Probability theory II

Exercise Sheet 1 Submission is due on 10/16/2019 2 p.m. Box 133

Exercise 1 (5 points)

- (a) Let $\Omega = \{1, ..., 6\}$, $\mathbb{P} =$ Unif, and $A = \{4\}$, B = "even number". If $X = 1_A$ and $\mathcal{F} = \sigma(B)$, then compute $\mathbb{E}[X|\mathcal{F}]$.
- (b) Let X, Y be two real-valued random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $f : \mathbb{R}^2 \to \mathbb{R}_+$ be the density for the joint distribution of (X, Y) (i.e. $\mathbb{P}(X \in A, Y \in B) = \int_{\mathbb{R}^2} \mathbb{1}_{\{x \in A\}} \mathbb{1}_{\{y \in B\}} f(x, y) dx dy$ for all $A, B \subset \mathbb{R}$). Assume that $\int_{\mathbb{R}} f(x, y) dx > 0$ for all $y \in \mathbb{R}$. Let $g : \mathbb{R} \to \mathbb{R}$ be a measurable function such that $g \circ X \in L^1(\mathbb{P})$. Then show that $\mathbb{E}[g \circ X | \sigma(Y)] = h \circ Y$ where $h : \mathbb{R} \to \mathbb{R}$ is given by

$$h(y) = \frac{\int_{\mathbb{R}} g(x) f(x, y) dx}{\int_{\mathbb{R}} f(x, y) dx}$$

Exercise 2 (2 points)

Let $\Omega = (0, 1)$, $\mathcal{F} = \mathcal{B}(\Omega)$ and \mathbb{P} =Lebesgue. If $X(\omega) = \cos(\pi\omega)$, compute $\mathbb{E}[X|\mathcal{F}]$.

Exercise 3 (5 points)

Let $Z_1, ..., Z_n$ be iid $\mathcal{N}(0, 1)$ Gaussians on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Define a new measure \mathbb{Q} on (Ω, \mathcal{F}) by

$$\mathbb{Q}(\mathrm{d}\omega) = \frac{1}{Z_{n,\beta}} \exp\Big[\sum_{i=1}^{n} \beta_i Z_i(\omega)\Big] \mathbb{P}(\mathrm{d}\omega)$$

where $\beta = (\beta_1, ..., \beta_n) \in \mathbb{R}^n$ and $Z_{n,\beta}$ is a constant.

- (a) How should we choose $Z_{n,\beta}$ so that \mathbb{Q} is a probability measure? That is, which value of $Z_{n,\beta}$ makes $\mathbb{Q}(\Omega) = 1$?
- (b) With the above choice of $Z_{n,\beta}$, what is the distribution of $(Z_1, ..., Z_n)$ under the new probability measure \mathbb{Q} ?

Exercise 4 (3 points)

The following model describes the evolution of a population:

Let $(Y_{n,k})_{n \in \mathbb{N}_0, k \in \mathbb{N}}$ be iid random variables in \mathbb{N}_0 , where $Y_{n,k}$ is the number of children of the k-th individual in the n-th generation. We assume $\mathbb{E}[Y_{n,k}] < \infty$ for all $n \in \mathbb{N}_0$ and $k \in \mathbb{N}$. After one step every individual of the last generation dies such that we can define the number of living individuals

by

$$S_0 = 1$$
 $S_n = \sum_{k=1}^{S_{n-1}} Y_{n-1,k}, \quad n \ge 1.$

Prove that

$$Z_n := \frac{S_n}{\mu^n}, \quad n \ge 1$$

is a martingale with respect to $\mathcal{F}_n = \sigma(S_0, ..., S_n)$.

For the next exercise you can assume the following theorem.

Theroem: Let H be a Hilbert space (i.e., H is a vector space equipped with an inner-product $\langle \cdot, \cdot \rangle_H$ that defines a norm $||x||_H^2 := \langle x, x \rangle_H$ making H a complete metric space). Let $K \subset H$ be a closed subspace of H. Then for any $x \in H$, there exists $y \in K$ such that one of the equivalent properties hold:

- (a) For any $z \in K$, $\langle x y, z \rangle_H = 0$.
- (b) For any $z \in K$, $||y x||_H \le ||z x||_H$.

Such y is unique, it is written as $y = \pi_K(x)$ and is called the orthogonal projection of x onto K.

Note that for any sigma algebra \mathcal{A} , $L^2(\mathcal{A})$ denotes all square integrable functions which are measurable w.r.t. the sigma algebra \mathcal{A} .

Exercise 5 (5 points)

Let $H = L^2(\mathcal{F})$ equipped with an inner product $\langle X, Y \rangle_H = \mathbb{E}[XY]$. Fix $X \in L^2(\mathcal{F})$ and let $K = L^2(\mathcal{G})$ where $\mathcal{G} \subset \mathcal{F}$ is a sub- σ -algebra. Prove:

- (a) $K \subset H$ is a closed subspace of H.
- (b) The orthogonal projection of X onto K (which exists and is unique by the theorem above) is uniquely identified as

$$\pi_K(X) = \mathbb{E}[X|\mathcal{G}].$$