µ=2

ξµ1 ξ
µ
j .
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We saw in Chapter 3 that for s not depending on N

P

[
−

N∑
j=2

M∑
µ=2

ξ1
j ξ
µ
1 ξ

µ
j > k − 1

∣∣∣Zk] = P

[
k∑
j=2

M∑
µ=2

ξµ1 ξ
µ
j > k − 1

]

≤ exp [s(−k + 1)]
[
p (1− p+ p · cosh(s))k−1 + 1− p

]M−1

≤ exp
[
−s(k − 1) + (k − 1)α(cosh(s)− 1) +O(pk2)

]
.

Minimizing the exponent in s yields s∗α = arsinh(1/α) as global minimum. According to
the definition of s∗α, the equality

−s∗α + α(cosh(s∗α)− 1) = −arsinh(1/α) + α(cosh(arsinh(1/α))− 1)

holds. The right hand side is negative for every choice of α > 0 because the function
g(x) = −xarsinh(x)+cosh(arsinh(x))−1 in Chapter 3 is negative on R+. The probability
vanishes because k can be assumed to be of order log(N) and therefore tends to infinity.

It remains to examine the probability in (5.15). We show that

P
[
|S1(ξ1)| = S1(ξ1), S1(ξ1) + θ1(ξ1)− γ log(N) < 0

∣∣∣Zk ∩ {ξ1
1 = 1}

]
≤P
[
S1(ξ1) + θ1(ξ1)− γ log(N) < 0

∣∣∣Zk ∩ {ξ1
1 = 1}

]
=P

[
N∑
j=2

M∑
µ=1

ξ1
j ξ
µ
j ξ

µ
1 +

(
ξ1
j

)2

(1− p)2
ηµ1 η

µ
j − γ log(N) < 0

∣∣∣Zk ∩ {ξ1
1 = 1}

]

=P

[
2(k − 1)− γ log(N) +

∑
1<j≤k

M∑
µ=2

ξ1
j ξ
µ
j ξ

µ
1 +

(
ξ1
j

)2

(1− p)2
ηµ1 η

µ
j < 0

∣∣∣Zk]

=P

[
−

( ∑
1<j≤k

M∑
µ=2

ξµj ξ
µ
1 +

1

(1− p)2
ηµ1 η

µ
j

)
> 2k − 2− γ log(N)

]
. (5.17)

By the same arguments and the proof techniques we used to estimate the previous two
probabilities, especially in (5.6), the probability in (5.17) is for u > 0 bounded by

P

[
−

( ∑
1<j≤k

M∑
µ=2

ξµj ξ
µ
1 +

1

(1− p)2
ηµ1 η

µ
j

)
> 2k − 2− γ log(N)

]

≤ exp

[
u (−2k + 2 + γ log(N)) + kα

(
1

2
e−2u − 1

2
+ u

)] (
1 +O(pk2)

)
.

Due to the condition of the theorem, γ < 2. If α > 2− γ, let 0 < δ < γ/(2− α)− 1 and
δ < (2− γ)/2. Then, for some k = ρ log(N) of the considered set we choose

u∗ρ,α,γ = −1

2
log

(
1− 2

α
+

γ

ρα

)
to minimise

u (−2k + γ log(N)) + kα

(
1

2
e−2u − 1

2
+ u

)
.
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Inserting u∗ρ,α,γ and k = ρ log(N) in the above expression leads to

u∗ρ,α,γ (−2ρ log(N) + γ log(N)) + ρ log(N)α

(
1

2
e−2u∗ρ,α,γ − 1

2
+ u∗ρ,α,γ

)
=

1

2
log(N)ρα

[
− log

(
1− 2

α
+

γ

ρα

)(
1− 2

α
+

γ

ρα

)
− 2

α
+

γ

ρα

]
=

1

2
log(N)ρα [−vρ,α,γ log(vρ,α,γ) + vρ,α,γ − 1] ,

vρ,α,γ = 1− 2/α+ γ/(ρα). As we know, the function −x log(x) + x− 1 is negative on R+.
Since

2ρ− γ > 0, α > 2− γ

ρ

due to the choice of δ, both conditions u∗ρ,α,γ > 0 and vρ,α,γ > 0 hold.
If 0 < α < 2− γ, the choice of u > 0 is irrelevant. For 0 < δ < 2−γ−α

2+α
, arbitrary u > 0

and on Aδ,

u (−2k + 2 + γ log(N)) + kα

(
1

2
e−2u − 1

2
+ u

)
≤u log(N) (−2(1− δ) + γ + (1 + δ)α) + 2u+ (1− δ) log(N)α

1

2

(
e−2u − 1

)
≤2u+ (1− δ) log(N)α

1

2

(
e−2u − 1

)
due to the choice of δ. The function e−x − 1 is negative on R+, so the expression in the
last line tends to −∞ for fixed u > 0.

For α = 2− γ, we estimate

u (−2k + γ log(N)) + kα

(
1

2
e−2u − 1

2
+ u

)
=u (−(γ + α)k + γ log(N)) + kα

(
1

2
e−2u − 1

2
+ u

)
≤u (−γ(1− δ) log(N) + γ log(N)) + (1− δ) log(N)α

(
1

2
e−2u − 1

2

)
and choose u = −1/2 log(δγ/((1− δ)α)), if δ < α/(α + γ). As P(Aδ) tends to 1 for each
δ > 0, this finally implies that

P(∃i ≤ N : ξ1
i 6= 0, Ti(ξ

1) 6= ξ1
i ) ≤ P(Aδ)(1 + δ) log(N)P(T1(ξ1) 6= ξ1

1 |Zk) −→ 0

for
0 < γ < 2

without a further condition on α.
In the second part of the proof we show the sharpness of the bound on α. It is based

on the following observations:

1. The probability of the event Aδ converges to 1, for each δ > 0.
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2. The random variables

X1(k) =
M∑
µ=2

1{
∑
j≤k |ξ

µ
j |=1}, X2(k) =

M∑
µ=2

1{
∑
j≤k |ξ

µ
j |=2}, X3(k) =

M∑
µ=2

1{
∑
j≤k |ξ

µ
j |>2}

are Binomially distributed with parameters M − 1 and

p1(k) = kp(1− p)k−1, p2(k) =

(
k

2

)
p2(1− p)k−2 and p3(k) =

(
k

3

)
p3 +O(k4p4),

respectively, as in the proof of Theorem 3.1. We saw in Chapter 3 that the Chebyshev
inequality implies for each δ > 0

P

(
X1(k)

αk N
log(N)

/∈ (1− δ, 1 + δ)

)
≤ log(N)

(δ − (k − 1)p+O(k3p))2αkN
,

which tends to 0 as N, k tend to infinity for the given choice of k ≤ (1 + δ) log(N),
as well as

P

(
X2(k)

α
(
k
2

) /∈ (1− δ, 1 + δ)

)
≤ 1

(δ − p(k − 2) +O(k4p2))2α
(
k
2

) −→ 0

as N tends to infinity. Additionally one sees immediately

P (X3(k) 6= 0) ≤Mp3(k) = M

((
k

3

)
p3 +O(k4p4)

)
−→ 0

as N and k ≤ (1 + δ) log(N) tend to infinity.

The corresponding complementary sets{
X1(k)

αk N
log(N)

∈ (1− δ, 1 + δ)

}
,

{
X2(k)

α
(
k
2

) ∈ (1− δ, 1 + δ)

}
, {X3(k) = 0}

are denoted by Bδ(k), Cδ(k) and D(k).

3. For each n ∈ N, n ≤M − 1 and arbitrary i > k, we estimate

P

 ∑
µ:
∑
j≤k |ξ

µ
j |=2

∑
j≤k

|ξµj ξ
µ
i | > 0

∣∣∣X2(k) = n

 ≤ np.

This yields

max
k,n∈N:k/ log(N),

n/(α(k2))∈(1−δ,1+δ)

P

 ∑
µ:
∑
j≤k |ξ

µ
j |=2

∑
j≤k

|ξµj ξ
µ
i | > 0

∣∣∣X2(k) = n

 ≤ (1 + δ)3α
log(N)3

2N
.

(5.18)
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This means that neuron i > k is never activated in any message with more than one
of the activated neurons of message 1, with high probability.

The event { ∑
µ:
∑
j≤k |ξ

µ
j |=2

∑
j≤k

|ξµj ξ
µ
i | = 0

}

is denoted by C(k, i).

4. Let X4(k, i) be, for some i > k, defined as

X4(k, i) :=
M∑
µ=2

1{
∑
j≤k |ξ

µ
j |=0}1{ξµi 6=0}.

The conditional distribution of X4(k, i), given FNk = σ(ξµj , µ ≥ 2, j ≤ k) is Binomial
with parameters M −1−X1(k)−X2(k)−X3(k) and p. The conditional probability
of

Eδ(k, i) :=

{
X4(k, i) log(N)

αN
∈ (1− δ, 1 + δ)

}
,

given the intersection of the sets Bδ(k), Cδ(k), D(k) is at least

P (Eδ(k, i)|Bδ(k) ∩ Cδ(k) ∩D(k))

≥ min
Bδ(k)∩Cδ(k)∩D(k)

P(Eδ(k, i)
∣∣FNk )

= min
m,n∈N:m log(N)/(αkN),

n/(α(k2))∈(1−δ,1+δ)

P (Eδ(k, i)|X1(k) = m,X2(k) = n,X3(k) = 0) . (5.19)

Conditionally on {X1(k) = m,X2(k) = n,X3(k) = 0}, X4(k, i) is a Binomially
distributed random variable with parameters M − 1 −m − n and p; applying the
exponential Chebyshev inequality yields

1− max
m,n∈N:m log(N)/(αkN),

n/(α(k2))∈(1−δ,1+δ)

P
[
X4(k, i)

Mp
≥ 1 + δ

∣∣∣X1(k) = m,X2(k) = n,X3(k) = 0

]
≥1− max

m,n∈N:m log(N)/(αkN),

n/(α(k2))∈(1−δ,1+δ)

exp[−t(1 + δ)Mp](1− p+ pet)M−1−m−n

≥1− exp[−t(1 + δ)Mp](1− p+ pet)M ≥ 1− exp[(− log(1 + δ)(1 + δ) + δ)Mp],
(5.20)

as well as

1− max
m,n∈N:m log(N)/(αkN),

n/(α(k2))∈(1−δ,1+δ)

P
[
X4(k, i)

Mp
≤ 1− δ

∣∣∣X1(k) = m,X2(k) = n,X3(k) = 0

]

≥1− exp[t(1− δ)Mp](1− p+ pe−t)M−1−(1+δ)α(Nk/ log(N)+(k2))
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≥1− exp[(− log(1− δ)(1− δ)− δ)Mp] exp

[
δp+ δ(1 + δ)α

(
k +

(
k

2

)
p

)]
.

(5.21)

In particular, N · P(Eδ(k, i)|Bδ(k) ∩ Cδ(k) ∩D(k)) −→ 0.

5. As penultimate point, we observe that

X5(k, i) :=
∑

µ:
∑
j≤k |ξ

µ
j |=1

|ξµi |,

is, given FNk , Binomially distributed with parameters p and X1(k). Assuming that
k ≤ (1 + δ) log(N) and that X1(k) ≤ (1 + δ)α(kN/ log(N)), the random variable
X5(k, i) is asymptotically Poisson distributed with Parameter pX1(k). Referring to
Lemma 2.3 and again denoting by πλ(m), λ > 0,m ∈ N, the probability weights of
a Poisson random variable, the total variation distance of these two distributions is
for some i > k at most

∞∑
m=0

∣∣∣∣∣P
 ∑
µ:
∑
j≤k |ξ

µ
j |=1

|ξµi | = m
∣∣∣FNk

− πpX1(k)(m)

∣∣∣∣∣ ≤ 2p2X1(k).

6. Finally, the events{
M∑
µ=2

∑
j≤k

ξµi ξ
µ
j +

1

(1− p)2
ηµi η

µ
j < γ log(N)

}
, i > k,

are conditionally independent, given FNk .

First, we estimate

P
(
∃i ≤ N : Ti(ξ

1) 6= 0
)
≥ P

(
∃i ≤ N : ξ1

i = 0, Ti(ξ
1) 6= 0

)
≥P(Aδ) min

k∈N:k/ log(N)
∈(1−δ,1+δ)

P
(
∃i ≤ N : ξ1

i = 0, Ti(ξ
1) 6= 0|Zk

)
=P(Aδ) min

k∈N:k/ log(N)
∈(1−δ,1+δ)

P

(
∃i > k :

M∑
µ=2

∑
j≤N

ξ1
j ξ
µ
i ξ

µ
j +

1

(1− p)2

(
ξ1
j

)2
ηµi η

µ
j ≥ γ log(N)

∣∣∣Zk)

=P(Aδ) min
k∈N:k/ log(N)
∈(1−δ,1+δ)

P

(
∃i > k :

M∑
µ=2

∑
j≤k

ξµi ξ
µ
j +

1

(1− p)2
ηµi η

µ
j ≥ γ log(N)

)
; (5.22)

because conditionally on Zk,(
M∑
µ=2

∑
j≤N

ξ1
j ξ
µ
i ξ

µ
j +

1

(1− p)2

(
ξ1
j

)2
ηµi η

µ
j , i > k

)
∼

(
M∑
µ=2

∑
j≤k

ξµi ξ
µ
j +

1

(1− p)2
ηµi η

µ
j , i > k

)
,

as we saw in the first part of the proof.
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So we can conclude, writing Bδ ∩ Cδ ∩D(k) := Bδ(k) ∩ Cδ(k) ∩D(k) for short:

P

(
∃i > k :

M∑
µ=2

∑
j≤k

ξµi ξ
µ
j +

1

(1− p)2
ηµi η

µ
j ≥ γ log(N)

)

=1− E(ξµj ,j≤k,µ≥2)

P( M∑
µ=2

∑
j≤k

ξµNξ
µ
j +

1

(1− p)2
ηµNη

µ
j < γ log(N)

∣∣∣FNk
)N−k


≥1− max

Bδ∩Cδ
∩D(k)

P

(
M∑
µ=2

∑
j≤k

ξµNξ
µ
j +

1

(1− p)2
ηµNη

µ
j < γ log(N)

∣∣∣FNk
)N−k

− P[(Bδ ∩ Cδ ∩D(k))c].

(5.23)

For every k in the considered set, the probability of Bδ(k) ∩Cδ(k) ∩D(k) tends to 1 and
we analyse the second part of the last line. The sum

M∑
µ=2

∑
j≤k

ξµNξ
µ
j +

1

(1− p)2
ηµNη

µ
j

can be split into the sums∑
µ:
∑
j≤k |ξ

µ
j |=0

∑
j≤k

ξµNξ
µ
j +

1

(1− p)2
ηµNη

µ
j +

∑
µ:
∑
j≤k |ξ

µ
j |=1

∑
j≤k

ξµNξ
µ
j +

1

(1− p)2
ηµNη

µ
j

+
∑

µ:
∑
j≤k |ξ

µ
j |=2

∑
j≤k

ξµNξ
µ
j +

1

(1− p)2
ηµNη

µ
j +

∑
µ>2:

∑
j≤k |ξ

µ
j |>2

∑
j≤k

ξµNξ
µ
j +

1

(1− p)2
ηµNη

µ
j .

On Bδ(k)∩Cδ(k)∩C(k, i)∩D(k)∩Eδ(k, i), the last sum is zero; the penultimate sum is

∑
µ:
∑
j≤k |ξ

µ
j |=2

∑
j≤k

ξµNξ
µ
j +

1

(1− p)2
ηµNη

µ
j =

(
− 2p

1− p
+ (k − 2)

p2

(1− p)2

)
X2(k) (5.24)

and therefore tends to 0 on this set, because X2(k)/(α
(
k
2

)
) ∈ (1− δ, 1 + δ).

Concerning the first sum, we state that

M∑
µ=2

1∑
j≤k |ξ

µ
j |=0 = M − 1−X1(k)−X2(k)−X3(k)

and thus ∑
µ:
∑
j≤k |ξ

µ
j |=0

∑
j≤k

ξµNξ
µ
j +

ηµNη
µ
j

(1− p)2

= [M − 1−X1(k)−X2(k)−X3(k)−X4(k,N)] k
p2

(1− p)2
−X4(k,N)k

p

1− p
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≥ Mkp2

(1− p)2
−X4(k,N)k

p

1− p
≥ αk

1

(1− p)2
− αk 1 + δ

1− p
(5.25)

on the considered set.
The remaining second sum is equal to∑

µ:
∑
j≤k |ξ

µ
j |=1

∑
j≤k

ξµNξ
µ
j +

1

(1− p)2
ηµNη

µ
j

=
∑

µ:
∑
j≤k |ξ

µ
j |

=1,|ξµN |=1

(
1− pk − 1

1− p
+
∑
j≤k

ξµNξ
µ
j

)
+

∑
µ:
∑
j≤k |ξ

µ
j |

=1,|ξµN |=0

∑
j≤k

ηµNη
µ
j

(1− p)2
. (5.26)

The right hand side of the last line in (5.26) is at least∑
µ:
∑
j≤k |ξ

µ
j |

=1,|ξµN |=0

∑
j≤k

ηµNη
µ
j

(1− p)2
= (X1(k)−X5(k,N))

(
(k − 1)

p2

(1− p)2
− p

1− p

)
≥ X1(k)

−p
1− p

(5.27)

because X1(k) ≥ X5(k,N). It remains to examine the left hand side of the last line in
(5.26); this is the last step in the proof.

Due to the results of (5.22) and (5.23), our goal is to show that

lim
N→∞

max
k/ log(N)∈
(1−δ,1+δ)

max
Bδ∩Cδ∩D(k)

[
1− P

(
M∑
µ=2

∑
j≤k

ξµNξ
µ
j +

1

(1− p)2
ηµNη

µ
j ≥ γ log(N)

∣∣FNk
)]N−k

= 0.

This is fulfilled if

lim
N→∞

min
k/ log(N)∈
(1−δ,1+δ)

min
Bδ∩Cδ∩D(k)

log
[
P
(∑M

µ=2

∑
j≤k ξ

µ
Nξ

µ
j + 1

(1−p)2η
µ
Nη

µ
j ≥ γ log(N)

∣∣FNk )]
log(N)

> −1.

(5.28)

Due to the results in (5.24), (5.25), (5.26) and (5.27), the sum under consideration is, on
Bδ(k) ∩ Cδ(k) ∩ C(k, i) ∩D(k) ∩ Eδ(k, i), at least

M∑
µ=2

∑
j≤k

ξµNξ
µ
j +

1

(1− p)2
ηµNη

µ
j ≥

(
− 2p

1− p
+ (k − 2)

p2

(1− p)2

)
(1− δ)α

(
k

2

)
+ αk

1

(1− p)2

− αk 1 + δ

1− p
− (1 + δ)αk

N

log(N)

p

1− p
+

∑
µ:
∑
j≤k |ξ

µ
j |

=1,|ξµN |=1

(
1− pk − 1

1− p
+
∑
j≤k

ξµNξ
µ
j

)

≥αk−1− 2δ

1− p
+O(k2p) +

∑
µ:
∑
j≤k |ξ

µ
j |

=1,|ξµN |=1

(
1− pk − 1

1− p
+
∑
j≤k

ξµNξ
µ
j

)
. (5.29)
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We have seen in 4., (5.19), (5.20) and (5.21), using εδ = min(log(1 + δ)(1 + δ) + δ; log(1−
δ)(1− δ)− δ) > 0, that

max
Bδ(k)∩Cδ(k)∩D(k)

P(Eδ(k,N)c|FNk ) ≤ exp

[
−εδα

N

log(N)
+O(k)

]
and in (5.18), that

max
Bδ(k)∩Cδ(k)∩D(k)

P(C(k,N)c|FNk ) ≤ (1 + δ)3α
log(N)3

N
.

So we can conclude for the probability in (5.28), using additionally (5.29),

min
Bδ∩Cδ∩D(k)

P

(
M∑
µ=2

∑
j≤k

ξµNξ
µ
j +

1

(1− p)2
ηµNη

µ
j ≥ γ log(N)

∣∣FNk
)

≥ min
Bδ(k)

P

( ∑
µ:
∑
j≤k |ξ

µ
j |

=1,|ξµN |=1

(
1− pk − 1

1− p
+
∑
j≤k

ξµNξ
µ
j

)
≥ γ log(N) +

αk(1 + 2δ)

1− p
+O(k2p)

∣∣∣FNk
)

− exp

[
−εδα

N

log(N)
+O(k)

]
− (1 + δ)3α

log(N)3

N
. (5.30)

Finally we consider the behaviour of the summand on the left hand side in the last line
of (5.26), that is,

∑
µ:
∑
j≤k |ξ

µ
j |

=1,|ξµN |=1

(
1− pk − 1

1− p
+
∑
j≤k

ξµNξ
µ
j

)
. (5.31)

It is, conditionally on ξµj , j ≤ k, µ ≥ 2 and |ξµN |, µ ≥ 2, distributed as a sum of X5(k,N)
independent and identically distributed random variables Zn(p, k), n ≥ 1, with distribu-
tion

P
(
Zn(p, k) = −pk − 1

1− p

)
= P

(
Zn(p, k) = 2− pk − 1

1− p

)
=

1

2
.

