Probability theory II
 Exercise Sheet 1

Submission is due on $10 / 16 / 20192$ p.m.
Box 133

Exercise 1 (5 points)

(a) Let $\Omega=\{1, \ldots, 6\}, \mathbb{P}=$ Unif, and $A=\{4\}, B=$ "even number". If $X=1_{A}$ and $\mathcal{F}=\sigma(B)$, then compute $\mathbb{E}[X \mid \mathcal{F}]$.
(b) Let X, Y be two real-valued random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}_{+}$be the density for the joint distribution of (X, Y) (i.e. $\mathbb{P}(X \in A, Y \in B)=$ $\int_{\mathbb{R}^{2}} 1_{\{x \in A\}} 1_{\{y \in B\}} f(x, y) \mathrm{d} x \mathrm{~d} y$ for all $\left.A, B \subset \mathbb{R}\right)$.
Assume that $\int_{\mathbb{R}} f(x, y) \mathrm{d} x>0$ for all $y \in \mathbb{R}$. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a measurable function such that $g \circ X \in L^{\mathbb{1}}(\mathbb{P})$. Then show that $\mathbb{E}[g \circ X \mid \sigma(Y)]=h \circ Y$ where $h: \mathbb{R} \rightarrow \mathbb{R}$ is given by

$$
h(y)=\frac{\int_{\mathbb{R}} g(x) f(x, y) \mathrm{d} x}{\int_{\mathbb{R}} f(x, y) \mathrm{d} x} .
$$

Exercise 2 (2 points)
Let $\Omega=(0,1), \mathcal{F}=\mathcal{B}(\Omega)$ and $\mathbb{P}=$ Lebesgue. If $X(\omega)=\cos (\pi \omega)$, compute $\mathbb{E}[X \mid \mathcal{F}]$.

Exercise 3 (5 points)
Let Z_{1}, \ldots, Z_{n} be iid $\mathcal{N}(0,1)$ Gaussians on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Define a new measure \mathbb{Q} on (Ω, \mathcal{F}) by

$$
\mathbb{Q}(\mathrm{d} \omega)=\frac{1}{Z_{n, \beta}} \exp \left[\sum_{i=1}^{n} \beta_{i} Z_{i}(\omega)\right] \mathbb{P}(\mathrm{d} \omega)
$$

where $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{R}^{n}$ and $Z_{n, \beta}$ is a constant.
(a) How should we choose $Z_{n, \beta}$ so that \mathbb{Q} is a probability measure? That is, which value of $Z_{n, \beta}$ makes $\mathbb{Q}(\Omega)=1$?
(b) With the above choice of $Z_{n, \beta}$, what is the distribution of $\left(Z_{1}, \ldots, Z_{n}\right)$ under the new probability measure \mathbb{Q} ?

Exercise 4 (3 points)
The following model describes the evolution of a population:
Let $\left(Y_{n, k}\right)_{n \in \mathbb{N}_{0}, k \in \mathbb{N}}$ be iid random variables in \mathbb{N}_{0}, where $Y_{n, k}$ is the number of children of the k-th individual in the n-th generation. We assume $\mathbb{E}\left[Y_{n, k}\right]<\infty$ for all $n \in \mathbb{N}_{0}$ and $k \in \mathbb{N}$. After one step every individual of the last generation dies such that we can define the number of living individuals
by

$$
S_{0}=1 \quad S_{n}=\sum_{k=1}^{S_{n-1}} Y_{n-1, k}, \quad n \geq 1
$$

Prove that

$$
Z_{n}:=\frac{S_{n}}{\mu^{n}}, \quad n \geq 1
$$

is a martingale with respect to $\mathcal{F}_{n}=\sigma\left(S_{0}, \ldots, S_{n}\right)$.

For the next exercise you can assume the following theorem.
Theroem: Let H be a Hilbert space (i.e., H is a vector space equipped with an inner-product $\langle\cdot, \cdot\rangle_{H}$ that defines a norm $\|x\|_{H}^{2}:=\langle x, x\rangle_{H}$ making H a complete metric space). Let $K \subset H$ be a closed subspace of H. Then for any $x \in H$, there exists $y \in K$ such that one of the equivalent properties hold:
(a) For any $z \in K,\langle x-y, z\rangle_{H}=0$.
(b) For any $z \in K,\|y-x\|_{H} \leq\|z-x\|_{H}$.

Such y is unique, it is written as $y=\pi_{K}(x)$ and is called the orthogonal projection of x onto K.

Note that for any sigma algebra $\mathcal{A}, L^{2}(\mathcal{A})$ denotes all square integrable functions which are measurable w.r.t. the sigma algebra \mathcal{A}.

Exercise 5 (5 points)
Let $H=L^{2}(\mathcal{F})$ equipped with an inner product $\langle X, Y\rangle_{H}=\mathbb{E}[X Y]$. Fix $X \in L^{2}(\mathcal{F})$ and let $K=L^{2}(\mathcal{G})$ where $\mathcal{G} \subset \mathcal{F}$ is a sub- σ-algebra. Prove:
(a) $K \subset H$ is a closed subspace of H.
(b) The orthogonal projection of X onto K (which exists and is unique by the theorem above) is uniquely identified as

$$
\pi_{K}(X)=\mathbb{E}[X \mid \mathcal{G}]
$$