X5(k,N) has still to be determined and is, given X1(k), Binomially distributed with
parameters X1(k) and p. Consequently, the sum in (5.31) is, given X1(k), distributed
as a random sum of random variables Zn(p, k), n ≥ 1, and length determined by a
Bin(X1(k), p)-distributed random variable RX1(k), such that RX1(k), Z1(p, k), . . . are inde-
pendent. This Binomial distribution can again be approximated by a Poisson distribution;
the subsequent computations are therefore made for a Poisson distribution instead. Let
additionally for each ε ≥ 0 Zn(ε), n ≥ 1, be independent and identically distributed such
that

P(Zn(ε) = −ε) = P(Zn(ε) = 2− ε) =
1

2
.
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5 The Sparse Blume-Emery-Griffiths Model

Let now Yλ denote a Poisson random variable with parameter λ. For independent sets of
random variables (Yλk, Zn(ε), n ≥ 1), respectively (Y r

λ , Z
r
n(ε), r = 1, . . . , k, n ≥ 1), with

Y r
λ ∼ Poi(λ), Zr

n(ε) ∼ Z1(ε), for each r and n ≥ 1, the two following sums have the same
distribution:

Yλk∑
n=1

Zn(ε) ∼
k∑
r=1

Y rλ∑
n=1

Zr
n(ε).

The
∑Y rλ

n=1 Z
r
n(ε), 1 ≤ r ≤ k, then are independent. This yields, with the help of

Lemma 2.4:

lim
k→∞

1

k
log

(
P

(
Yλk∑
n=1

Zn(ε) ≥ xk

))
= lim

k→∞

1

k
log

P

 k∑
r=1

Y rλ∑
n=1

Zr
n(ε) ≥ xk

 = −Λ∗λ,ε(x)

with

Λ∗λ,ε(x) = sup
t∈R

tx− log

E
exp t

Y 1
λ∑

n=1

Z1
n(ε)


and if

x > E

 Y 1
λ∑

n=1

Z1
n(ε)

 , E

exp t

Y 1
λ∑

n=1

Z1
n(ε)

 <∞, t ∈ R.

By Wald’s identity, the expectation of this sum is

E

 Y 1
λ∑

n=1

Z1
n(ε)

 = E
(
Y 1
λ

)
E(Z1

1(ε)) = λ(1− ε).

To determine the Legendre transform, consider the moment generating function of∑Y 1
λ
n=1 Z

1
n(ε):

Λλ,ε(t) :=E

exp t

Y 1
λ∑

n=1

Z1
n(ε)

 =
∞∑
m=0

e−λ
λm

m!

1

2m
e−εtm

(
1 + e2t

)m
= exp

[
−λ+

λ

2
e−εt(e2t + 1)

]
.

Then

Λ∗λ,ε(x) = sup
t∈R

tx− log

E
exp t

Y 1
λ∑

n=1

Z1
n(ε)

 = sup
t∈R

(
tx+ λ− λ

2
e−εt(e2t + 1)

)
.

We are for fixed x > λ interested in limε↘0 Λ∗λ,ε(x). First, we observe that for t ≤ 0,

tx+ λ− λ

2
e−εt(e2t + 1) ≤ tx+ λ− λ

2
(e2t + 1) = tx− log (Λλ,0(t)) .
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Define for fixed λ and x > λ the continuous and differentiable functions ψε : R→ R,

ψε(t) := tx+ λ− λ

2
e−εt(e2t + 1).

We easily compute for 0 < ε < 2

ψ′ε(t) = x+ ε
λ

2
e−εt − (2− ε)λ

2
e(2−ε)t; lim

t→∞
ψ′ε(t) = −∞; lim

t→−∞
ψ′ε(t) =∞.

In addition, for this choice of ε, ψ′′ε (t) < 0 on R. So

sup
t∈R

ψε(t) = ψε(tε),

with the unique root tε of ψ′ε(t). For each t ≤ 0, ε ≥ 0,

ψ′ε(t) ≥ x+ ε
λ

2
− (2− ε)λ

2
≥ x− λ > 0

and for each t > log(1 + 2x/λ) and 0 ≤ ε ≤ 1,

ψ′ε(t) ≤ x+
λ

2
− λ

2
et < 0.

So for x > λ, 0 ≤ ε ≤ 1
sup
t∈R

ψε(t) = sup
t∈[0,log(1+2x/λ)]

ψε(t).

On [0, log(1 + 2x/λ)], ψε is uniformly convergent to ψ0 as ε→ 0. So we can conclude

lim
ε↘0

tε = t0, lim
ε↘0

ψε(tε) = ψ0(t0).

We finally determine the Legendre transform Λ∗λ,0:

Λ∗λ,0(x) = sup
t∈R

tx− log

E
exp t

Y 1
λ∑

n=1

Z1
n(0)


=

1

2
log
(x
λ

)
x− λ

2

(x
λ
− 1
)
,

using t0 = 1
2

log
(
x
λ

)
.

We combine the recent conclusions and deduce for ε > p(k − 1)/(1− p), using in the
first step 5. and that αk(1 + 2δ)/(1− p) = αk(1 + 2δ) +O(kp),

min
Bδ(k)

P

( ∑
µ:
∑
j≤k |ξ

µ
j |

=1,|ξµN |=1

(
1− pk − 1

1− p
+
∑
j≤k

ξµNξ
µ
j

)
≥ γ log(N) +

αk(1 + 2δ)

1− p
+O(k2p)

∣∣∣FNk
)

≥ min
Bδ(k)

P

Yp·X1(k)∑
n=1

Zn(k, p) ≥ γ log(N) + αk(1 + 2δ) +O(k2p)
∣∣∣FNk

− 2p2X1(k)
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≥ min
ρ∈(1−δ,1+δ)

P

Yαρk∑
n=1

Zn(ε) ≥ γ log(N) + αk(1 + 2δ) +O(k2p)

− 2pαρk.

Since 2pαρk ≤ 2(1 + δ)2α log(N)/N and due to the estimation in (5.30), it suffices to
show

lim inf
N→∞

min
k∈N:k/ log(N)
∈(1−δ,1+δ)

min
ρ∈(1−δ,

1+δ)

log
[
P
(∑Yαρk

n=1 Zn(ε) ≥ γ log(N) + αk(1 + 2δ) +O(k2p)
)]

log(N)
> −1

to obtain convergence of the probability of instability of ξ1 to 1. We analysed the behaviour
of the random variable

∑Yλk
n=1 Zn(ε) and saw that

lim
k→∞

log
(
P
[∑Yραk

n=1 Zn(ε) ≥ ( γ
1−δ + α(1 + 2δ))k

])
k

=− Λ∗ρα,ε

(
γ

1− δ
+ α(1 + 2δ)

)
if γ

1−δ + α(1 + 2δ) > ρα(1− ε). We saw that the maximal argument tε of ψε was positive;
one easily sees that tx − log(Λλ,ε(t)) is decreasing in λ for fixed ε < 1/2 and t > 0, and
therefore

min
ρ∈(1−δ,

1+δ)

lim inf
N→∞

min
k∈N:k/ log(N)
∈(1−δ,1+δ)

log
[
P
(∑Yαρk

n=1 Zn(ε) ≥ γ log(N) + αk(1 + 2δ)
)]

log(N)

≥(1− δ) min
ρ∈(1−δ,

1+δ)

lim inf
N→∞

min
k∈N:k/ log(N)
∈(1−δ,1+δ)

log
[
P
(∑Yαρk

n=1 Zn(ε) ≥ γ
1−δk + αk(1 + 2δ)

)]
k

=(1− δ) min
ρ∈(1−δ,1+δ)

(
−Λ∗ρα,ε

(
γ

1− δ
+ α(1 + 2δ)

))
≥(1− δ)

(
−Λ∗(1−δ)α,ε

(
γ

1− δ
+ α(1 + 2δ)

))
.

Due to our considerations on Zn(ε), there is some ε′ > 0 such that for all 0 ≤ ε < ε′,

−(1− δ)Λ∗(1−δ)α,ε
(

γ

1− δ
+ α(1 + 2δ)

)
> −1,

if
−(1− δ)Λ∗(1−δ)α,0

(
γ

1− δ
+ α(1 + 2δ)

)
> −1.

Since additionally Λ∗(1−δ)α,0(x) is continuous on R+, this condition is sufficient to guarantee
the convergence of the probability of the instability of ξ1 to 1 (the term O(k2p) in the
probability P

(∑Yαρk
n=1 Zn(ε) ≥ γ log(N) + αk(1 + 2δ) +O(k2p)

)
is neglibile).
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Using the function

fα,(1−δ)2(x) = 1 +
1

2
(1− δ)2α(−x log(x) + x− 1)

of the first part of the proof and

x̄α,γ,δ :=
γ

α(1− δ)2
+

1 + 2δ

1− δ
,

a sufficient condition for the convergence of P(∃i : Ti(ξ
1) 6= ξ1

i ) to 1 is

fα,(1−δ)2(x̄α,γ,δ) > 0.

Finally, if α and γ fulfill

fα,1(x̄α,γ,0) = 1 +
1

2
α
[
− log

(
1 +

γ

α

)
(1 + γ/α) +

γ

α

]
> 0, (5.32)

δ > 0 can be chosen small enough to obtain fα,(1−δ)2(x̄α,γ,δ) > 0. As on page 124,
we observe that condition (5.32) is fulfilled if gγ(x̄α,γ,0) > 0, with x̄α,γ,0 = 1 + γ

α
and

gγ(x) = x
(

1 + 2
γ
− log(x)

)
− 1− 2

γ
. Since gγ is positive on (1, x∗γ), with the root x∗γ of gγ

in (1,∞), the precedent condition holds if

x̄α,γ,0 ∈ (1, x∗γ).

As x̄α,γ,0 > 1, this is true if
α >

γ

x∗γ − 1
.

We conclude that limN→∞ P(∃i ≤ N : Ti(ξ
1) 6= ξ1

i ) = 1 holds if α > γ
x∗γ−1

, as stated in the
theorem.

�

Proposition 5.5 The threshold variable γ cannot be chosen from (2,∞).

Proof: Suppose that γ > 2. Choosing some δ < 1
2
(γ − 2), we will see that,

lim
N→∞

max
k∈N:k/ log(N)∈

(1−δ,1+δ)

P
(
T1(ξ1) 6= ξ1

1 |Zk
)

= 1,

independently of the choice of α. Using (5.6), we easily conclude

max
k∈N:k/ log(N)∈

(1−δ,1+δ)

P
(
T1(ξ1) = ξ1

1 |Zk
)
≤ max

k∈N:k/ log(N)∈
(1−δ,1+δ)

P
(
|S1(ξ1)|+ θ1(ξ1) ≥ γ log(N)|Zk

)
≤ max

k∈N:k/ log(N)∈
(1−δ,1+δ)

P

[( ∑
1<j≤k

M∑
µ=2

ξµ1 ξ
µ
j +

1

(1− p)2
ηµ1 η

µ
j

)
≥ γ log(N) + 2− 2k

]
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≤ exp [−t log(N)(γ − 2− 2δ)] exp

[
(1 + δ) log(N)α

(
1

2
e2t − 1

2
− t
)

+O
(
p log(N)2

)]
≤ exp

[
log(N)

(
(1 + δ)α

1

2
(−wγ,δ,α log(wγ,δ,α) + wγ,δ,α − 1)

)]
,

with wγ,δ,α := 1 + γ−2(1+δ)
(1+δ)α

and after having used t = 1
2

log (wγ,δ,α) > 0. The probability
tends to 0.

�

Proposition 5.6 The critical value γ∗ = sup{γ > 0 : γ is an admissible threshold variable}
is

γ∗ = 2.

The critical value α∗ = sup{α > 0 : α is an admissible capacity variable for the model} is

α∗ =
2

x∗2 − 1
≈ 0.51.

Here x∗2 is the root of
g2(x) = x (2− log(x))− 2

in (1,∞).
For α ∈ (0, α∗), there is γ∗(α) ∈ (0, 2), such that (0, γ∗(α)) is a set of inadmissible

and (γ∗(α), 2) a set of admissible threshold variables for α.

Proof: The first assertion follows immediately from the previous Theorem 5.4 and Propo-
sition 5.5.

The second claim is proven by considering the function G(γ, x) = gγ(x) on R+×R>1.
This is strictly decreasing in γ for fixed x. Additionally, for fixed γ, we saw that gγ(x)
is positive on (1, x∗γ) and negative on (x∗γ,∞). Thus γ < γ′ implies x∗γ > x∗γ′ . If in
particular there is a γ ∈ (0, 2) such that α is admissible for γ, each γ ∈ (γ∗(α), 2), with
γ∗(α) := inf{γ ∈ (0, 2) : α is admissible capacity variable for γ} is admissible for α.

If now α > 2/(x∗2 − 1), the inequality 1 + 2
α
< x∗2 holds. Choose γ ∈ (0, 2]. Then,

resulting from the two facts that G is decreasing in γ and that 1 + γ/α ∈ (1, x∗2),

gγ

(
1 +

γ

α

)
≥ g2

(
1 +

γ

α

)
> 0.

There is thus no γ ≤ 2 that allows to use α as a capacity variable. Since γ > 2 leads in
any case to instability, α is inadmissible.

For α < 2/(x∗2 − 1), the inequality 1 + 2
α
> x∗2 is true. So g2(1 + 2

α
) < 0. We consider

gγ

(
1 +

γ

α

)
= fα,1(x̄α,γ,0), fα,1(x̄α,γ,0) = 1 +

1

2
α
[
− log

(
1 +

γ

α

)
(1 + γ/α) +

γ

α

]
,

x̄α,γ,0 = 1 + γ/α, see (5.32); this function is for fixed α continuous as a function in γ on
R+ and there is thus some γ < 2 such that

fα,1(x̄α,γ,0) < 0

holds, if fα,1(x̄α,2,0) = g2(1 + 2/α) < 0. So α is an admissible capacity variable. �
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5.2 Stability and Error Correction in the Sparsity Adopted BEG Model

Remark 5.7 Besides the GB model in Chapter 6, the BEG model has the best maximal
capacity. Besides the fact that it has a ternary state space, its good performance is owed
to more information processed in the two functions Jij and Kij. In the sparse models, it
is very rare that two neurons are activated together in one pattern. The BEG model uses
this important information twice, in Jij and Kij and a stored pattern benefits from a high
signal term.

Corollary 5.8 (Corollary to Theorem 5.4:) Suppose that in the BEG model with
threshold γ ∈ (0, 2), there are M = αN2/ log(N)2 patterns stored, with α such that
α < γ/(x∗γ − 1). Let ξ̃µ be a faulty version of the stored pattern ξµ.

1. If in ξ̃µ, there are %1 log(N) of the active neurons of ξµ deactivated, %1 < 1 − γ/2,
the pattern is corrected in one step, with high probability.

2. If %2 log(N) neurons are spuriously activated, the pattern is corrected in the first
step, with high probability, if

α <
γ

(x∗γ − 1)(1 + %2)
.

Here again x∗γ is the root of gγ in (1,∞) as defined in Theorem 5.4.

3. If %3 log(N) neurons are mapped to the opposite value (a 1 is turned into a -1 and
the other way around), the pattern is corrected in one step, if %3 < 1− γ

2
and %3 <

1
2
.

4. If all these errors are combined, the pattern is mapped to ξµ in one step with high
probability, if

%1 + %3 < 1− γ

2
, %1 + 2%3 < 1

and, in case %1 < %2, if α fulfills additionally

α <
γ

(x∗γ − 1)(1 + %2 − %1)
.

All bounds are sharp concerning the correction after one step of the parallel dynamics.

Proof: We just refer to the proof of Theorem 5.4 and point out the differences and
similarities in the proofs. W.l.o.g. we take µ = 1 and assume that Zk holds.

1. The difference between active neurons of ξ1 that are or are not deleted in ξ̃1 is
negligible. The signal terms of their local field and of the function θi is decreased
by %1 log(N)− 1 (respectively %1 log(N)).

The noise terms of Si(ξ̃1) and θi(ξ̃1) become

M∑
µ=2

∑
j 6=i,ξ̃1j 6=0

ξ̃1
j ξ
µ
i ξ

µ
j ∼

M∑
µ=2

∑
j 6=i,ξ̃1j 6=0

ξµi ξ
µ
j and

M∑
µ=2

∑
j 6=i,ξ̃1j 6=0

1

(1− p)2
ηµi η

µ
j .
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5 The Sparse Blume-Emery-Griffiths Model

The interior sums are of length k − %1 log(N) − 1 (resp. k − %1 log(N)) compared
to k − 1 in ξ1. As in the proof of Theorem 5.4, we observe that these neurons are
corrected in one step or remain correct if they have not been corrupted, with high
probability, if %1 < 1 − γ/2. Note that %1 < 1 and the local fields of the active
neurons of ξ1 have the same sign as their spins, with high probability, if ξ̃1 is the
input. The sharpness is proven analogously to Proposition 5.5.

Concerning the inactive neurons of ξ1, the signal term of θi(ξ̃
1) is −(k −

%1 log(N))p/(1 − p) instead of −kp/(1 − p) in ξ1. This difference is not important
for the proof; the exponential in (5.6) changes to

exp

[
(k − %1 log(N))α

(
1

2
e2t − 1

2
− t
)

+O (pk)

]
,

because there are less active neurons in the pattern. This is upper bounded by the
term in (5.6). Since α fulfills the stability condition of the model, these neurons
remain inactive, with high probability.

2. The local field of the active neurons of ξ1 is attached by this kind of error in terms
of the number of involved neurons in the noise term; it increases from k − 1 to
k−1+%2 log(N), if there are k active neurons in ξ1. The signal term of the function
θi(ξ̃

1) does, compared to θi(ξ1), only change by %2 log(N) −p
1−p and the random term

is increased by
M∑
µ=2

∑
j:ξ̃1j 6=0,ξ1j=0

ηµi η
µ
j .

These changes do not raise problems for the stability of the active neurons of ξ1;
they remain correct with high probability.

For the inactive neurons, the proof is almost the same as the corresponding part
of the proof of Theorem 5.4 concerning the stability of the inactive neurons. The
signal term of θi(ξ̃1) is only increased by %2 log(N) p2

(1−p)2 compared to θi(ξ1), which
is negligible. The noise term of Si(ξ̃1) + θi(ξ̃

1) includes additionally the random
variables

M∑
µ=2

∑
j 6=i:ξ̃1j 6=0,ξ1j=0

ξ̃1
j ξ
µ
i ξ

µ
j +

1

(1− p)2
ηµi η

µ
j .

There are %2 log(N) additionally active neurons and the exponential in (5.6) changes
to

exp

[
(k + %2 log(N))α

(
1

2
e2t − 1

2
− t
)

+O (pk)

]
.

The rest of the proof is the same as in the proof of Theorem 5.4. Correction or
respectively stability of the inactive neurons is reached if α < γ/[(x∗γ − 1)(1 + %2)].
The bound is sharp; this is also proven as the corresponding part of Theorem 5.4,
using that there are k + %2 log(N) active neurons in ξ̃1.
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3. The local field of the activated neurons of ξ1 changes, it is

ξ1
i (k − 2%3 log(N) + 1ξ̃µ 6=ξ1i

) +
M∑
µ=2

k∑
j 6=i

ξ̃1
j ξ
µ
i ξ

µ
j ,

with
M∑
µ=2

k∑
j 6=i

ξ̃1
j ξ
µ
i ξ

µ
j ∼

M∑
µ=2

k∑
j 6=i

ξµi ξ
µ
j .

The difference between active neurons of ξ1 whose value is multiplied by −1 and
those that are not affected by the corruption again is negligible. The function θi
does not change. So the signal term of Si(ξ̃1) + θi(ξ̃

1) is decreased by 2%3 log(N)
compared to ξ1. These neurons are active after one step of the dynamics, with high
probability, if 2%3 < 2 − γ. If %3 > 1 − γ/2, an arbitrary active neuron of ξ1 is
deactivated after the first step of the dynamics, with high probability: this follows
as in the proof of Proposition 5.5. In addition, P(∀i ≤ k : sgn(Si(ξ̃

1)) = sgn(ξ1
i )|Zk)

tends to 1, if %3 < 1/2. On the contrary, for an arbitrary active neuron i of ξ1, we
have P(sgn(Si(ξ̃

1)) 6= sgn(ξ1
i )) 9 0, if %3 > 1/2 (see Chapter 3).

The distribution of the local field of the inactive neurons of ξ1 is the same in ξ̃1 and
ξ1 and the function θi does not change for these neurons; since α is chosen according
to the stability condition of the model, they remain inactive, with high probability.

4. The relevant changes for the excited neurons in ξ1 are the decreased signal terms of
the local field and of the function θ, which are equal to k − %1 log(N)− 2%3 log(N)
and k−%1 log(N)−%2 log(N)p/(1− p), respectively, instead of k− 1. Since an error
concerning one of these neurons can only occur if either the random part of |Si|+ θi
falls below γ log(N)− 2k + 2(%1 + %3) log(N) + %2 log(N)p/(1− p) or if the random
part of Si exceeds k−%1 log(N)−2%3 log(N), we observe analogously to the proof of
Theorem 5.4 that the corresponding probability vanishes, if %1 +%3 < 1−γ/2 and if
%1 + 2%3 < 1. If one of these conditions is not fulfilled, an arbitrary active neuron is
not stable, with positive probability not concerging to 0 (in the case %1+%3 > 1−γ/2
it even tends to 1).

Concerning the inactive neurons, the signal term of θi changes, compared to ξ1, from

−kp
1− p

to
−(k − %1 log(N))p

1− p
+
%2 log(N)p2

(1− p)2

which is negligible. There are k − %1 log(N) + %2 log(N) active neurons in ξ̃1 and
the proof works as the corresponding part (stability of the inactive neurons) of
Theorem 5.4, using α(1 + %2 − %1) instead of α. If %2 > %1, α must fulfill

α <
γ

(x∗γ − 1)(1 + %2 − %1)

to guarantee the stability/correction of the inactive neurons of ξ1 with high prob-
ability. If %2 > %1 and α > γ/[(x∗γ − 1)(1 + %2 − %1)], the pattern is not corrected
after one step of the dynamics, with high probability.
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5 The Sparse Blume-Emery-Griffiths Model

Remark 5.9 The corruption of active neurons of a stored pattern affects the choice of
γ: if one wants to correct a high number of errors of this kind, one must choose a small
γ. Of course, this decreases the capacity. Interestingly, there is no difference respective
the choice of γ between the deletion and multiplication by −1 (% log(N) errors require
γ < 2− 2%), in contrary to the model in Chapter 3, which is more vulnerable to the sign
change than to the deletion: the deletion has a less negative impact on the local field and
the correction of % log(N) deleted neurons requires γ < 1 − %, whereas the mulitplication
by −1 requires γ < 1− 2%. However, % ∈ (0, 1) is in both models allowed for the deletion,
in contrary to a restricted choice of % ∈ (0, 1/2) for the multiplication by −1.

The spuriously activated neurons affect directly the bound on α: the critical value
decreases antiproportionally with 1 + % if % log(N) errors have to be corrected. There is
no further condition on %.

Proposition 5.10 There is at least one instable pattern with probability converging to 1
if there is some

β >
γ

2
log
(γ

2

)
− γ

2
+ 1

such that Nβ = o(M(N)), where M(N) denotes the number of stored patterns.
In contrary, all patterns are stable with high probability, if M = o(Nβ′), β′ <

γ
2

log
(
γ
2

)
− γ

2
+ 1.

Proof: To prove the first part, we can assume that M(N) ≤ N2/ log(N)2 for almost all
N ∈ N, because otherwise an arbitrary stored pattern is instable (there is at least one
spuriously activated neuron after the first step of the dynamics) with high probability.

Using Proposition 2.8, we have for Nβ = o(M(N)) and ε > 0 such that β ≥(
γ
2
− ε
)

log
(
γ
2
− ε
)
− γ

2
+ ε+ 1:

lim
N→∞

P

(
∃µ ≤M(N) :

1

log(N)

N∑
j=1

|ξµj | < γ/2− ε

)
= 1.

Using now M(N) ≤ N2/ log(N)2, we see analogously to Proposition 5.5 that an arbitrary
active neuron of a pattern with k < (γ/2− ε) log(N) excited neurons is inactive after the
first step of the dynamics, with high probability.

If in contrary M(N) = o(Nβ′), β′ < γ
2

log(γ
2
) − γ

2
+ 1, we have for ε′ > 0 such that

β′ ≤ (γ
2

+ ε′) log(γ
2

+ ε′)− γ
2
− ε′ + 1

lim
N→∞

P

(
∀µ ≤M(N) :

1

log(N)

N∑
j=1

|ξµj | ≥ γ/2 + ε′

)
= 1.

As in the proof of Proposition 3.4, using that P
(
∃µ ≤M(N) :

∑N
j=1 |ξ

µ
j | ≥ 3 log(N)

)
→

0, we observe that the stability of all stored patterns is provided if M(N) = o(Nβ′),
β′ < γ

2
log
(
γ
2

)
− γ

2
+ 1.

To improve the performance, it is also possible to consider a version of the sparse BEG
model with a fixed number c ≈ log(N) of active neurons per stored pattern, using p = c/N
in the definition of the variables Kij and ηi.

142



5.2 Stability and Error Correction in the Sparsity Adopted BEG Model

Proposition 5.11 If the stored messages are chosen independently and uniformly from
the set of patterns with exactly c ≈ log(N) active neurons, if the number of stored patterns
is M = αN2/c2 and the threshold γc is used, each γ < 2 is admissible, each γ > 2 is
inadmissible and for fixed γ, each α that fulfills the stability conditions of Theorem 5.4 is
also admissible for γ for this second setting of the model.

In addition, if the two conditions 1.)

1

2
α
(
−
(

1 +
γ

α

)
log
(

1 +
γ

α

)
+
γ

α

)
< −3

and 2.)

−arsinh

(
1

α

)
+ αcosh

(
arsinh

(
1

α

))
− α < −2

are fulfilled and additionally either condition 3a.)

1

2
α

(
−
(

1− 2− γ
α

)
log

(
1− 2− γ

α

)
− 2− γ

α

)
< −2 and α > 2− γ

or 3b.)
α < 2− γ

hold, we have
lim
N→∞

P(∃µ ≤M(N) : T (ξµ) 6= ξµ) = 0.

Proof: For a fixed neuron i > c, the exponential moments of

M∑
µ=2

∑
j≤c

ξµi ξ
µ
j +

1

(1− c/N)2
ηµi η

µ
j

are as in the previous models similar to those of the model with i.i.d. spins: we consider
for fixed i > c

E

[
exp

(
t

M∑
µ=2

c∑
j=1

ξµi ξ
µ
j +

1

(1− c/N)2
ηµi η

µ
j

)∣∣∣Zc]

=

[(
1− c

N

) c∑
i=0

(
c

i

) i−1∏
n=0

c− n
N − 1− n

c−i−1∏
m=0

(
1− c− i

N − 1− i−m

)
e
−ti c/N

1−c/N +t(c−i) c2/N2

(1−c/N)2 +

c

N

c−1∑
i=0

(
c

i

) i−1∏
n=0

c− 1− n
N − 1− n

c−1−i∏
m=0

(
1− c− 1− i

N − 1− i−m

)
eti−t(c−i)

c/N
1−c/N

(
1

2
et +

1

2
e−t
)i]M−1

=

[(
1− c

N

)[
1 +O

(
c5

N3

)]
+

c

N

[
1− c2

N
− c2

N
t+

c2

N

1

2
et(et + e−t) +O

(
c5

N2

)]]M−1

=

[
1 +

c3

N2

(
1

2
(e2t + 1)− 1− t

)
+O

(
c6

N3

)]M−1

= eαc[
1
2

(e2t+1)−1−t](1 + o(1)).
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5 The Sparse Blume-Emery-Griffiths Model

For fixed i ≤ c we obtain analogously

E

[
exp

(
t
M∑
µ=2

c∑
j 6=i

ξµi ξ
µ
j +

1

(1− c/N)2
ηµi η

µ
j

)∣∣∣Zc] ≤ eα(c−1)[ 12 (e2t+1)−1−t](1 + o(1)).

Combined with the results of Proposition 3.5 and Theorem 5.4 we observe that stability is
reached with high probability in this second setting of the model if the stability conditions
of Theorem 5.4 are fulfilled and that particularly each γ < 2 is admissible. In addition,
the same arguments as in the proof of Proposition 5.5 show that γ > 2 is inadmissible.

Concerning the second notion of capacity, the conditions to guarantee the stability
of all patterns are obtained analogously to the conditions of Theorem 5.4: using P(∃µ :
T (ξµ) 6= ξµ) ≤ MP(T (ξ1) 6= ξ1). Condition 1.) is sufficient to keep the stability of the
inactive neurons (compare (5.7) and subsequent calculations) and conditions 2.) and 3.)
for the stability of the active neurons ((5.16) and subsequent calculations for the second
condition and finally (5.15), (5.17) and page 127 for the third condition).

�
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6 The Gripon-Berrou Model

Gripon, Berrou et al. proposed in a series of papers, e. g., [16], [17], [22] or [23], several
variations of a model relying on a cluster structure. The model uses N = cl neurons
organised in c clusters, each cluster containing l neurons. The patterns that are stored
in the network consist of exactly one activated neuron per cluster. The authors propose
a choice of c = log(l): c should not be a constant, as we will see in the next section, but
also be as small as possible (see [17]). The patterns are therefore extremely sparse, as
in the previous models. A further difference to the models considered so far is that the
underlying graph is not the complete graph on {1, . . . , N}: apart from self-loops, neurons
are connected if and only if they belong to different clusters. Both, cluster structure and
sparse patterns are properties of the network inspired by brain structure and activities.

Gripon and Berrou motivate the groups of neurons as an alphabet A of size l. Each
cluster then consists of l neurons of which each one is associated to exactly one value of
the alphabet. The patterns, also called messages, can be identified with words of length c
of this alphabet. By identifying A with A′ = {1, . . . , l} by some bijective map, a message
is associated with an element ξ̃ = (ξ̃1, . . . , ξ̃c) of (A′)c. The value ξ̃a, 1 ≤ a ≤ c, indicates
the one and only element in cluster a that is activated in (also referred as part of) the
message. This representation is, to reach a more convenient notation, replaced by the
following one: instead of ξ̃, we use ξ ∈

(
{0, 1}l

)c, and ξ̃ is transformed into ξ through the
map ξ̃ → (eξ̃1 , . . . , eξ̃c) ∈ {0, 1}

cl, with the i-th l-dimensional unit vector ei.
We assume the messages to be chosen independently and uniformly of the set of all

valid (which means that exactly one neuron is activated per cluster) patterns in {0, 1}cl.
The stored patterns are denoted by ξ1, . . . , ξM ; M = M(N) is the number of stored
messages. In particular, these patterns are sparse because each one has c active neurons,
only, with c = log(l) ≈ log(N), comparable to the models in chapters 2 - 5.

The model is originally close to the WTA algorithm in the Willshaw model, using
binary synaptic efficacies and a sort of Winner takes all algorithm. Gripon and Berrou
illustrate the storing process and the dynamics by a graph visualisation (see [17]): using
the underlying graph structure of the model, a message ξµ is stored by establishing the
complete graph G(ξµ) between its activated neurons and the corresponding self-loops.
This means that each edge between two neurons being part of the message is activated,
that is, Je is set to 1. In this context, we sometimes speak of existing connections between
the neurons or of a fully connected graph even though strictly speaking the edges already
exist but are inactive. The set of neurons that could form a valid message together
with the (activated) edge set of its complete graph is also referred as clique. Once
activated, an edge cannot be erased. If it is already active, nothing is changed. This
corresponds to the synaptic efficacies in the Willshaw model: they are also set to 1 if the
corresponding neurons are at least once activated in the same message and remain at this
value afterwards. The model can be defined with or without self-loops: taking them into
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6 The Gripon-Berrou Model

account, each neuron that is once excited in a message is then connected to itself. In [23]
Gripon and Berrou also propose a weighted self-loop.

For a given configuration of the network used as input, a dynamics can be applied.
Given this input, each neuron receives a certain number of signals: signals are emitted
by activated neurons and can only be transmitted through active edges. In particular, a
neuron can only obtain signals from neurons of different clusters or from itself. However,
the decisive information is not how many signals a neuron receives in total: the idea of
the model is to count only the number of different clusters from which a neuron receives
signals. Finally there are different options to proceed and to decide which neurons will be
(or remain) activated, but the original one which turns out to provide the best capacity
is to activate the neuron within a cluster that obtains the most signals from different
clusters (this is called SUM-of-MAX rule). It is reasonable to count at most one incoming
signal per cluster because the network aims to decide if messages belong to the stored
ones or to repair deleted or corrupted messages. Let us e. g., consider a corrupted stored
message as input pattern such that in at least one cluster there are at least c−1 spuriously
activated neurons and that in one cluster the active neuron has been erased and no neuron
is active. The fact that a message only consists of one activated neuron per cluster implies
that a neuron in the erased cluster that is e. g., connected to c neurons of the cluster with
spuriously activated neurons and to none of the other clusters should not win against a
neuron that receives one signal from each of the c− 1 clusters to which it does not belong
because this neuron and the neurons that send signals to this neuron could form a correct
stored message, whereas the first neuron cannot be part of a valid message formed by,
besides the neuron itself, active neurons of the input. The second neuron should thus be
more likely to be activated.

Formally, the GB model can be described as follows: on a vertex set V = {(a, i) : a ∈
{1, . . . , c}, i ∈ {1, . . . , l}} the edge set is given by

E = {{(a, i), (b, j)} : (a, i), (b, j) ∈ {1, . . . , c} × {1, . . . , l} : a 6= b} ∪ {{(a, i)} : (a, i) ∈ V }.

Denoting the stored patterns by ξ1, . . . , ξM , ξµ = (ξµ(1,1), . . . , ξ
µ
(1,l), ξ

µ
(2,1), . . . , ξ

µ
(c,l)), the

synaptic weights are for each e ∈ E defined by

J(a,i),(b,j) =

{
1 ∃µ ∈ {1, . . . ,M} : ξµ(a,i)ξ

µ
(b,j) = 1

0 otherwise.

The synaptic efficacy J(a,i)(a,i) is equal to 1 if and only if the neuron (a, i) (the i-th neuron
of the a-th cluster) is part of at least one message ξµ. The synaptic efficacy J(a,i),(b,j) is 1
if and only if the i-th neuron of cluster a and the j-th neuron of cluster b have been part
for at least one time in the same stored message.

The model Gripon and Berrou propose in e. g., [16] and [22] uses a WTA algorithm
which is called the SUM-OF-MAX rule. The local field is, in dependence of the intensity
of the self-loop influence, defined by

S(β)(a,i)(σ) =
c∑

b=1,b6=a

Θ

(
l∑

j=1

J(a,i),(b,j)σ(b,j) − 1

)
+ βJ(a,i),(a,i)σ(a,i).
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Θ again is the Heaviside function, Θ(x) = 1x≥0. We concentrate our analysis on the
extremal cases β = 1 and β = 0, for which the local fields are called

S̄(a,i)(σ) := S(1)(a,i)(σ) =
c∑

b=1,b 6=a

Θ

(
l∑

j=1

J(a,i),(b,j)σ(b,j) − 1

)
+ J(a,i),(a,i)σ(a,i)

and

S(a,i)(σ) := S(0)(a,i)(σ) =
c∑

b=1,b 6=a

Θ

(
l∑

j=1

J(a,i),(b,j)σ(b,j) − 1

)
.

By analysing both variations in comparison, we will see that the self-loops improve the
stability results and additionally observe that the dynamics using S(β), β ∈ (0, 1), behaves
exactly like the one using S̄. In dependence on S(β), the parallel dynamics is defined by
T (β) = (T (β)(1,1), . . . , T (β)(c,l)),

T (β)(a,i)(σ) = Θ(S(β)(a,i)(σ)− h(a)), where h(a) = max{S(β)(a,i), i = 1, . . . , l}.

If there is no ambiguity, T (β) is also called T , for short.
There are several variations of the model, obtained by modifying the dynamics and

sometimes also the synaptic efficacies. These models are also referred to as GB model
because they use the cluster structure, but their characteristics are indicated by their
specifying names. The model described so far is called the GB model with binary
synaptic efficacies and SUM-of-MAX rule. Concerning this dynamics and local
field, speaking in terms of the graph illustration, a pattern σ′ ∈ {σ ∈ {0, 1}cl : ∀1 ≤ a ≤
c :
∑l

i=1 σ(a,i) = 1} is considered to be stored if each edge of the complete graph spanned
by its activated neurons (the corresponding clique) is contained in the setM := {e ∈ E :
Je = 1}. We will see that in this case the dynamics cannot decide whether the pattern is
one of the stored ones or not and will recognise it as stored.

The first variation was also proposed by Gripon and Berrou (see [23]). It uses a
threshold dynamics while keeping the definition of the synaptic efficacies and the cluster
structure. The dynamics is, for some 0 < γ < 1, defined by

T (β)(a,i)(σ) =

{
1 S(β)(a,i) ≥ γc

0 otherwise.

We will call this model theGB model with binary synaptic efficacies and threshold
dynamics.

A second variation of the model is obtained if the cluster structure is maintained, but
the synaptic weights are replaced by

J(a,i),(b,j) =
M∑
µ=1

ξµ(a,i)ξ
µ
(b,j), a 6= b, J(a,i),(a,i) = 0

as in the Hopfield model, Amari’s model or the Ternary simple model. This is combined
with a threshold dynamics:

T(a,i)(σ) =

{
1
∑c

b=1,b 6=a
∑l

j=1 J(a,i),(b,j)σ(b,j) ≥ γ(c− 1)

0 otherwise.
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6 The Gripon-Berrou Model

This model was proposed and analysed by Löwe, Vermet and Heusel in [20]. This model is
called the GB model with weighted synaptic efficacies. It turned out that it shows
the same behaviour as Amari’s model with fixed activity.

The different variations are analysed in the following sections. We will see that each
of them corresponds to one of the models of the previous chapters and offers the same
capacity variables but also benefits from the cluster structure and has some advantages
compared to the corresponding model. In particular, the GB model with binary synaptic
weights and SUM-of-MAX rule has some interesting properties. The first section deals
with the GB model with weighted synaptic efficacies and the second with the the two
binary versions of the model.

Finally it is also possible to adapt the model to the two ternary models while keeping
the cluster structure. This will shortly be described in the last section of this chapter.

6.1 The GB Model with Weighted Synaptic Efficacies

A detailed analysis of the associative abilities of the GB-network with SUM-OF-MAX
rule first seemed to be difficult. Therefore the following variant of this model has been
proposed and analysed in [20].

As indicated in the name, the synaptic efficacy between two neurons used in the original
model is replaced in this section by one counting every joint activation in a message of
these two neurons. However, the cluster structure is maintained. The synaptic efficacies
are given by

J(a,i),(b,j) =
M∑
µ=1

ξµ(a,i)ξ
µ
(b,j), a 6= b; J(a,i),(a,i) = 0

and the local field of an input σ ∈ {0, 1}cl at some point (a, i) is defined as

S(a,i)(σ) =
∑
a6=b

l∑
j=1

J(a,i),(b,j)σ(b,j).

The dynamics activates a neuron if its local field exceeds the threshold h = γ(c− 1).
We will see that this model generally behaves like Amari’s model. Assuming that

the number of stored messages is M = αl2, the variable α must be chosen according
to the same constraints as in Amari’s model to achieve stability of an arbitrary stored
pattern or to allow correction of a certain number of errors. However, the model has some
advantages over Amari’s model: it is possible to achieve stability of every pattern with
high probability without loosing the order of the number of stored patterns but only by
adapting the constant α. In the first version of Amari’s model on the contrary, the size
of M cannot be maintained: to ensure that all patterns are stable, M must be adjusted
downwards to M = Nβ, for some β < 1 depending on the threshold γ.

Theorem 6.1 In the GB model with weighted synaptic efficacies and threshold dynamics,
suppose that there are M = αl2 stored messages ξ1, . . . , ξM . The threshold variable γ > 0
is chosen such that

γ < γ∗
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6.1 The GB Model with Weighted Synaptic Efficacies

with the root γ∗ of f(γ) = γ
e2/γ
− γ + 1, γ∗ ≈ 1.255. If now α < γ,

−γ log
(γ
α

)
+ γ − α < −1 (6.1)

and additionally
α > max(0, γ − 1),

an arbitrary stored message ξµ is stable with probability converging to 1:

lim
l→∞

P
(
∀(a, i) : T(a,i)(ξ

µ) = ξµ(a,i)

)
= 1.

On the other hand, if either 1.) α ≥ γ or 2.) α < γ and

−γ log
(γ
α

)
+ γ − α > −1 (6.2)

or 3.) in case γ > 1
0 < α < γ − 1,

we have
lim
l→∞

P
(
∃(a, i) : T(a,i)(ξ

µ) 6= ξµ(a,i)

)
= 1.

Each message is stable with high probability,

lim
l→∞

P
(
∀µ, (a, i) : T(a,i)(ξ

µ) = ξµ(a,i)

)
= 1

if we choose γ ≤ 1 and α < γ such that

−γ log
(γ
α

)
+ γ − α < −3.

If we use the threshold γ and a threshold variable α fulfilling the above stability conditions,
a randomly chosen ξ̃µ which has been built by deleting randomly %c entries of ξµ and
by replacing them in %1c, %1 ≤ % clusters by another randomly chosen neuron of the
corresponding cluster, is mapped with high probability directly to ξµ:

lim
l→∞

P
(
∀(a, i) : T(a,i)(ξ̃µ) = ξµ(a,i)

)
= 1,

if the inequality
% < 1− γ + α(1− %2)

holds, with %2 = %− %1. This is in particular guaranteed if % < 1− γ + α.

Proof of Theorem 6.1: Without loss of generality we consider µ = 1 and assume that
the first pattern is ξ1 = (e1, . . . , e1). To begin with the proof, let γ ≤ 1 and α < γ.

There are two cases to consider. An active neuron should remain activated and an
inactive neuron should remain deactivated. Let us start with the first case.

For i = 1 and 1 ≤ a ≤ c,

S(a,1)(ξ
1) =

c∑
b=1,b 6=a

l∑
j=1

J(a,1),(b,j)ξ
1
(b,j) = c− 1 +

c∑
b=1,b 6=a

M∑
µ=2

ξµ(a,1)ξ
µ
(b,1),
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6 The Gripon-Berrou Model

so if we choose γ ≤ 1, we immediately see that

P(∀1 ≤ a ≤ c : T(a,1)(ξ
µ) = 1) = 1.

We consider a = 1 and i = 2 representatively for the case ξ1
(a,i) = 0. Then

P
(
T(1,2)(ξ

1) 6= ξ1
(1,2)

)
= P

(
c∑
b=2

l∑
j=1

J(1,2),(b,j)ξ
1
(b,j) ≥ γ(c− 1)

)

=P

(
c∑
b=2

M∑
µ=2

ξµ(1,2)ξ
µ
(b,1) ≥ γ(c− 1)

)
≤ e−tγ(c−1)E

[
et
∑c
b=2

∑M
µ=2 ξ

µ
(1,2)

ξµ
(b,1)

]
=e−tγ(c−1)E

[
et
∑c
b=2 ξ

2
(1,2)

ξ2
(b,1)

]M−1

(6.3)

for arbitrary t > 0. Here we first applied the definition of the dynamics, the definition of J
and the assumptions concerning ξ1. Finally we used the exponential Chebyshev inequality
and the independence of the messages. We compute E

[
et
∑c
b=2 ξ

2
(1,2)

ξ2
(b,1)

]
and obtain the

following bound:

E
[
et
∑c
b=2 ξ

2
(1,2)

ξ2
(b,1)

]
=

(
1− 1

l

)
· 1 +

1

l

(
E[et

∑c
b=2 ξ

2
(b,1) ]

)
=

(
1− 1

l

)
+

1

l

(
1− 1

l
+

1

l
et
)c−1

≤
(

1− 1

l

)
+

1

l
e(c−1)· e

t−1
l ,

due to the estimate 1 +x ≤ ex for all x ∈ R. Inserting this into (6.3) yields, by using once
more 1 + x ≤ ex:

P
(
T(1,2)(ξ

1) 6= ξ1
(1,2)

)
≤e−tγ(c−1)

[(
1− 1

l

)
+

1

l
e(c−1)· e

t−1
l

]M
≤ e−tγ(c−1)e

M
l

(
e(c−1)· e

t−1
l −1

)
.

(6.4)

For fixed t not depending on l and l → ∞, expanding the exponential and taking into
account M = αl2 yields

P
(
T(1,2)(ξ

1) 6= ξ1
(1,2)

)
≤ exp [−tγ(c− 1)] exp

[
M

l

(
e(c−1)· e

t−1
l − 1

)]
= exp

[
−tγ(c− 1) +

M

l

(
(c− 1)

et − 1

l
+O

(
c2

l2

))]
= exp

[
(c− 1)

(
−tγ + α(et − 1)

)
+O

(
c2

l

)]
= exp

[
(c− 1)

(
−tγ + α(et − 1)

)] [
1 +O

(
c2

l

)]
.

The last line takes its minimum at t = log(γ/α). The condition t > 0 is for this choice
fulfilled if γ > α. Since we have l neurons in each cluster, the probability of having an
error is, as long as γ ≤ 1 and α < γ, at most
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P
(
∃(a, i) : T(a,i)(ξ

1) 6= ξ1
(a,i)

)
≤cl · P

(
T(1,2)(ξ

1) 6= ξ1
(1,2)

)
≤ exp

[
log(c) + c+ (c− 1)

(
−tγ + α(et − 1)

)] [
1 +O

(
c2

l

)]
.

Using t = log(γ/α), this vanishes if

−γ log
(γ
α

)
+ γ − α < −1.

Let now γ > 1, α > max(0, γ − 1) and α < γ, −γ log(γ/α) + γ − α < −1. We observe
again that the local field of an activated neuron, i.e. i = 1, is

S(a,1)(ξ
1) =

c∑
b=1,b 6=a

l∑
j=1

J(a,1),(b,j)ξ
1
(b,j) = c− 1 +

c∑
b=1,b 6=a

M∑
µ=2

ξµ(a,1)ξ
µ
(b,1)

and that the pattern is stable with high probability if

P

(
∃1 ≤ a ≤ c :

c∑
b=1,b 6=a

M∑
µ=2

ξµ(a,1)ξ
µ
(b,1) < (γ − 1)(c− 1)

)
−→ 0.

In analogy to the exponential moment computed in the first part of the proof, the expo-
nential moment of −

∑c
b=1,b6=1

∑M
µ=2 ξ

µ
(1,1)ξ

µ
(b,1) is at most

E
[
e−t

∑c
b=2

∑M
µ=2 ξ

µ
(1,1)

ξµ
(b,1)

]
≤ exp

[
(c− 1)α

(
e−t − 1

)] [
1 +O

(
c2

l

)]
and the above probability is bounded by

P

(
∃1 ≤ a ≤ c :

c∑
b=1,b 6=a

M∑
µ=2

ξµ(a,1)ξ
µ
(b,1) < (γ − 1)(c− 1)

)

≤ c· exp [(γ − 1)(c− 1)t] exp
[
(c− 1)α

(
e−t − 1

)] [
1 +O

(
c2

l

)]
.

With t = − log
(
γ−1
α

)
, positive if γ − 1 < α, this converges to 0. The part concerning the

inactive neurons can be shown as in the first part of the proof. Thus an arbitrary pattern
is stable if the conditions of Theorem 6.1 are fulfilled.

In addition, all the patterns are stable, that is,

lim
l→∞

P
(
∃1 ≤ a ≤ c, 1 ≤ i ≤ l, 1 ≤ µ ≤M : T(a,i)(ξ

µ) 6= ξµ(a,i)

)
= 0,

if γ ≤ 1 and
Mlce(c−1)(−γ log(γ/α)+γ−α) −→ 0.

This happens if
−γ log

(γ
α

)
+ γ − α < −3.
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6 The Gripon-Berrou Model

Concerning the stability results, it remains to show that the derived bounds are sharp.
First, assume that γ > 1 and 0 < α < γ − 1. Take (a, i) with ξ1

(a,i) = 1, w.l.o.g. (1, 1).
ξ1

(1,1) is not stable if
M∑
µ=2

c∑
b=2

ξµ(1,1)ξ
µ
(b,1) < (γ − 1)(c− 1).

Now the probability is bounded, by applying the exponential Chebyshev inequality and
the exponential moment obtained in the first part of the proof

P

(
∃a ≤ c :

M∑
µ=2

c∑
b 6=a

ξµ(a,1)ξ
µ
(b,1) ≥ (γ − 1)(c− 1)

)

≤c exp [−(γ − 1)(c− 1)t] exp
[
(c− 1)α

(
et − 1

)] [
1 +O

(
c2

l

)]
.

Taking t = log
(
γ−1
α

)
> 0 because γ − 1 > α, this probability vanishes. Thus

lim
l→∞

P
(
T (ξ1) 6= ξ1

)
= 1

for γ − 1 > α. In particular, if α < γ − 1, even

lim
l→∞

P
(
T (ξ1) = (0, . . . , 0)

)
= 1

holds.
Let now α < γ and −γ log

(
γ
α

)
+ γ − α > −1. We saw in the first part of the proof

that the lower bounds on α of this model coincide with those of Amari’s model. The
exponential moments of the local field have the same form in these two models. But also
the upper bounds coincide. In comparison to the proof concerning Amari’s model, the
cluster structure complicates the situation. There are two main differences to Amari’s
model: on the one hand, we will just consider one fixed cluster and prove that there
will already be an error with high probability. It is not necessary to consider all inactive
neurons. On the other hand, the cluster structure implies that for some fixed cluster
a, the ξµ(a,i), 1 ≤ i ≤ l, are not independent. But these random variables are negatively
associated which will be helpful in the proof.

So we fix some cluster, e. g., a = 1. We consider the random variables

Θ

(
c∑
b=2

ξµ(b,1) − 1

)
, µ ≥ 2

which are independent and identically Bernoulli distributed with parameter p1 = 1− (1−
1/l)c−1 = c−1

l
+O(c2/l2). As in Chapter 2, the probability

P

[
M∑
µ=2

Θ

(
c∑
b=2

ξµ(b,1) − 1

)
< (1− δ)α(c− 1)l

]
−→ 0.
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6.1 The GB Model with Weighted Synaptic Efficacies

The complement of the corresponding event is called

Bδ :=
{ M∑
µ=2

Θ
( c∑
b=2

ξµ(b,1) − 1
)
≥ (1− δ)α(c− 1)l

}
.

In addition, the variables ξµ(1,i), i ≥ 2, are for fixed µ negatively associated. This can easily
be checked by computing the covariance for increasing functions f1, f2 due to the fact
that the variables are binary and exactly one of them takes the value 1, each with equal
probability or by observing that they are Multivariate Hypergeometrically distributed with
parameters l−1 (number of different colours/characteristics), 1 (number of drawings) and
(1, . . . , 1) (multiplicity of the characteristics) (see [26]). Using Lemma 2.12 3.), we observe
that ξµi , µ ≥ 2, i ≥ 2, are negatively associated. Given ξµ(b,1), µ ≥ 2, b ≥ 2, the sums

M∑
µ=2

Θ

(
c∑
b=2

ξµ(b,1) − 1

)
· ξµ(1,i), i ≥ 2

then are conditionally negatively associated because we applied increasing functions on
disjoint subsets of the negatively associated variables. We write F = σ(ξµ(b,1), µ ≥ 2, b ≥ 2).
This yields, using Lemma 2.12, 4.) in the penultimate step of the subsequent computation

P

[
∀i ≥ 2 :

M∑
µ=2

c∑
b=2

ξµ(1,i)ξ
µ
(b,1) < γ(c− 1)

∣∣∣F]

≤P

[
∀i ≥ 2 :

M∑
µ=2

Θ

(
c∑
b=2

ξµ(b,1) − 1

)
· ξµ(1,i) < γ(c− 1)

∣∣∣F]

≤
l∏

i=2

P

[
M∑
µ=2

Θ

(
c∑
b=2

ξµ(b,1) − 1

)
· ξµ(1,i) < γ(c− 1)

∣∣∣F]

=

(
1− P

[
M∑
µ=2

Θ

(
c∑
b=2

ξµ(b,1) − 1

)
· ξµ(1,2) ≥ γ(c− 1)

∣∣∣F])l

.

In addition, we have on Bδ

min
Bδ

P

[
M∑
µ=2

Θ

(
c∑
b=2

ξµ(b,1) − 1

)
· ξµ(1,2) ≥ γ(c− 1)

∣∣∣F]

≥P

α(c−1)l(1−δ)+1∑
µ=2

ξµ(1,2) ≥ γ(c− 1)

 .
This is true because the (conditional) probability of the event that the sum in the first
line exceeds the threshold γ(c − 1) is increasing in the number of non-zero summands
Θ(
∑c

b=2 ξ
µ
(b,1) − 1), µ ≥ 2, so the minimum of the conditional probabilities on this set is

attained for
∑M

µ=2 Θ(
∑c

b=2 ξ
µ
(b,1)−1) = α(c−1)l(1−δ), assuming that α(c−1)l(1−δ) ∈ N.
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6 The Gripon-Berrou Model

Now the proof is continued analogously to the proof of Theorem 2.1. The random
variable

∑α(c−1)l(1−δ)+1
µ=2 ξµ(1,2) is approximately Poisson distributed with parameter α(c −

1)(1 − δ). The total variation distance between the two distributions is at most 2αc/l.
Let Yλ denote a Poisson distributed random variable with parameter λ > 0. Combining
the above results, the limit

lim
l→∞

P
(
∃i ≥ 2 : T(1,i)(ξ

1) 6= ξ1
(1,i)

)
≥ lim

l→∞
P(Bδ)

(
1−

[
1− P

(
Yα(1−δ)(c−1) ≥ γ(c− 1)

)
+ 2αc

1

l

]l)
is equal to 1 if

lim
l→∞

1

log(l)
log
(
P
(
Y(c−1)(1−δ)α ≥ γ(c− 1)

))
> −1.

Since −γ log
(
γ
α

)
+ γ − α > −1 and α < γ, a suitable choice of δ yields

lim
l→∞

1

log(l)
log
(
P
(
Y(c−1)(1−δ)α ≥ γ(c− 1)

))
= −γ log

(
γ

α(1− δ)

)
+ γ − α(1− δ) > −1

and a stored pattern is instable, with high probability.
Let finally α ≥ γ and γ < γ∗. As shown in Chapter 2, we observe that there is some

α′ < γ such that −γ log(γ/α′) + γ − α′ > −1, which means that

P
(
∃i ≤ l : ξ1

(1,i) = 0, T(1,i)(ξ
1) 6= 0

)
−→ 1

if M = α′l2 patterns are stored. Since α > α′, this also holds if M = αl2, because the
probability that the correcponding neuron allocates enough signals to exceed γ(c − 1)
increases in the number of stored patterns.

Concerning the error correction, let the pattern ξ̃1 corrupted as described in the theo-
rem be used as input for the dynamics. The inactive neurons of ξ1 are or remain inactive
with high probability, because at most c neurons are activated and the stability condi-
tions are fulfilled. The activated neurons of ξ1 are recovered or remain activated with
high probability, because the local field of one of these neurons is

S(a,1)(ξ̃
1) = (1− %)(c− 1) +

M∑
µ=2

∑
b 6=a:∃ib≤l:
ξ̃1
(b,ib)

=1

ξµ(a,1)ξ
µ
(b,ib)

,

which can exactly be treated as in the previous proof concerning the stability of the
activated neurons if γ > 1. Note that there are (1− %2)c clusters with exactly one active
neuron and %2c clusters with no active neuron.

This finishes the proof of Theorem 6.1.

�

Corollary 6.2 The critical values of the threshold and the capacity variables in this model
are γ∗ ≈ 1.255 and α∗ ≈ 0.255, respectively, obtained in Chapter 2.
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6.2 The Gripon-Berrou Model with Binary Synaptic Efficacies

Proof: This results from the analysis of the relation of the capacity and threshold vari-
ables in the proof of Theorem 2.5.

Remark 6.3 We saw that the model behaves exactly as Amari’s model concerning the
bounds on the capacity variables. The main difference to Amari’s model is, on the one
hand, that the number of active neurons per stored pattern is fixed (in contrast to the first
version of Amari’s model) and, on the other hand, that the location of the active neurons
is restricted to the different clusters. The cluster structure cannot be exploitet to obtain
better results. However, it improves the performance of the models in the next section.

6.2 The Gripon-Berrou Model with Binary Synaptic
Efficacies

6.2.1 The SUM-OF-MAX Rule

As already explained in the introduction of this chapter, the neurons of this network are
organised in clusters and the updating dynamics activates the neuron(s) in each cluster
that possess the highest local field within their cluster. The local field counts the number
of clusters from which at least one signal is received. Each activated neuron that is linked
to the neuron by an active edge sends a signal; the important feature of the model is that
it is not decisive how many signals a neuron receives in total but the number of different
clusters in which it is linked by an (active) edge to at least one activated neuron. The
winner(s) within a cluster is/are activated and each other neuron is set to 0.

We will see that this model, as long as it counts self-loops, i.e., the local field S̄ is
used, guarantees the stability of all stored patterns, independently of their number. This
is stated and proved in the following proposition:

Proposition 6.4 In the GB model with WTA dynamics (SUM-OF-MAX rule) and local
field S̄ or S(β), respectively, with an arbitrary β ∈ (0, 1), each stored pattern is a fixed
point of the dynamics, independent of the number of stored messages in the network.

Proof of Proposition 6.4 We take one of the stored messages, e. g., ξ1. There is exactly
one activated neuron per cluster, and these c neurons are fully interconnected (by active
edges) because they are all part of ξ1. Each of them consequently gets one signal per
cluster, in total c signals. A neuron that is not activated in ξ1 does not get a signal from
its own cluster because it is inactive and there are no connections within a cluster beside
the self-loops. It can thus collect at most c− 1 signals. We therefore know that

S̄(a,i)(ξ
1)

{
= c ξ1

(a,i) = 1

≤ c− 1 ξ1
(a,i) = 0.

This yields immediately T (ξ1) = ξ1.
Taking β > 0, we observe the same, because again for each neuron (a, i) with ξ1

(a,i) = 0,
the local field is at most

S(β)(a,i)(ξ
1) ≤ c− 1
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6 The Gripon-Berrou Model

and for a neuron (a, i) with ξ1
(a,i) = 1, we have

S(β)(a,i)(ξ
1) = c− 1 + β > c− 1.

�

Of course, it is not reasonable to store all possible valid messages; the network would
then be needless. Besides the stability of the stored patterns, a task the network should
perform is the error correction of partially corrupted messages. If too many patterns are
stored, the network is intolerant to small errors.

To illustrate this problem, imagine that a stored pattern ξµ is defective in the following
way: in one fixed cluster, the activated neuron has been replaced by another one. If this
spurious neuron has connections to the rest of the neurons of ξµ, the message will not
be recovered. If S̄ is used, the correct neuron will even not be activated; if S is used
instead, it will be activated, but the spurious neuron will never be deactivated. It is thus
reasonable to restrict the number of stored patterns such that not too many of the edges
are contained inM.

In addition, patterns that are not stored should not be recognised as stored ones. The
network cannot distinguish stored patterns from patterns whose edge set connecting the
activated neurons is completely contained inM. The probability of having activated all
the edges corresponding to an arbitrary pattern should converge to 0.

We will analyse the mentioned probability and gather informations about an appro-
priate number of messages to be stored in the network. To this end, let ξ0 be an arbitrary
valid message. It is recognised as stored if each of the

(
c
2

)
edges of the complete graph

G(ξ0) connecting the c active neurons of the message is contained in M: this event is
denoted by G(ξ0). Note that we do not consider the self-loops belonging to ξ0 in G(ξ0)
because they are automatically contained inM if the other edges connecting all pairs of
active neurons of ξ0 are; then each neuron has been active in at least one stored message.

Theorem 6.5 Consider the GB model with binary weights using N = cl neurons organ-
ised in c = log(l) clusters of size l. Assume that the total number of stored patterns is
equal to

M = α(log c)l2 = α log(log l) · l2.

If α > 2, a randomly chosen message (independent of the stored patterns) will be recognised
as a stored message with probability converging to 1 as l→∞.

If α = 2, with positive probability not tending to 0 a random message will be recognized
as a stored message as l→∞.

If α < 2, the probability that a random message will be recognized as stored goes to
zero as l→∞.

In the proof of this theorem, we will use association of random variables (see e. g., [14]).

Definition 6.6 (see [10] and [14]) A set of real valued random variables X =
(X1, X2, . . . , Xn) is associated, if

Cov(f(X), g(X)) ≥ 0
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6.2 The Gripon-Berrou Model with Binary Synaptic Efficacies

for every coordinatewise increasing functions f and g from Rn to R for which the corre-
sponding expectations exist.

Lemma 6.7 (see [14], P1, P4 and Theorem 1)

1. Any subset of associated random variables is again associated.

2. Independent random variables are associated.

3. Increasing functions of associated random variables are associated.

For nonnegative integer valued respectively binary associated random variables, the fol-
lowing two Lemmata hold and can be applied in order to bound the probability P(G(ξ0)).

Lemma 6.8 (see [10], Theorem 1) Let X1, X2, . . . , Xn be associated nonnegative integer
valued random variables. Then

0 ≤ P[Xi = 0, i = 1, . . . , n]−
n∏
i=1

P[Xi = 0] ≤
∑

1≤i<j≤n

Cov(Xi, Xj).

Lemma 6.9 (see [14], Theorem 4.1) Let X1, . . . , Xn be associated binary random vari-
ables. Then

P[X1 = 1, . . . , Xn = 1] ≥
n∏
i=1

P[Xi = 1].

Proof of Theorem 6.5 Let ξ0 be a randomly chosen valid message. Without loss of
generality we may assume that ξ0

(a,1) = 1, for all a = 1, . . . , c. The probability P(G(ξ0)) is
given by

P(G(ξ0)) = P(∀a, b ∈ {1, . . . , c}, a 6= b : ∃µ ∈ {1, . . . ,M} : ξµ(a,1)ξ
µ
(b,1) = 1)

=P(∀a, b ∈ {1, . . . , c}, a < b : max
µ

ξµ(a,1)ξ
µ
(b,1) = 1).

The (ξµ(a,1), 1 ≤ a ≤ c, µ ≥ 1) are independent random variables. Building their product
and taking the maximum of these products are increasing functions. Thus (maxµ ξ

µ
(a,1)ξ

µ
(b,1),

a < b) are associated. The application of Lemma 6.9 yields

P
(
∀a, b ∈ {1, . . . , c}, a < b : max

µ
ξµ(a,1)ξ

µ
(b,1) = 1

)
≥ P

(
max
µ

ξµ(1,1)ξ
µ
(2,1) = 1

)(c2)

=

(
1−

(
1− 1

l2

)M)(c2)

.

The right-hand side can be approximated by inserting M = α log cl2 and using the series
expansion of log(x) for 0 < x < 1:(

1−
(
1− 1

l2

)M)(c2)
=
(

1− e−
M
l2

+O(M
l4

)
)(c2)
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6 The Gripon-Berrou Model

= exp
(
−
(
c
2

) [
e−α log(c) +O

(
e−2α log(c)

)] )
≈ exp

(
− c2

2
e−α log c

)
.

This converges to 1 if α > 2, and to e−1/2 if α = 2, which shows the first two statements
of the theorem.

For the third statement we can use the upper bound given in Lemma 6.8. Define,
for an edge e belonging to ξ0, e = {(a, 1), (b, 1)} for some a 6= b, the random variable
Xe = max{ξµ(a,1)ξ

µ
(b,1) : µ = 1, . . . ,M}. Xe indicates if the edge e is contained in the set

M. Let
Z =

∑
e∈V

Xe with V = {{(a, 1), (b, 1)}, a, b ∈ {1, . . . , c}, a 6= b}.

Z denotes the number of edges belonging to G(ξ0) that are contained inM. ξ0 is recog-
nised by the system if and only if Z =

(
c
2

)
:

P[G(ξ0)] = P[Z = c(c− 1)/2].

The random variables Ye = 1−Xe are also associated (since for coordinatewise increasing
functions f and g, −f((1, . . . , 1)−X) and −g((1, . . . , 1)−X) are coordinatewise increasing
in X) and nonnegative (even binary). Lemma 6.8 yields, denoting by L =

(
c
2

)
,

P[G(ξ0)] = P[Z = L] = P

[∑
e∈V

Ye = 0

]
≤
∏
e∈V

P[Ye = 0] +
∑

e 6=e′, e,e′∈V

Cov(Ye, Ye′).

Ye is Bernoulli distributed with parameter (1 − 1/l2)M , Xe Bernoulli distributed with
parameter 1− (1− 1/l2)M . Denoting by d the parameter of Xe, the probability of G(ξ0)
is bounded by

P[Z = L] ≤ dL +
∑

e6=e′, e,e′∈V

Cov(Xe, Xe′). (6.5)

Concerning the covariances, notice that Cov(Xe, Xe′) = 0, if e and e′ are disjoint, which
means that they do not share a common vertex. So we assume that e = {(a, 1), (b, 1)} and
e′ = {(a, 1), (b′, 1)} and putM(a, 1) := {µ : ξµ(a,1) = 1} . The number of elements |M(a, 1)|
inM(a, 1) is Binomially distributed with parameters 1/l andM . On {M(a, 1) = B}, the
events

{∃µ ∈M(a, 1) : ξµ(b,1) = 1} and {∃ν ∈M(a, 1) : ξν(b′,1) = 1}

are independent and have equal probabilities. So

E(XeXe′) = P
(
∃µ, ν ∈M(a, 1) : ξµ(b,1) = 1, ξν(b′,1) = 1

)
=

M∑
r=0

P
(
∃µ, ν ∈M(a, 1) : ξµ(b,1)ξ

ν
(b′,1) = 1

∣∣∣ |M(a, 1)| = r
)
P (|M(a, 1)| = r)

=
M∑
r=0

P
(
∃µ ∈M(a, 1) : ξµ(b,1) = 1

∣∣∣ |M(a, 1)| = r
)2

P (|M(a, 1)| = r)
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=
M∑
r=0

(
1−

(
1− 1

l

)r)2(
M

r

)(
1

l

)r (
1− 1

l

)M−r
.

The last line can be simplified to

E(XeXe′) = 1− 2
M∑
r=0

(
M

r

)(
1

l

)r (
1− 1

l

)M
+

M∑
r=0

(
M

r

)(
1

l

)r (
1− 1

l

)M+r

= 1− 2

(
1− 1

l

)M (
1 +

1

l

)M
+

(
1− 1

l

)M (
1 +

1

l

(
1− 1

l

))M
= 1− 2

(
1− 1

l2

)M
+

(
1− 2

l2
+

1

l3

)M
.

In addition,

(E(Xe))
2 = (P(Xe = 1))2 = d2 =

(
1−

(
1− 1

l2

)M)2

,

and together, this yields

Cov(Xe, Xe′) = 1− 2

(
1− 1

l2

)M
+

(
1− 2

l2
+

1

l3

)M
−

(
1−

(
1− 1

l2

)M)2

=

(
1− 2

l2
+

1

l3

)M
−
(

1− 2

l2
+

1

l4

)M
= exp

(
M log

(
1− 2

l2
+

1

l3

))
− exp

(
M log

(
1− 2

l2
+

1

l4

))
= exp

(
−2M

l2
+
M

l3
+O

(
M

l4

))
− exp

(
−2M

l2
+O

(
M

l4

))
= exp

(
−2M

l2

)(
M

l3
+O

(
M

l4

))
,

after using the series expansion of the logarithm and the exponential. We now use

M = αl2 log log l

and obtain, by using c = log l / logN and l = N/c:∑
e6=e′,
e,e′∈V

Cov(Xe, Xe′) ≤ 2

(
c

2

)
(c− 2)Cov(X(1,1), X(1,2))

≤ c3 exp(−2α log log l)

[
α log log l

l
+O

(
log log l

l2

)]
≤ c3 exp(−2α log log l)

[
α(log logN)

c

N
+O

(
c2 log log l

N2

)]
≈ (logN)4 1

N
exp(−2α log logN)α(log logN)[1 +O(c/N)].
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Inserting this into (6.5), we obtain

P[G(ξ0)] = P[Z = c(c− 1)/2]

≤ dL +
∑

e6=e′, e,e′∈V

Cov(Xe, Xe′)

≤ dL +
1

N
α(log logN)(logN)4 exp(−2α log logN)[1 +O(c/N)]

≤ dL +
1

N
α(log logN)(logN)(4−2α)[1 +O(c/N)].

We remember that

dL =

(
1−

(
1− 1

l2

)M)(c2)

≈ exp

[
−c

2

2
e−α log(c)

]
= exp

[
−c

2−α

2

]
.

Obviously dL converges to 0 if α < 2. The covariance term clearly vanishes for this choice
of M . Thus P[G(ξ0)] converges to 0 if α < 2.

We are also interested in the size of P[G(ξ0)]. For this choice of M , P[G(ξ0)] is exactly
of order dL if α > 1 because in this case

exp
[
c2−α/2

]
= o (N) .

The probability P[G(ξ0)] converges to 0 and is exactly of order dL if α ∈ (1, 2).
For α ≤ 1, we can state that P[G(ξ0)] converges to 0 but we cannot draw conclusions

concerning the exact order of P[G(ξ0)].

�

Remark 6.10 The previous theorem shows that it is not reasonable to choose a constant
c. In this case, the first part of the proof can be applied analogously: the edges remain
positively associated and we obtain

P[G(ξ0)] ≥ dL =

(
1−

(
1− 1

l2

)M)c(c−1)/2

.

The right hand side converges to a positive constant, if c is constant and if we either
use M = α(log log l)l2 or M = αl2. A randomly chosen pattern ξ0 not belonging to {ξµ,
µ ∈ {1, . . . ,M}}, should not be recognised as a stored message with a positive probability.
It is thus not reasonable to choose some c not depending on N .

Corollary 6.11 In the GB model with cluster size l and number of clusters c = log(l)
suppose that

M = αl2

patterns have been stored. Then the probability that a randomly chosen message is recog-
nised as a stored one converges to zero as l tends to infinity for each choice of α.

The estimation obtained by the application of Lemma 6.8 in the proof of Theorem 6.5
does not permit to draw conclusions concerning the exact order of P[G(ξ0)].
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Proof of Corollary 6.11: The fact that the random variables Ye, e ∈ V , are positively
associated, does not depend on the number of stored messages M . Thus the inequality

P(Z = L) ≤ dL +
∑

e 6=e′, e,e′∈V

Cov(Ye, Ye′) = dL +
∑

e 6=e′, e,e′∈V

Cov(Xe, Xe′)

holds again, with d = 1− (1− 1/l2)M .
The computation of the covariances can also be used in this case: if e and e′ are not

disjoint, we obtain

Cov(Xe, Xe′) = exp
[
−2M/l2

]
(M/l3 +O(M/l4)) = e−2α

(α
l

+O(l−2)
)

;

if e and e′ are disjoint, Xe and Xe′ are independent. There are on the whole 2
(
c
2

)
(c − 2)

non-zero summands in
∑

e,e′∈V Cov(Xe, Xe′). The value of dL is approximately

dL =

[
1−

(
1− 1

l2

)M](c2)

≈
(
1− e−α

)(c2) .
This yields immediately

P(Z = L) ≤ dL + c3 e
−2αα

l
+O

(
l−2
)
≈ exp

[(
c

2

)
log(1− e−α)

]
+ c3 e

−2αα

l
+O

(
l−2
)
.

This probability tends to zero for each α > 0; nevertheless the second term dominates the
first one and we cannot see if P(Z = L) is of the same size as dL.

�

With the exception of Proposition 6.16, we will for the rest of this chapter assume that

M = αl2.

Gripon and Berrou suppose in their papers that the variables Xe, e ∈ V , behave for this
choice of cluster size and the numbers of neurons per cluster and of stored patterns as
independent ones and that the probability P[G(ξ0)] is well approximated by dL (see [17]).
If the edges Xe were independent, Z would be Binomially distributed with parameters

(
c
2

)
and d = 1− (1− 1/l2)M ≈ 1− e−α. On the one hand, we can show a Weak Law of Large
Numbers for Z, see Proposition 6.12. However, the last remark showed that we cannot
confirm the assumption of Gripon and Berrou so far. As we will see in the Proposition 6.13,
the conjecture of Gripon and Berrou is even not true: for α < − log(1− e−2) ≈ 0.14, we
can actually show the contrary.

Proposition 6.12 Consider the GB model with c = log(l) clusters, l neurons per cluster
and a random (valid) message ξ0 ∈ {0, 1}cl. To point out that ξ0 depends on c, we write
during this proposition and its proof ξ0(c). Let V (c) be the set of edges spanned by the
neurons of ξ0(c) and Zc =

∑
e∈V (c) Xe as defined in the proof of Theorem 6.5. The number

of stored messages is M = αl2. Then Zc obeys a Weak Law of Large Numbers, i.e.

lim
c→∞

P

(∣∣∣∣∣Zc − (1− e−α)
(
c
2

)(
c
2

) ∣∣∣∣∣ > ε

)
= 0.

161



6 The Gripon-Berrou Model

Proof of Proposition 6.12: As l tends to infinity, (1−1/l2)M = (1−1/l2)αl
2 converges

to e−α. For any fixed ε > 0, let l1 be chosen such that∣∣∣∣∣
(

1− 1

l2

)M
− e−α

∣∣∣∣∣ < ε/2

for l > l1. Combined with the Chebyshev inequality, this yields for l > l1

P

(∣∣∣∣∣Zc − (1− e−α)
(
c
2

)(
c
2

) ∣∣∣∣∣ > ε

)

≤P

(∣∣∣∣∣ Zc(c
2

) −(1−
(

1− 1

l2

)M)∣∣∣∣∣+

∣∣∣∣∣e−α −
(

1− 1

l2

)M ∣∣∣∣∣ > ε

)

≤P

(∣∣∣∣∣ Zc(c
2

) −(1−
(

1− 1

l2

)M)∣∣∣∣∣ > ε/2

)
≤ 4

V
(
Zc/
(
c
2

))
ε2

≤ 4

ε2
(
c
2

)2

[(
c

2

)(
1−

(
1− 1

l2

)M)(
1− 1

l2

)M
+

∑
e 6=e′, e,e′∈V

Cov(Xe, Xe′)

]

≤ 4

ε2
(
c
2

)2

[(
c

2

)(
1−

(
1− 1

l2

)M)(
1− 1

l2

)M
+ e−2αα

c3

l
+O(1/l2)

]

by the usage of the computations of the covariances in the proof of Corollary 6.11; this
clearly vanishes as l tends to infinity.

�

Proposition 6.13 Consider the GB model with N = l log(l) neurons organised in c =
log(l) clusters with l neurons per cluster. Suppose that M = αl2. For each α < − log(1−
e−2), we have

lim
l→∞

dL

P(G(ξ0))
= 0,

which means
P(G(ξ0)) 6= dL(1 + o(1)).

Proof: First of all we recall that d = P(XeXe′ = 1) = 1 − (1 − 1/l2)M . The probability
P(G(ξ0)) is at least

P(G(ξ0)) ≥ P
(
∃µ ∈ {1, . . . ,M} : ξµ = ξ0

)
=1−

(
1− 1

lc

)M
=

α

lc−2

[
1 +O

(
1

lc−2

)]
=e−c(c−2)+log(α)

[
1 +O

(
1

lc−2

)]
.

We took into account that Mlk → 0 for k < −2.
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On the other hand, one can use the series expansion of the logarithm and M = αl2 to
obtain

dL = d(c2) =

[
1−

(
1− 1

l2

)M](c2)

=
[
1− e−α−(α/2)l−2+O(l−4)

](c2) ≈ e(
c
2) log(1−e−α).

This yields

lim
l→∞

dL

P(G(ξ0))
≤ lim

l→∞

e(
c
2) log(1−e−α)

e−c(c−2)+log(α) [1 +O (l−c+2)]

= lim
l→∞

exp

[
c2

(
1

2
log
(
1− e−α

)
+ 1

)
− c

(
log (1− e−α)

2
+ 2

)
− log(α)

]
.

This limit is equal to 0 if
1

2
log
(
1− e−α

)
< −1,

that is,
α < − log

(
1− e−2

)
.

The probability P(G(ξ0)) is thus not well approximated by dL if α < − log(1 − e−2) ≈
0.1454.

�

For α > − log(1 − e−2), we can find a bound that is clearly better than the one used in
the proof of Theorem 6.5: The probability of G(ξ0) is at most the square root of dL.

Proposition 6.14 Let t and κ be such that

0 < t < 2, 0 < κ < 1.

The probability P(G(ξ0)) is, for M = αl2, bounded from above by

P
(
G
(
ξ0
))

≤ exp

[
−tκ

(
c

2

)]
[1 + o(1)] + exp

[
(1− κ) log(1− e−α)

(
c

2

)]
[1 + o(1)] .

In particular, the optimal choice of κ and t is such that −tκ = (1 − κ) log(1 − e−α).
Such a choice is possible for each α > − log(1 − e−2); using κ = 1

2
, we obtain for each

α > − log(1− e−2)

P
(
G
(
ξ0
))
≤ 2 exp

[
(1− κ) log(1− e−α)

(
c

2

)]
[1 + o(1)] ≤ 2

√
(1− e−α)(

c
2)(1 + o(1)).

Proof of Proposition 6.14: Let ξ0 = (e1, . . . , e1). We denote the number of active
neurons of ξ0 belonging to the µ-th pattern by

Xµ :=
∣∣∣ c∑
a=1

l∑
i=1

ξµ(a,i)ξ
0
(a,i)

∣∣∣ =
∣∣∣ c∑
a=1

ξµ(a,1)

∣∣∣.
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The edge set of ξ0 is again denoted by V and the edges in V are identified by the two
clusters they connect: ea,b is the edge that connects (a, 1) and (b, 1). In addition, we call

Y =
∣∣∣{ea,b ∈ V : ∃µ,Xµ = 2 : ξµ(a,1)ξ

µ
(b,1) = 1

}∣∣∣.
For some 1 > κ > 0, the probability P(G(ξ0)) is bounded from above by

P(G(ξ0)) ≤ P

 ∑
µ:Xµ≥3

(
Xµ

2

)
≥ κ

(
c

2

)+ P

G(ξ0)

∣∣∣∣∣ ∑
µ:Xµ≥3

(
Xµ

2

)
< κ

(
c

2

) . (6.6)

We first consider the first summand on the right hand side. The exponential moment of∑
µ:Xµ≥3

(
Xµ
2

)
is, for 0 < t < 2,

E

exp t
∑

µ:Xµ≥3

(
Xµ

2

) = E
[
exp t 1X1≥3

(
X1

2

)]M

=

[
c∑
i=0

(
c

i

)
1

li
(1− 1/l)c−i exp

(
t 1i≥3

(
i

2

))]M

=

[
1− 1

l3

(
c

3

)
+O(l−4c4) +

c∑
i=3

(
c

i

)
1

li
(1− 1/l)c−i exp

(
t

(
i

2

))]M
. (6.7)

For fixed t and i ∈ {3, . . . , c}, the expression(
c

i

)
1

li
(1− 1/l)c−i exp

(
t

(
i

2

))
≤ ci

1

li
exp

(
t

(
i

2

))
= exp

[
i log(c)− ic+ t(i2/2− i/2)

]
is either maximal in i = 3 or i = c. Evaluating in these two arguments yields that for
t < 2, the maximum is attained in i = 3. With this, (6.7) is bounded by[

1− 1

l3

(
c

3

)
+O(l−4c4) +

c∑
i=3

(
c

i

)
1

li
(1− 1/l)c−i exp

(
t

(
i

2

))]M

≤
[
1− 1

l3

(
c

3

)
+O(l−4c4) + c · c3 1

l3
e3t

]M
≤ exp

[
M

1

l3
c3(ce3t − 1/6) +O(c4/l2)

]
. (6.8)

With this,

P

 ∑
µ:Xµ≥3

(
Xµ

2

)
≥ κ

(
c

2

) ≤ exp

[
−tκ

(
c

2

)]
(1 +O(c4/l)).

For the second part, we observe that∣∣∣{ea,b ∈ V : ∃µ,Xµ > 2 : ξµ(a,1)ξ
µ
(b,1) = 1

}∣∣∣ ≤ ∑
µ:Xµ≥3

(
Xµ

2

)
.
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Let V ′ be an arbitrary subset of V with |V ′| = (1− κ)
(
c
2

)
and

Y ′ :=
∣∣∣{ea,b ∈ V ′ : ∃µ,Xµ = 2 : ξµ(a,1)ξ

µ
(b,1) = 1

}∣∣∣.
Then the second probability on the right hand side of (6.6) is bounded by

P

G(ξ0)

∣∣∣∣∣ ∑
µ:Xµ≥3

(
Xµ

2

)
< κ

(
c

2

) ≤ P
(
Y ′ = (1− κ)

(
c

2

)∣∣∣∀M : Xµ ≤ 2

)
.

To estimate the probability on the right hand side, we define by Z ′µ :=∣∣∣∑a<b: eab∈V ′ ξ
µ
(a,1)ξ

µ
(b,1)

∣∣∣ the number of edges of V ′ contained in ξµ and denote by

p′ :=P(Z ′µ = 1
∣∣Xµ ≤ 2) =

(1− κ)
(
c
2

)
1/l2(1− 1/l)c−2

(1− 1/l)c + c/l(1− 1/l)c−1 +
(
c
2

)
1/l2(1− 1/l)c−2

=
(1− κ)

(
c
2

)
1/l2

1 + (c− 2)/l + 1/l2(
(
c
2

)
+ 1− c)

= (1− κ)

(
c

2

)
1

l2
(1 +O(c/l)).

In the next computation, using in the third line the number of sujective maps from a set
with i elements to a set with (1− κ)

(
c
2

)
elements and the total number of maps from the

first set to the second one, we see that

P
(
Y ′ = (1− κ)

(
c

2

)∣∣∣∀µ ≤M : Xµ ≤ 2

)
=

M∑
i=0

(
M

i

)
(p′)i(1− p′)M−iP

(
Y ′ = (1− κ)

(
c

2

)∣∣∣∀µ ≤ i : Xµ = 2,∀µ > i : Xµ < 2

)

=
M∑
i=0

(
M

i

)
(p′)i(1− p′)M−i 1

(1− κ)i
(
c
2

)i (1−κ)(c2)∑
m=0

(−1)m
(

(1− κ)
(
c
2

)
m

)(
(1− κ)

(
c

2

)
−m

)i

=

(1−κ)(c2)∑
m=0

(−1)m
(

(1− κ)
(
c
2

)
m

)(
p′

(1− κ)
(
c
2

)
−m

(1− κ)
(
c
2

) + 1− p′
)M

=

(1−κ)(c2)∑
m=0

(−1)m
(

(1− κ)
(
c
2

)
m

)(
1− 1

l2
m(1 +O(c/l))

)M

=

(1−κ)(c2)∑
m=0

(−1)m
(

(1− κ)
(
c
2

)
m

)
exp [−αm+O(cm/l)]

=
(
1− e−α

)(1−κ)(c2) (1 + o(1)).

For α > − log(1−e−2), there is some 0 < t < 2, 0 < κ < 1 such that tκ = −(1−κ) log(1−
e−α). Especially, for κ = 1

2
, we obtain with t ∈ [− log(1− e−α), 2)

−(1− κ) log(1− e−α) = −1

2
log(1− e−α) ≤ t

1

2
= tκ
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which implies that

P
(
G
(
ξ0
))
≤ 2 exp

[
1

2
log(1− e−α)

(
c

2

)]
[1 + o(1)] ≤ 2

√
(1− e−α)(

c
2) [1 + o(1)] .

This shows the claim of the proposition.

�

Remark 6.15 The bound is improved if α increases. Taking α = − log(1 − e−1), which
is the critical capacity variable for the GB model using binary synaptic weights and the
WTA algorithm or the threshold algorithm, both with S instead of S̄ (we will see this in
Corollary 6.24 and in the next section), we obtain κ = 0.187 and

P
(
G
(
ξ0
))
≤ 2

[(
1− e−α

)(c2)]0.813

(1 + o(1)).

To make a first approach to the analysis of the error correcting abilities of the network,
assume that %c bits of a message ξµ have been deleted. We will see that it is impossible
to reconstruct this message, if there is a clique (not corresponding to ξµ) containing the
remaining, non-deleted neurons of ξµ and whose edge set is contained in M; this will
happen with positive, not vanishing probability if M is too large.

Without loss of generality, we consider ξ1 and assume that ξ1
(a,1) = 1 for all clusters

1 ≤ a ≤ c, whereas ξ1
(a,i) = 0 if i 6= 1. Let us consider a partially erased pattern. Assume

that the ξ1
(a,1) are still 1 for the clusters 1 ≤ a ≤ (1 − %)c, 0 < % < 1 and that all

other neurons are set to 0. We are interested in the probability that a randomly chosen
completion of the partially deleted message, a pattern ξ̄1 as described below, is recognised
by the network. We choose for each cluster (1−%)c+1 ≤ a ≤ c a neuron (a, ia), 2 ≤ ia ≤ l
and set it to 1. Let G(ξ̄1) be the event that the message ξ̄1 having 1’s in positions (a, 1),
1 ≤ a ≤ (1 − %)c and in (a, ia), (1 − %)c + 1 ≤ a ≤ c, is recognized by the system as a
stored message.

The following proposition shows that the probability of G(ξ̄1) converges to a positive
constant, ifM is chosen too large. This confirms the bound onM derived in Theorem 6.5:
ifM exceeds the bound of this theorem, a partially erased message can never be corrected
with positive probability not tending to 0 because the edges of an arbitrary ξ0 containing
the non-erased part of ξ1 are stored inM, with positive probability.

Proposition 6.16 Let ξ̄1 be a message in the GB model that consists of (1−%)c neurons
of ξ1 and %c randomly chosen neurons, one in each erased cluster. Suppose that there are
M = αl2 log c messages stored. Then P(G(ξ̄1)) tends to 0 if and only if α < 2.

If M = αl2 patterns are stored in the network, P(G(ξ̄1)) tends to 0 for any choice of
the parameter α.

Proof of Proposition 6.16: Without self-loops, there are
(
c
2

)
edges that belong to ξ̄1.

Since only %c of the neurons are spurious, there are
(

(1−%)c
2

)
edges of ξ̄1 that also belong to

the set of edges of ξ1 and thus are part ofM. There remain r(c, %) := (1−%)%c2 +%c(%c−
1)/2 = c2

2
(1 − (1 − %)2) − 1

2
c% edges. To bound the probability of the event that these
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r(c, %) edges exist inM, we observe that positive association is still valid for a subset of
positively associated random variables. Thus the probability P(G(ξ̄1)) is bounded from
below by (1− (1− 1

l2
)M)r(c,%) = d r(c,%). More precisely, we have, for M = αl2 log(c),

P(G(ξ̄1)) ≥

(
1−

(
1− 1

l2

)M)r(c,%)

≈ exp
[
−r(c, %)e−α log(c)

]
≈ exp

(
−c

2−α

2
(1− (1− %)2)

)
.

This implies that P(G(ξ̄1)) does not converge to 0 for α ≥ 2, as stated in the proposition.
The positive association can also be used to bound the probability from above: the

same exponential inequality as in the proof of Theorem 6.5 also shows that P(G(ξ̄1)) is
at most equal to d r(c,%) plus a vanishing term. This term differs from that in the proof
of Theorem 6.5 only by the number of non-zero covariance terms, which is larger in the
proof of Theorem 6.5. Concretely, we have

P(G(ξ̄1)) ≤ d r(c,%) +
1

N
α(logN)(4−2α) log logN(1 +O(c/N)).

The second term vanishes and P(G(ξ̄1)) converges to 0 for α < 2. Similarly we can
conclude that P(G(ξ̄1))→ 0 for M = αl2, for each choice of α.

�

Remark 6.17 If M = αl2 log(c), we see as in Theorem 6.5 that P(G(ξ̄1)) is well approxi-
mated by d

c2

2
(1−(1−%)2) and additionally the latter goes to 0, if α ∈]1, 2[. ForM = αl2 log(c),

α ∈]0, 1[ or if M = αl2, for arbitrary α, the additive error term in the upper bound van-
ishes slower than d

c2

2
(1−(1−%)2).

For the rest of this chapter, the number of stored patterns is assumed to be M = αl2.
Concerning the subclique, the conjecture that the edges behave as independent (and thus
P(G(ξ̄1)) is well approximated by d

c2

2
(1−(1−%)2)) is false for small α:

Proposition 6.18 Consider the GB-model with c = log(l) clusters and l neurons per
cluster, with M = αl2 messages stored in the network. Let ξ̄1 be a pattern consisting of
(1−%)c of the original neurons of ξ1 and of %c arbitrarily chosen neurons that differ from
the neurons of ξ1. ξ̄1 is valid, i.e. has exactly one activated neuron in each cluster.

The probability P[G(ξ̄1)] that the edges of G(ξ̄1) are contained inM is not well approx-
imated by d

c2

2
(1−(1−%)2) if

α < − log
(
1− e−2/%

)
.

Then
d
c2

2
(1−(1−%)2)

P(G(ξ̄1))
−→ 0

as l tends to infinity.
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Proof: Without loss of generality we consider ξ1 and assume that this message consists
exactly of the activated neurons (a, 1), 1 ≤ a ≤ c and that ξ̄1

(a,i) = 1 if a ≤ (1− %)c, i = 1

or a > (1− %)c, i = 2; otherwise ξ̄1
(a,i) = 0.

The probability P(G(ξ̄1)) is at least

P(G
(
ξ̄1)
)

≥P
(
∀a > (1− %)c : ξ2

(a,2) = 1
)
P
(
∀a > (1− %)c, b ≤ (1− %)c : ∃µ ≥ 3 : ξµ(a,2)ξ

µ
(b,1) = 1

)
,

this means, the whole set of spurious neurons is activated in the second message, and
the rest of the edges, that is, the ones between the spurious neurons and the non-erased
neurons of ξ1, is activated during the storing process of the remaining M − 2 messages.
Let V ′ be the set of edges belonging to ξ̄1 and X ′e the indicator variable of having stored
the edge e within the edges of the last M − 2 messages:

X ′e = 1{∃µ≥3:ξµ
(a,i)

ξµ
(b,j)

=1},

if e = ((a, i), (b, j)). The random variables X ′e, e ∈ V ′, are positively associated. In
addition, each subset of these variables is positively associated, e. g., the variables con-
cerning the edges between the first (1− %)c clusters and the last %c clusters. This yields
in particular

P
[
∀a > (1− %)c, b ≤ (1− %)c : ∃µ ≥ 3 : ξµ(a,2)ξ

µ
(b,1) = 1

]
≥P
[
∃µ ≥ 3 : ξµ(c,2)ξ

µ
(1,1) = 1

]c2%(1−%)

and the last probability is equal to

P
[
∃µ ≥ 3 : ξµ(c,2)ξ

µ
(1,1) = 1

]c2%(1−%)

=

[
1−

(
1− 1

l2

)M−2
]c2%(1−%)

.

Putting these things together, we obtain

P(G(ξ̄1))

≥P(∀a > (1− %)c : ξ2
(a,2) = 1)P(∀a > (1− %)c, b ≤ (1− %)c : ∃µ ≥ 3 : ξµ(a,2)ξ

µ
(b,1) = 1)

≥ exp
[
−c2%

] [
1−

(
1− 1

l2

)M−2
]c2%(1−%)

≈ exp
[
c2
(
−%+ %(1− %) log(1− e−α)

)]
.

P(G(ξ̄1)) is definitely not well approximated by d(1−(1−%)2)c2/2 if the following limit

lim
c→∞

d(1−(1−%)2)c2/2

P(G(ξ̄1))
= lim

c→∞

dc
2(%−%2/2)

P(G(ξ̄1))

≤ lim
c→∞

exp
[
c2 log(1− e−α)(%− %2/2)

]
exp

[
−c2

(
−%+ %(1− %) log(1− e−α)

)]
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= lim
c→∞

exp
[
c2 log(1− e−α)%2/2 + c2%

]
is 0. This happens if

log
(
1− e−α

) %
2
< −1,

which is for ρ, α > 0 equivalent to

α < − log
(
1− e−2/%

)
.

�

Similarly to the case where we considered a complete pattern ξ0, we can also give an upper
bound on the probability of having stored the edges of a subclique.

Proposition 6.19 Suppose that ξ̄1 consists, as in the previous proposition, of (1 − %)c
neurons of ξ1 and %c neurons differing from those of ξ1, exactly one in each remaining
cluster and that M = αl2. The probability of the event that the remaining r(c, %) =
c2%(1−%/2)−c%/2 edges of the complete graph connecting the neurons of ξ̄1 are contained
inM is bounded from above by

P
(
G(ξ̄1)

)
≤ exp [−tκr(c, %)] [1 + o(1)] + exp

[
(1− κ) log(1− e−α)r(c, %)

]
[1 + o(1)] .

The variables t and κ must fulfill

0 < t <
1

%(1− %/2)
, 0 < κ < 1.

Proof: The proof of Proposition 6.14 can almost literally be repeated; the only two
differences are that on the one hand, the number

(
c
2

)
is replaced by r(c, %) and on the

other hand, the bound concerning t changes. This is due to the bounds in (6.8) and
in (6.7): the clique consists of the %c neurons in a deleted cluster and of the (1 − %)c
non-deleted neurons belonging to the message ξ1. We are looking for a bound of

c∑
i=3

i∑
k=0

(
%c

k

)(
(1− %)c

i− k

)
1

li
(1− 1/l)c−i exp

(
t k(i− k) + t

(
k

2

))
,

as in (6.7); here k denotes the number of active neurons belonging to the spurious neurons
of ξ̄1 and i the total number of active neurons of ξ̄1 in a fixed stored pattern ξµ, µ ≥ 2. The
difference to the term in (6.7) is that the number of edges that are activated if i = k+i−k
neurons of the clique are activated in one message, k in the %c deleted clusters and i− k
in the (1−%)c remaining clusters, is only equal to k(i−k)+

(
k
2

)
, because the edges among

the neurons in the non-deleted clusters are already part ofM. For fixed i, we have

1

li

(
%c

k

)(
(1− %)c

i− k

)
exp

(
t k(i− k) + t

(
k

2

))
≤ 1

li

(
c

i

)
exp

(
t k(i− k) + t

k2

2

)
.

We fix i ∈ {3, . . . , c}. The expression k(i−k)+k2/2 is, for i ≤ %c, maximal in k = i. Note
that i ≤ c, but the number of deleted clusters (and the maximal value of k) is just equal
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to %c. For %c ≤ i ≤ c, the expression is maximal in k = %c. So, for i ≤ %c, 0 ≤ k ≤ i, we
have

1

li

(
c

i

)
exp

(
t k(i− k) + t

k2

2

)
≤ exp

[
i (log(c)− c) + t

i2

2

]
and the right hand side is maximal in i = %c or i = 3. By using t < 2

%
, the maximal

argument (on {3, . . . , %c}) of the right hand side of the previous estimation is i = 3, if l is
large enough.

For i ≥ %c, 0 ≤ k ≤ %c, we estimate

1

li

(
c

i

)
exp

(
t k(i− k) + t

k2

2

)
≤ exp

[
i (log(c)− c) + t%c(i− %c) + t

%2c2

2

]
,

using k = %c, as concluded above. The argument of the exponential function is linear in i,
and the maximum is either attained in i = %c or i = c. Since we already examined i = %c,
we insert i = c and see that for each t < 1

%(1−%/2)
and l large enough

max
3≤i≤c,
0≤k≤%c

1

li

(
%c

k

)(
(1− %)c

i− k

)
exp

(
t k(i− k) + t

(
k

2

))
≤ 1

l3
c3 exp (5t) .

The inequality
2 > 1/(1− %/2)

for % < 1 implies that the second condition on t is the stronger one.

�

The probability of having stored a (sub)clique in the network is interesting concerning
the question if a corrupted pattern can be corrected after a certain number of steps.
If the subclique (by which we mean the union of active edges belonging to the set of
spurious neurons and the connections between the correct neurons in the non-deleted
clusters and the spurious neurons) exists, there is no way to recover the correct message
by the dynamics. This is considered in the next part of this section.

A message is retrieved in multiple steps if and only if there is no other clique than the
one of the message containing the non-erased neurons. To see this, note that the correct
neurons are activated in the first step, because the largest possible value of the local field
is the number of neurons that can fire signals, and the correct neurons obtain a signal by
each one of these. Due to the self-loops, they collect from the second step a number of c
signals, which cannot be reached by a neuron not activated in the first updated version of
the pattern. The neurons that are newly activated in the first step are exactly the ones
that are connected to every one of the initially activated neurons. On the other hand, if
there is a (valid) clique that contains the non-erased neurons and at least one neuron in
a deleted cluster that does not belong to ξµ, all neurons of this clique are activated in the
first step and remain activated, because they also obtain (1− %)c signals in the first step
and c signals from the second step, each.

Proposition 6.20 For an arbitrary stored pattern ξµ and a randomly deleted version ξ̃µ
of ξµ, where %c, % > 0, neurons have been deactivated and if α < − log(1−e−1/[(1−%/2)(1−%)]),
then the pattern is with high probability recovered after finitely many steps.
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Proof: As already mentioned, a necessary condition of the event that the pattern is not
recovered after finitely many steps is that a clique containing the non-deleted (1 − %)c
neurons exists. We assume that µ = 1, that ξ1 = (e1, . . . , e1) and that the deleted clusters
are the clusters (1− %)c+ 1, . . . , c. To estimate the corresponding probability, we state

P
(
∃ξ0 6= ξ1 : ξ0 valid, ξ0

(1,1) = . . . = ξ0
((1−%)c,1) = 1, G(ξ0) ∈M

)
≤

%c∑
i=1

P
(
∃ξ0 : ξ0 valid,

(1−%)c∑
a=1

ξ0
(a,1) = (1− %)c,

c∑
a=(1−%)c+1

ξ0
(a,1) = %c− i, G(ξ0) ∈M

)
.

Depending on i, there are r′(c, i) := (c− i)i+
(
i
2

)
edges of G(ξ0) not contained in G(ξ1),

if ξ0 differs from ξ1 in exactly i clusters. Let ξ0(i) be the pattern only differing from ξ1

in the last i clusters, where the second neuron is active instead of the first one. Then

%c∑
i=1

P
(
∃ξ0 : ξ0 valid,

(1−%)c∑
a=1

ξ0
(a,1) = (1− %)c,

c∑
a=(1−%)c+1

ξ0
(a,1) = %c− i, G(ξ0) ∈M

)
≤

%c∑
i=1

(
%c

i

)
li P

(
G(ξ0(i)) ∈M

)
≤ %c max

1≤i≤%c

(
%c

i

)
li P

(
G(ξ0(i)) ∈M

)
.

For fixed i and ξ0(i), we can apply Proposition 6.19:

P
(
G(ξ0(i)) ∈M

)
≤ 2

[
exp

[
max

{
− tκr′(c, i), (1− κ) log(1− e−α)r′(c, i)

}]]
[1 + o(1)] ,

with κ ∈ (0, 1) and t < 1
%(1−%/2)

. For 1 ≤ i ≤ %c, the two expressions(
%c

i

)
li exp

[
−tκ(ci− i2/2− i/2)

]
,

(
%c

i

)
li exp

[
(1− κ) log(1− e−α)(ci− i2/2− i/2)

]
(6.9)

are both maximal either in i = 1 or i = %c. For α < − log(1− e−1/[(1−%/2)(1−%)]), we know
that

log(1− e−α) < − 1

(1− %)(1− %/2)

and we can find a κ > % such that still

(1− κ) log(1− e−α) < − 1

(1− %/2)
.

Furthermore, it is possible to choose t < 1
%(1−%/2)

such that still

tκ >
1

1− %/2
.

With this choice, we examine the expressions in (6.9), first for i = 1: the left hand side is

%c

(
%c

1

)
l1 exp [−tκ(c− 1)] ≤ exp [2 log(%c)− tκ(c− 1) + c] −→ 0,
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because tκ > 1, and the right hand side

%c

(
%c

1

)
l1 exp

[
(1− κ) log(1− e−α)(c− 1)

]
≤ exp

[
2 log(%c) + (1− κ) log(1− e−α)(c− 1) + c

]
−→ 0,

because −(1− κ) log(1− e−α) > 1. For i = %c, we obtain in (6.9) on the left hand side

%c

(
%c

%c

)
l%c exp

[
−tκ(%c2 − %2c2/2− %c/2)

]
= exp

[
log(%c) + %c2 − tκ(%c2 − %2c2/2− %c/2)

]
−→ 0,

because
tκ >

1

1− %/2
.

Finally, the right hand side of (6.9) is, for i = %c, at most

%c

(
%c

%c

)
l%c exp

[
(1− κ) log(1− e−α)(%c2 − %2c2/2− %c/2)

]
= exp

[
log(%c) + %c2 + (1− κ) log(1− e−α)(%c2 − %2c2/2− %c/2)

]
−→ 0,

because
(1− κ) log(1− e−α) < − 1

(1− %/2)
.

This proves the proposition.

�

The proof strategy is also used when proving that the GB model can correct a high
number of spuriously activated neurons, see Proposition 6.27. Interestingly, the result of
Proposition 6.20 is improved when considering the one step retrieval:

Theorem 6.21 Consider the GB model using the SUM-of-MAX rule and synaptic effi-
cacy S̄. Fix µ ∈ {1, . . . ,M} and take a randomly deleted pattern ξ̃µ, such that f of the
activated neurons of ξµ have been deactivated. Suppose that f = %c. Then the probability
of correcting ξ̃µ in one step tends to one,

lim
l→∞

P
(
T (ξ̃µ) = ξµ

)
= 1,

if
α < − log(1− e−1/(1−%)).

This bound is sharp: ξ̃µ is not corrected in one step,

lim
l→∞

P
(
T (ξ̃µ) 6= ξµ

)
= 1

for each fixed but arbitrary µ if

α > − log(1− e−1/(1−%)).
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The proof needs the following Lemma: we determine, for a fixed neuron, the asymptotic
distribution of the number of active edges to the set of neurons belonging to a (fixed)
clique:

Lemma 6.22 Let ξµ be a stored message and (a, i) be a neuron that is inactive in ξµ.
We define Y by

Y =
c∑
b 6=a

l∑
j=1

J(a,i),(b,j)ξ
µ
(b,j).

Y is the number of neurons in clusters b 6= a belonging to the message ξµ which are
connected by an active edge to (a, i).

The distribution of Y is asymptotically Binomial with parameters c− 1 and 1− e−α:

P(Y = m) =

{(
c−1
m

)
(1− e−α)

m
e−α(c−1−m)(1 + o(1)) for m ∈ {0, . . . , c− 1},

0 otherwise

as l→∞.
In particular, the probability of having (a, i) completely connected with the neurons of

an arbitrary but fixed message is, for ξµ = (ej1 , . . . , ejc),

P(∀b ∈ {1, . . . , c} \ {a} : J(a,i),(b,jb) = 1) =
(
1− e−α

)c−1
(1 + o(1))

as l→∞.
More generally, if we take a set of neurons {(b1, j1), . . . , (br, jr)} with the restriction

that bk, 1 ≤ k ≤ r, are pairwise distinct, for a neuron (a, i) not situated in one of the
clusters b1, . . . , br, the variable Ỹ , defined by

Ỹ =
r∑

k=1

J(a,i),(bk,jk),

is asymptotically Binomially distributed with parameters r and 1− e−α:

P
(
Ỹ = m

)
=

(
r

m

)(
1− e−α

)m
e−α(r−m)(1 + o(1)), m ∈ {0, . . . , r}.

Proof of Lemma 6.22: We choose w.l.o.g. µ = 1, ξ1 = (e1, . . . , e1) and assume that
a = 1 and i = 2. The random variable Y indicates the number of neurons belonging to the
message ξ1 which are connected by active edges to (1, 2). To determine the distribution
of Y , we split the event {Y = m} into the disjoint events{

Y = m,
M∑
µ=2

ξµ(1,2) = n
}
, n ∈ {1, . . . ,M − 1}

where n indicates the number of stored messages containing neuron (1, 2). The conditional
probability of {Y = m}, given the event {

∑M
µ=2 ξ

µ
(1,2) = n} is equal to

P

(
Y = m

∣∣∣ M∑
µ=2

ξµ(1,2) = n

)
=

(
c− 1

m

)(
1−

(
1− 1

l

)n)m(
1− 1

l

)n(c−1−m)

.
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In addition,
∑M

µ=2 ξ
µ
(1,2) is Binomially distributed with parameters M − 1 and 1

l
. This

yields

P(Y = m) =
M−1∑
n=0

P

(
M∑
µ=2

ξµ(1,2) = n, Y = m

)

=
M−1∑
n=0

P

(
M∑
µ=2

ξµ(1,2) = n

)
P

(
Y = m

∣∣∣∣∣
M∑
µ=2

ξµ(1,2) = n

)

=
M−1∑
n=0

(
M − 1

n

)
1

ln

(
1− 1

l

)M−1−n(
c− 1

m

)[
1−

(
1− 1

l

)n]m(
1− 1

l

)n(c−1−m)

and, using the Binomial formula, this is

=

(
c− 1

m

)M−1∑
n=0

(
M − 1

n

)
1

ln

(
1− 1

l

)M−1−n+n(c−1−m) m∑
k=0

(
m

k

)
(−1)k

(
1− 1

l

)nk
=

(
c− 1

m

) m∑
k=0

(
m

k

)
(−1)k

M−1∑
n=0

(
M − 1

n

)
1

ln

(
1− 1

l

)M−1−n+nk+n(c−1−m)

=

(
c− 1

m

) m∑
k=0

(
m

k

)
(−1)k

[
1

l

(
1− 1

l

)k+c−1−m

+ 1− 1

l

]M−1

=

(
c− 1

m

) m∑
k=0

(
m

k

)
(−1)k

[
1

l
− k + c− 1−m

l2
+O((k + c−m)2l−3) + 1− 1

l

]M−1

=

(
c− 1

m

) m∑
k=0

(
m

k

)
(−1)k

[
1− k + c− 1−m

l2
+O((k + c−m)2l−3)

]M−1

.

As in the proof of Lemma 4.8, we obtain, using M = αl2, with the help of the series
expansions of the logarithm and of the exponential that(

c− 1

m

) m∑
k=0

(
m

k

)
(−1)k

[
1− k + c− 1−m

l2
+O((k + c−m)2l−3)

]M−1

=

(
c− 1

m

) m∑
k=0

(
m

k

)
(−1)k exp [−α(k + c− 1−m)]

(
1 +O

(
(k + c−m)2

l

))
=

(
c− 1

m

)(
1− e−α

)m
e−α(c−1−m)(1 + o(1)),

in particular
P(Y = c− 1) =

(
1− e−α

)c−1
(1 + o(1)).

The same computation can be made for a subset of neurons belonging to a stored message
(this will be needed if we consider a partially erased message) or, more generally, for a
random set of neurons with the restriction that they belong to pairwise different clusters.
The asymptotic distribution is a Binomial one with parameters p̃ = 1 − e−α and r, if r
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is the number of neurons to which the fixed neuron should be connected. The proof can
almost literally be repeated, in the latter case with the only difference that the number
of messages to which neuron (a, i) can belong is equal to M instead of M − 1, but this
does not change the result.

�

Proof of Theorem 6.21: We take a stored message, e. g., ξ1, and assume that f = %c
entries have been deleted at random. We assume w.l.o.g. that ξ1 = (e1, . . . , e1). The
message ξ̃1 is not mapped to ξ1 in one step of the dynamics if at least one neuron of one
of the clusters which does not belong to the message ξ1 is activated by the dynamics.
Note that this can never happen in the clusters not concerned by the deletion of neurons
(w.l.o.g. these are the clusters 1, . . . , c− f), because we respect self-loops. We note that
the neurons (1, 1), . . . , (c− f, 1) are activated and each synaptic efficacy corresponding to
the edges among them is positive, so they get c − f signals whereas each other neuron
of the cluster can only get up to c − f − 1 signals because it is not activated. This is,
formally, for 1 ≤ a ≤ c:

S̄(a,1)(ξ̃1) = J(a,1),(a,1)ξ̃
1
(a,1) +

c∑
b=1
b6=a

l∑
j=1

J(a,1),(b,j)ξ̃1
(b,j) = J(a,1),(a,1)ξ̃

1
(a,1) +

c−f∑
b=1
b 6=a

J(a,1),(b,1) = c− f

since J(a,1),(b,1) = 1 for 1 ≤ a, b ≤ c as result of the fact that the neurons (1, 1), . . . , (c, 1)
are part of the message ξ1.

For i > 1, a ≤ c− f , we have

S̄(a,i)(ξ̃
1) = J(a,i),(a,i)ξ̃

1
(a,i) +

c∑
b=1
b 6=a

l∑
j=1

J(a,i),(b,j)ξ̃
1
(b,j) =

c−f∑
b=1
b 6=a

J(a,i),(b,1) ≤ c− f − 1.

It is indeed possible to produce errors in the remaining f clusters where the neurons
have been deleted. The local field of the neurons (a, 1), a > c− f , is again equal to c− f .
This is the maximal attainable value because the total number of activated neurons is
equal to c − f . But in the clusters c − f + 1, . . . , c, this value can be reached by the
other neurons of these clusters, i 6= 1. So an error occurs if there is a neuron in one of
these clusters not belonging to ξ1 which gets as well c − f signals. This is the case if
and only if this neuron is (actively) connected to each one of the c− f activated neurons.
By Lemma 6.22 the probability of this event is, for a fixed (a, i), asymptotically given by
(1− e−α)c−f .

The probability of an error is therefore bounded from above by

P
(
∃(a, i) : T(a,i)(ξ̃1) 6= ξ1

(a,i)

)
≤ f(l − 1)P

(
T(c,2)(ξ̃1) 6= ξ1

(c,2)

)
=f(l − 1)(1− e−α)c−f (1 + o(1)) ≤ exp

[
log(%c) + c+ (c− f) log

(
1− e−α

)]
(1 + o(1))

= exp
[
log(%c) + c+ (1− %)c log

(
1− e−α

)]
(1 + o(1))

and convergence to 0 is reached if (1− %) log (1− e−α) < −1; this is fulfilled if

α < − log
(
1− e−1/(1−%)

)
.
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This shows the lower bound mentioned in Theorem 6.21.
For the upper bound, we fix a cluster in which the neuron has been deleted, e. g., the

last cluster. The probability of an error is at least

P
(
∃(a, i) : T(a,i)(ξ̃1) 6= ξ1

(a,i)

)
= 1− P

(
∀(a, i) : T(a,i)(ξ̃1) = ξ1

(a,i)

)
≥1− P

(
∀i > 1 : T(c,i)(ξ̃1) = 0

)
=1− P

(
∀i > 1 : ∃bi ∈ {1, . . . , c− f} : J(c,i),(bi,1) = 0

)
.

The probability in the last line is bounded by

P
(
∀i > 1 : ∃bi ∈ {1, . . . , c− f} : J(c,i),(bi,1) = 0

)
≤P
(
∃b2 ∈ {1, . . . , c− f} : J(c,2),(b2,1) = 0

)l−1
.

This inequality is first explained by a plausibility argument: the fact that neuron (c, 2)
is not connected to all of the neurons (1, 1), . . . , (c − f, 1) gives us no information about
the connection between neuron (c, 3) and (1, 1), . . . , (c − f, 1) besides the fact that (c, 2)
has possibly not been activated often enough. This is because different neurons of one
cluster cannot be part of the same message and thus the connections of neuron (c, 2) give
us no information on the connections of (c, 3), . . . , (c, l) to (1, 1), . . . , (c − 1, 1). If (c, 2)
has not been activated so often, the probability of an activation of one of the neurons
(c, 3), . . . , (c, l) increases and so does the probability of the connection of one of these
neurons to the complete set {(1, 1), . . . , (c − f, 1)}. Certainly the fact that (c, 2) is not
connected to each of the neurons of {(1, 1), . . . , (c−f, 1)} does not decrease the probability
that one of the neurons (c, 3), . . . , (c, l) is connected to all neurons {(1, 1), . . . , (c− 1, 1)}.

To give a rigorous proof of this inequality, we recall that for fixed µ, the set of random
variables ξµ(c,i), i ≥ 2, is negatively associated. So the variables (ξµ(c,i), i ≥ 2, µ ≥ 2), are
negatively associated (Lemma 2.12, 3.)). Taking increasing functions of disjoint subsets
of negatively associated random variables preserves negative association, so

M∑
µ=2

ξµ(c,i), i ≥ 2

are negatively associated.
The conditional probabilities

P

(
c−f∑
b=1

J(c,i),(b,1) < c− f
∣∣∣ M∑
µ=2

ξµ(c,i) = k

)
, i ≥ 2

are decreasing in k, and additionally we have for each tuple (k2, . . . , kl) ∈ {0, . . . ,M −
1}l with positive probability under the distribution of (

∑M
µ=2 ξ

µ
(c,2), . . . ,

∑M
µ=2 ξ

µ
(c,l)), i.e.∑l

i=2 ki ≤M − 1,

P

(
∀i ≥ 2 :

c−f∑
b=1

J(c,i),(b,1) < c− f
∣∣∣∀i ≥ 2 :

M∑
µ=2

ξµ(c,i) = ki

)
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=
l∏

i=2

P

(
c−f∑
b=1

J(c,i),(b,1) < c− f
∣∣∣ M∑
µ=2

ξµ(c,i) = ki

)
.

We define the decreasing functions fi : {0, . . . ,M − 1} −→ R, i > 1:

fi(ki) = P

(
c−f∑
b=1

J(c,i),(b,1) < c− f
∣∣∣ M∑
µ=2

ξµ(c,i) = ki

)
.

Using the first part of Lemma 2.12, we obtain the desired inequality:

P
(
∀i > 1 : ∃bi ∈ {1, . . . , c− f} : J(c,i),(bi,1) = 0

)
= P

(
∀i > 1 :

c−f∑
b=1

J(c,i),(b,1) < c− f

)

=E(
∑M
µ=2 ξ

µ
(c,2)

,...,
∑M
µ=2 ξ

µ
(c,l)

)

[
l∏

i=2

fi

(
M∑
µ=2

ξµ(c,i)

)]
≤

l∏
i=2

E(
∑M
µ=2 ξ

µ
(c,2)

,...,
∑M
µ=2 ξ

µ
(c,l)

)

[
fi

(
M∑
µ=2

ξµ(c,i)

)]

=
l∏

i=2

P

(
c−f∑
b=1

J(c,i),(b,1) < c− f

)
= P

(
∃b2 ∈ {1, . . . , c− f} : J(c,2),(b2,1) = 0

)l−1
.

Back to the last line of the precedent calculation, we continue by applying Lemma 6.22:

1− P
(
∃b ∈ {1, . . . , c− f} : J(c,2),(b,1) = 0

)l−1
= 1− P

(
c−f∑
b=1

J(c,2),(b,1) ≤ c− f − 1

)l−1

=1−

[
1− P

(
c−f∑
b=1

J(c,2),(b,1) = c− f

)]l−1

= 1−
[
1−

(
1− e−α

)c−f
(1 + o(1))

]l−1

=1−
[
1− exp

[
(c− f) log

(
1− e−α

)]
(1 + o(1))

]l−1
.

A sufficient condition for the convergence to 1 of the expression in the last line is (1 −
%) log (1− e−α) > −1, and this is for % < 1, α > 0 equivalent to

α > − log
(
1− e−1/(1−%)

)
.

�

Remark 6.23 The results of Theorem 6.21 are the same, if we use S(β) instead of S̄,
β ∈ (0, 1). This follows immediately because the self-signal is, for the activated neurons,
positive and can, as long as the activated neuron in the cluster is not erased, not be
compensated by non-excited neurons.

We can use most of the proof of Theorem 6.21 to make the following observations con-
cerning the error correction of the GB model without self-loops:

Corollary 6.24 1. The maximal capacity variable of the GB model without self-loops,
using M = αl2 is

α∗ = − log(1− e−1).

For each α < α∗ and arbitrary but fixed µ, we have liml→∞ P (T (ξµ) = ξµ) = 1.
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6 The Gripon-Berrou Model

2. In contrast, if M = αl2 with α > α∗, a fixed stored pattern is not stable, with high
probability: we have liml→∞ P (T (ξµ) 6= ξµ) = 1.

3. If %c bits of ξµ are erased, for arbitrary µ, we can correct the partially deleted pattern
ξ̃µ in one step,

lim
l→∞

P
(
T (ξ̃µ) = ξµ

)
= 1

if
α < − log(1− e−1/(1−%)).

4. On the contrary, the pattern is with high probability not corrected in one step,

lim
l→∞

P
(
T (ξ̃µ) 6= ξµ

)
= 1,

if
α > − log(1− e−1/(1−%)).

5. The stability of all stored patterns is guaranteed with high probability if

α < − log(1− e−3).

Remark 6.25 This shows that the self-loops are advantageous for this model, because we
can guarantee the stability of each stored pattern but do not loose error correcting abilities
concerning the error correction in one step.

Proof of Corollary 6.24: We can adopt the proof of Theorem 6.21 and will use the
same notation and assumptions: we consider ξ1 and assume that ξ1 = (e1, . . . , e1) and
that the entries of the last f cluster have been deleted and set f = 0 if we want to analyse
the stability. We just have to reflect the differences between the two models. The maximal
attainable value of S(a,i)(ξ

1) is, within each cluster, equal to c− f (deleted clusters) or to
c−f−1 (non-deleted clusters), respectively. Each of the neurons can attain this value, the
activated neurons have no advantage by the self-loops. In particular, an error is possible
in each cluster, not only in the ones concerned by the deletion of the activated neuron.
In the case f = 0, this leads to the loss of the guaranteed stability.

In a fixed cluster, there occurs an error if and only if there is at least one neuron not
belonging to the message ξµ that is actively connected to the c− f activated neurons (or
c − f − 1, respectively) in the other clusters. We get an upper bound of the probability
of the failure of the correction in one step by

P
(
∃(a, i) : T(a,i)(ξ̃

1) 6= ξ1
(a,i)

)
≤ c(l − 1)P

(
T(1,2)(ξ̃

1) 6= ξ1
(1,2)

)
=c(l − 1)P

(
c−f∑
b=2

J(1,2),(b,1) = c− f − 1

)
≤ c(l − 1)(1− e−α)c−f−1(1 + o(1)),

the last line obtained by Lemma 6.22. This again vanishes if

(1− %) log
(
1− e−α

)
< −1,
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6.2 The Gripon-Berrou Model with Binary Synaptic Efficacies

i.e.
α < − log

(
1− e−1/(1−%)

)
.

Especially, for f = 0, we obtain

α < − log
(
1− e−1

)
.

For the upper bound, we again fix a cluster, e. g., the first one, and show that there
will be an error with high probability if we use α > − log

(
1− e−1/(1−%)

)
. Here the only

difference to the model with self-loops is that in the latter model, an error can only occur
in a cluster where the correct neuron has been deleted. Therefore there cannot be an error
if a stored pattern ξµ is the input. In the model without self-loops, there can be an error
in each cluster, despite the fact whether the correct neuron has been deleted or not. It
is thus possible to get an incorrect output if the input pattern is a stored pattern ξµ and
there is an upper bound of the number of stored patterns.

Since the proof only uses one fixed cluster and shows that there will be an error with
high probability if too many patterns are stored, the proof is the same as the proof of
Theorem 6.21, completed by the case % = 0 in case where the input is a stored pattern.
We obtain

lim
l→∞

P
(
T (ξ̃1) 6= ξ1

)
≥ 1− lim

l→∞

(
1−

(
1− e−α

)c−f−1
(1 + o(1))

)l
= 1

if α > − log(1− e−1/(1−%)), in particular if α > − log(1− e−1) in case % = 0.

�

Remark 6.26 For an arbitrary stored pattern ξµ and a randomly deleted version ξ̃µ of
ξµ, where %c, % > 0, neurons have been deactivated, we observe concerning the retrieval
process with multiple steps, using S or S̄:

1. If α > − log(1− e−1), the message can never be recovered, with high probability.

2. If α < − log(1−e−1/(1−%)), the pattern is corrected in one step, with high probability.

Concerning 1., if α > − log(1 − e−1), in an arbitrary cluster where the entry has been
deleted, there is at least one neuron that is connected to every neuron of the other c− 1
clusters that belong to ξµ (see the proof of Corollary 6.24, 2.). This neuron is activated in
the first step because it is in particular connected to every one of the c−%c initially excited
neurons. Since it is connected to every of the c − 1 neurons in different clusters being
part of ξµ, it remains active; this error will never be corrected. The second statement is
a result obtained in Theorem 6.21/Corollary 6.24.

The GB model with SUM-of-MAX rule and self-loops is particularly resistent to spu-
riously activated neurons. In the other models analysed in this thesis, a number of %c
spuriously activated neurons decreases the capacity noticeably, mostly antiproportionally
with (1+%). This is not the case in the GB model: it is possible to correct a comparatively
high number of spuriously activated neurons.
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6 The Gripon-Berrou Model

Proposition 6.27 In the GB model with self-loops and SUM-of-MAX rule and M = αl2

stored patterns, with some α > 0, let the input pattern be a corrupted version ξ̃µ of a stored
message ξµ. In each cluster, there are up to %c neurons spuriously activated, for some
fixed but arbitrary % > 0. Then the pattern is corrected in one step, with high probability:

P(T (ξ̃µ) = ξµ) −→ 1

as N tends to infinity.

Proof: We first state that the message is not recovered if and only if there is a clique
within the activated neurons (spuriously or correctly active) that is not the message itself;
this means, the clique forms a valid message and each of the connecting edges is active. If
there is not such a clique, the correct neurons obtain each at least one signal per cluster,
in total c signals. Neurons that do not belong to the active neurons of ξ̃µ can only get
up to c − 1 signals and remain inactive. The activated neurons will all be deactivated
after some steps because there is no clique that includes a subset of the initially activated
neurons. If there is in contrary such a clique, the contained neurons remain activated
forever, as the neurons belonging to ξµ.

We proceed as in the proof of Proposition 6.20 and split the probability into a sum, the
summands distinguished by the number of neurons that differ from the original message.
The big difference to this proof is that the number of possible cliques that differ from ξµ

in i clusters/neurons decreases drastically from
(
c
i

)
li to at most

(
c
i

)
(%c)i because we can

only choose from the initially active neurons. Using the upper bound of the probability
of G(ξ0(i)) of such a clique derived in Proposition 6.19, we observe that the probability
of not being able to correct the pattern tends to 0.

�

6.2.2 The GB Model with Binary Synaptic Efficacies and
Threshold Dynamics

This model was as well proposed by Gripon and Berrou, e. g., in [23]. It respects most of
the structure of the model of the previous subsection. The only difference is that it does
not use a WTA, but a threshold dynamics. This means that we keep the cluster structure
and the definitions of the synaptic efficacies and the local field (S(a,i), S(β)(a,i) and S̄(a,i),
respectively). We recall

J(a,i),(b,j) = Θ

(
M∑
µ=1

ξµ(a,i)ξ
µ
(b,j) − 1

)
, a 6= b ∨ i = j,

S(β)(a,i)(σ) =
c∑

b=1,b 6=a

Θ

(
l∑

j=1

J(a,i),(b,j)σ(b,j) − 1

)
+ βJ(a,i),(a,i)σ(a,i),

S(a,i)(σ) = S(0)(a,i)(σ) and S̄(a,i)(σ) = S(1)(a,i)(σ).
The dynamics in this version of the GB model is defined by

T (β)(a,i)(σ) = Θ
(
S(β)(a,i)(σ)− h

)
.
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6.2 The Gripon-Berrou Model with Binary Synaptic Efficacies

The threshold h is chosen in dependence of the tasks the network should perform. As by
the application of the SUM-OF-MAX rule and for the same reasons, choosing h = c and
T (1) implies stability of all stored messages ξ ∈ {ξ1, . . . , ξM} without limiting the number
M . We also shortly consider the dynamics T (β)(σ), β ∈ (0, 1) using S(β) and show that
its performance is the same as the one of T (1) and that T (0) performs worse compared
to T (1). The dynamics T (1) using S̄ is called T in this section.

First, we examine the stability of the stored patterns. The model shows similar prop-
erties to the Willshaw model with threshold dynamics. Other than in the latter model,
we can reach that every message is stable without limiting the number of stored patterns.
This is reached by choosing S̄ and h = c. If h < c, the network performs better than the
Willshaw model with independent and identically distributed spins, because it is possible
to find a bound on α such that all patterns are stable, with high probability. Concerning
the stability and error correction of an arbitrary stored pattern, the bounds on α are the
same as in the both versions of the Willshaw model with threshold dynamics.

We prove the following theorem:

Theorem 6.28 In the GB model threshold dynamics, we observe for the different varia-
tions of the model, concerning the stability of the stored patterns and the error correction:

1. In the GB model with self-loops, threshold dynamics and binary synaptic efficacies,
all the stored messages are stable, if we set the threshold to h = c.

2. The same is true for the model using S(β), β > 0, by choosing h = c− 1 + β.

3. In the model without self-loops, i.e. β = 0, M = αl2 patterns can be stored such that
a randomly chosen ξµ is stable with probability tending to 1. P (T (ξµ) = ξµ) −→ 1,
if

α < − log(1− e−1)

and the threshold h = c− 1 is used.

4. For arbitrary β ∈ [0, 1], using S(β), the threshold h = γc − 1 + β, γ ∈ (0, 1), will
provide that an arbitrary stored pattern is stable with high probability, if

α < − log(1− γ)

and

−γ log

(
γ

1− e−α

)
+ (1− γ) log

(
e−α

1− γ

)
< −1.

5. For arbitrary β ∈ [0, 1], a randomly deleted message ξ̃µ obtained by deleting %c
entries, % > 0, of ξµ can be corrected in one step with high probability, if % < 1− γ
and if α is chosen accordingly to the conditions in 4.). Then

lim
l→∞

P
(
T (ξ̃µ) = ξµ

)
= 1.
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6 The Gripon-Berrou Model

6. The bounds in 3.), 4.) and 5.) are sharp: we have, in the model without self-loops
and h = c− 1, P (T (0)(ξµ) 6= ξµ) −→ 1 , if

α > − log(1− e−1)

and, for β ∈ [0, 1] and h = γc−1+β, P (T (β)(ξµ) 6= ξµ) −→ 1, if a.) α < − log(1−γ)
and

−γ log

(
γ

1− e−α

)
+ (1− γ) log

(
e−α

1− γ

)
> −1

or if b.) α ≥ − log(1−γ). If a pattern is partially deleted and % > 1−γ, the pattern
cannot be corrected: then P(T (β)(ξ̃µ) = (0, . . . , 0)) = 1.

7. Using the threshold h = γc− 1 + β, γ ∈ (0, 1) and arbitrary β ∈ [0, 1], the whole set
of stored messages is stable concerning the dynamics using S(β) if α < − log(1− γ)
and

−γ log

(
γ

1− e−α

)
+ (1− γ) log

(
e−α

1− γ

)
< −3 :

then
lim
l→∞

P
(
∃µ ≥ 1,∃(a, i) : T (β)(a,i)(ξ

µ) 6= ξµ(a,i)

)
= 0.

Proof of Theorem 6.28: The first two statements follow immediately because they
have already been proven in Proposition 6.4 concerning the SUM-OF-MAX rule. The
neurons belonging to ξ1 collect c signals, each, but the neurons not belonging to ξ1 only
can get c− 1 signals.

The model without self-loops, however, provides no guaranteed stability of the stored
patterns. To achieve a preferably high number of stored messages (which will go to the
expense of the error correcting abilities), we choose h = c−1 and are in the same situation
as in the GB model with WTA dynamics without self-loops, see Corollary 6.24. This shows
the third statement.

Concerning 4.) and 5.), if we choose a threshold h = γc− 1 +β, with fixed γ < 1, and
consider ξ1 that is assumed to be the pattern (e1, . . . , e1), the activated neurons of ξ1 are
trivially stable. Their local field is

S(β)(a,1)(ξ
1) = c− 1 + β > γc− 1 + β.

If %c entries have been deleted, with % < 1− γ, it is still at least equal to

S(β)(a,1)(ξ̃
1) ≥ min((1− %)c− 1 + β, (1− %)c) ≥ (1− %)c− 1 + β > γc− 1 + β.

If % > 1− γ, none of the neurons can get enough signals and all neurons are deactivated
in one step.

In 4.) and in 5.), the remaining neurons, these are the inactive neurons of ξ1, are
stable, if they are connected to less than γc − 1 + β of the activated neurons of ξ1.
Noticing that the probability of an error is decreasing if the number of deleted neurons

182



6.2 The Gripon-Berrou Model with Binary Synaptic Efficacies

increases, Lemma 6.22 bounds the probability of an error concerning the inactive neurons
of ξ1 (if either ξ1 or ξ̃1 is the input) by

P
(
∃(a, i), i ≥ 2 : T (β)(a,i)(ξ

1) = 1
)
≤ c(l − 1)P

(
c∑
b=2

J(1,2),(b,1) ≥ γc− 1 + β

)
=c(l − 1)P

(
R(1−e−α),c−1 ≥ γc− 1 + β

)
(1 + o(1))

with a Binomially distributed random variable R(1−e−α),c−1 having parameters p̃ = 1−e−α
and c−1. By the application of the exponential Chebyshev inequality, we obtain for t > 0

P
(
R(1−e−α),c−1 ≥ γc− 1 + β

)
≤ exp [−γct+ (1− β)t]

(
1− p̃+ p̃et

)c−1

≤ exp
[
−γct+ (1− β)t+ (c− 1) log(1 + p̃(et − 1))

]
.

We are now in the same situation as in the proof of Theorem 4.9. The probability converges
to 0 if α < − log(1− γ) and −γ log( γ

1−e−α ) + (1− γ) log( e
−α

1−γ ) < −1.
Concerning 7.), the probability of the existence of an unstable message is bounded by

P
(
∃µ,∃(a, i) : T (β)(a,i)(ξ

µ) 6= ξµ(a,i)

)
≤MlcP

(
T (β)(a,i)(ξ

µ) 6= ξµ(a,i)

)
for some fixed neuron (a, i) and message µ such that ξµ(a,i) = 0. As in the previous
part of the proof concerning 4.) and 5.), using t = log γ(1−p̃)

(1−γ)p̃
yields convergence to 0 if

α < − log(1− γ) and

−γ log
γ

1− e−α
+ (1− γ) log

e−α

1− γ
< −3.

To show the sharpness of the bounds as claimed in 6.), we use again Lemma 6.22. We
recall that for fixed a, e. g., a = 1,

M∑
µ=2

ξµ(1,i), i ≥ 2

are negatively associated. The conditional probabilities

P

(
c∑
b=2

Θ

(
M∑
µ=2

ξµ(b,1)ξ
µ
(1,i) − 1

)
< γc

∣∣∣ M∑
µ=2

ξµ(1,i) = k

)

are for each i ≥ 2 decreasing in k. In addition, as in the proof of Theorem 6.21, for
some vector (k2, . . . , kl) with P(

∑M
µ=2 ξ

µ
(1,2) = k2, . . . ,

∑M
µ=2 ξ

µ
(1,l) = kl) > 0, the following

conditional probability is equal to

P

[
∀i ≥ 2 :

c∑
b=2

Θ

(
M∑
µ=2

ξµ(b,1)ξ
µ
(1,i) − 1

)
< γc

∣∣∣ M∑
µ=2

ξµ(1,2) = k2, . . . ,

M∑
µ=2

ξµ(1,l) = kl

]

=
l∏

i=2

P

[
c∑
b=2

Θ

(
M∑
µ=2

ξµ(b,1)ξ
µ
(1,i) − 1

)
< γc

∣∣∣ M∑
µ=2

ξµ(1,i) = ki

]
.
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This is because only one neuron of cluster 1 can be part of message µ. Taking the functions

fi(ki) = P

[
c∑
b=2

Θ

(
M∑
µ=2

ξµ(b,1)ξ
µ
(1,i) − 1

)
< γc

∣∣∣ M∑
µ=2

ξµ(1,i) = ki

]
,

and using Lemma 2.12, we conclude, as in the last part of the proof of Theorem 6.21:

P

(
∀i ≥ 2 :

c∑
b=2

Θ

(
M∑
µ=2

ξµ(b,1)ξ
µ
(1,i) − 1

)
< γc

)

≤
l∏

i=2

P

(
c∑
b=2

Θ

(
M∑
µ=2

ξµ(b,1)ξ
µ
(1,i) − 1

)
< γc

)
.

With this result, we have

P

(
∃i ≥ 2 :

c∑
b=2

Θ

(
M∑
µ=2

ξµ(b,1)ξ
µ
(1,i) − 1

)
≥ γc)

)

=1− P

(
∀i ≥ 2 :

c∑
b=2

Θ

(
M∑
µ=2

ξµ(b,1)ξ
µ
(1,i) − 1

)
< γc

)

≥1− P

(
c∑
b=2

Θ

(
M∑
µ=2

ξµ(b,1)ξ
µ
(1,2) − 1

)
< γc

)l−1

.

By Lemma 6.22, the random variable
∑c

b=2 Θ(
∑M

µ=2 ξ
µ
(b,1)ξ

µ
(1,2) − 1) is asymptotically dis-

tributed as a Binomial random variable with parameters 1−e−α and c−1. The probability
of an error thus tends to 1 if[

1− P

(
c∑
b=2

Θ

(
M∑
µ=2

ξµ(b,1)ξ
µ
(1,2) − 1

)
≥ γc

)]l−1

−→ 0;

this is fulfilled if

lim
l→∞

1

log(l)
log

(
P

(
c∑
b=2

Θ

(
M∑
µ=2

ξµ(b,1)ξ
µ
(1,2) − 1

)
≥ γc

))
> −1.

Using Lemma 2.4, the limit is, if α < − log(1− γ),

lim
l→∞

1

log(l)
log

(
P

(
c∑
b=2

Θ

(
M∑
µ=2

ξµ(b,1)ξ
µ
(1,2) − 1

)
≥ γc

))

= −γ log

(
γ

1− e−α

)
+ (1− γ) log

(
e−α

1− γ

)
.
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So the probability tends to 1 if −γ log( γ
1−e−α )+(1−γ) log( e

−α

1−γ ) > −1. The sharpness of
the stability bound of the model using S and γ = 1 follows from the proof of Theorem 6.21.

�

Remark 6.29 The results of the analysis concerning the sets of possible capacity variables
in dependence on γ of Proposition 4.10 are also valid for the GB model using a threshold
γc− 1 + β, γ < 1.

Remark 6.30 The threshold dynamics does not allow for improvement after multiple
steps, if the input was a stored pattern or a partially erased stored pattern. The pattern is
either corrected in one step or never corrected.

If the number of active neurons in the erased pattern does not exceed the threshold, the
input is mapped to (0, . . . , 0) and never corrected. If on the other hand the number of
active neurons exceeds the threshold, the initially activate neurons remain active, since
the input is a stored or partially erased stored message and they receive signals from each
other activated neuron. If the message is not corrected in one step, there is a spurious
neuron that has been activated in the first step of the dynamics. It remains active after
each following step, because it obtains enough signals in the first step and the initially
active neurons will also remain active in each subsequent iteration.

Corollary 6.31 If a threshold variable γ < 1 is used, it is as well possible to correct
patterns with %1c incorrect entries and %2c deleted ones. We assume that exactly one
neuron is activated in the %1c wrong clusters and it has replaced the correct neuron. Then
the pattern can be corrected in one step if

%1 + %2 < 1− γ

and α is chosen in order to guarantee stability of the stored patterns, i.e.

−γ log

(
γ

1− e−α

)
+ (1− γ) log

(
e−α

1− γ

)
< −1.

Proof: Trivially, the 1’s (erased or not) in the stored message are corrected in one step
(or remain) if the first condition holds. The non-excited neurons of the stored message are
stable/corrected if they are connected to less than γc of the activated neurons; since there
is at most one active neuron per cluster, this probability is bounded by the corresponding
probability of the stability of the inactive neurons in a stored pattern and tends to 0 if
the stability condition of Theorem 6.28 is fulfilled. This is, in any case, a condition that
should be fulfilled by α, even if the correction would only need a less restrictive bound.

�
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6.3 Other Variations of the GB Model

Comparable to the model treated in the first section of this chapter that corresponds to
Amari’s model, it is also possible to define analogons to the models of chapters 3 and 5.
The neurons remain organised in clusters, and per message and cluster, there is exactly
one activated neuron. An active neuron can take one of the two values −1 or 1, each one
with equal probability. Each message has the form ξµ = (ξµ(a,i))(a,i)∈{1,...,c}×{1,...,l}, where
ξµ(a,i) denotes the value of (a, i) in message µ. The messages are chosen independently and
accordingly to the uniform distribution on the set of all messages with exactly one active
neuron per cluster. The underlying graph is given by the edge set E = {{(a, i), (b, j)} :
a 6= b, i, j ∈ {1, . . . , l}}. For the cluster versions of the Ternary simple and the BEG
model, the synaptic weights J(a,i)(b,j) are defined by

J(a,i),(b,j) =
M∑
µ=1

ξµ(a,i)ξ
µ
(b,j).

In the BEG version, there are additionally the variables

K(a,i),(b,j) =
1

(1− 1/l)2

M∑
µ=1

ηµ(a,i)η
µ
(b,j), ηµ(a,i) = (ξµ(a,i))

2 − 1/l.

The dynamics T are defined as in the models analysed in the corresponding chapters.
The results and bounds on α are expected to be the same as the ones obtained during the
analysis of the corresponding models in chapters 3 and 5.

However, the cluster structure only particularly improves the performance and is ad-
vantageous to the models without cluster structure in the self-loop accepting version with
SUM-of-MAX rule.
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7 Comparison of the Different
Models

There are different aspects to compare the different models, first of all, the critical capacity
variable α∗. Though using threshold variables γ ≥ 1, Amari’s model offers the worst
critical capacity variable α∗Am ≈ 0.255. Capacity variables γ ≥ 1 used in this model
use the random noise of the local field and have to be taken with care; if one only uses
threshold variables γ < 1, the critical variable for this model is even less, α∗Am<1 ≈ 0.1585.
The Ternary simple model performs better, with a critical capacity variable α∗Ts ≈ 0.38,
but one has to keep in mind that the situation is not fair because the state space of the
latter model is ternary. The Willshaw model with threshold dynamics or WTA algorithm
in turn outperforms the Ternary simple model, which is remarkable, because it only has
a binary state space. Its critical capacity variable α∗Wi is approximately 0.45. The best
capacity of chapters 2-5 is reached by the BEG model with α∗BEG ≈ 0.51. Finally, the GB
model in its version with self-loops and SUM-of-MAX rule has a structure that allows to
store an umlimited number of patterns such that each one is stable. Of course, too many
stored patterns go at the expense of the error correcting abilities of the network. In the
next paragraph, we compare this property for partially deleted patterns.

The sharp bounds on the capacity variable for the models using a threshold are visu-
alised in Figure 7.1. In Amari’s model using threshold variables γ > 1, αmust additionally
fulfill α > γ − 1.

Concerning the error correcting abilities, let us suppose that a number of % log(N) (%c
in the different versions of the GB model) of the active neurons of a stored pattern has
been deactivated. A number of % log(N) deleted active neurons in a stored pattern can in
all models using a threshold, except the BEG model, be corrected with high probability
if γ < 1− %. In the BEG model % log(N) deleted neurons can be corrected if γ < 2− 2%.
These bounds for γ are in all models sharp, except in Amari’s model (and its equivalent,
the GB model with weighted synaptic efficacies). In this model the usage of γ ≥ 1− % is
possible but requires a certain random noise and does not only rely on the signal coming
from the stored message. We therefore compare the critical capacity variable for the
threshold variable γ = 1 − % to the critical capacity variables of the other models. This
is the critical threshold such that no minimal value for α is required and to keep the
active neurons stable only by the signal term of the local field, without using the noise
term. The bounds on γ determine in the remaining models with threshold algorithms the
critical values for α, that is, the supremum of all α that can be used in order to guarantee
a correction of this pattern, with probability converging to 1. In the Willshaw model with
WTA algorithm and in the GB model with SUM-of-MAX rule, the critical variable α to
correct % log(N) errors is α(%) = − log(1− e−1/(1−%)), as determined in chapters 4 and 6.
Figure 7.2 demonstrates the bounds on α: for all models except Amari’s model, it shows
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Figure 7.1: Critical capacity variables α∗(γ) of the different models in dependence on the
threshold variables γ. In the Willshaw model with WTA dynamics, the critical
capacity variable is α∗Wi WTA ≈ 0.45. In the GB model with SUM-of-MAX
rule and in the GB model with binary synaptic weights, self-loops, threshold
dynamics and γ = 1, one can store all patterns such that they are stable.

the critical capacity variable, if % log(N) active neurons are deleted and the message shall
be corrected. We observe that Amari’s model and the GB model with weighted synaptic
efficacies perform again worst, followed for low error rates (% / 0.05) by the Ternary simple
model and then by the Willshaw model with threshold dynamics (and its equivalent, the
GB model with binary synaptic efficacies and threshold dynamics). The Ternary simple
model and the Willshaw model with threshold dynamics change places for higher error
rates. The Willshaw model with WTA algorithm and the GB model with SUM-of-MAX
rule are second best for low error rates (% / 0.07) and best for higher error rates, offering
the same critical value on α. The best values for α for low error rates and second best
values for high error rates in dependence on % are attained by the BEG model.

If a stored pattern is corrupted such that there are % log(N) spuriously active neurons
or even by a combination of erased and spuriously active neurons, all models are able to
correct this pattern, if α and possibly γ are small enough. Here it is remarkable that
the GB model with SUM-of-MAX rule and self-loops is very robust concerning errors of
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Figure 7.2: Capacity variables of the different models in dependence on %, if a partially
deleted stored pattern is to be corrected and % log(N) of the active neurons of
a stored pattern are deleted.

this kind. In all of the other models, a number of % log(N) spuriously activated neurons
considerably decreases the bound on α, mostly antiproportionally with 1 + %. This shows
that the cluster structure improves the performance of the model and that the GB model
with SUM-of-MAX rule has a further advantage to the Willshaw model besides the fact
that stored patterns are automatically stable.

Comparing the results of the different models, we have to remark that the good per-
forming WTA algorithm ignores the associative memory rule that the updating decision
of a neuron should be made independently of the decisions concerning the other neurons.
Therefore the comparison of the performances of these models to those using a threshold
dynamics has to be taken with care. Anyway, - besides the GB model - the best perform-
ing network, the BEG model, uses a threshold algorithm. But this model has a ternary
state space, what makes it difficult to compare it to the binary networks.

All variations of the models in chapters 2 - 5 where the stored patterns are uniformly
chosen from the set of patterns with exactly c ≈ log(N) active neurons perform clearly
better than the ones with i.i.d. spins if it comes to stability of all patterns and exactly or
at least as good concerning the stability of an arbitrary stored pattern.
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