Probability theory II

Exercise Sheet 11

Submission is due on $01 / 08 / 20202$ p.m.
Box 133

In what follows, S is a complete separable metric space, and $\Omega=S^{\mathbb{Z}}$ equipped with the translation map $T: \Omega \rightarrow \Omega$ such that if $\omega=\left(x_{n}\right)_{n \in \mathbb{Z}} \in \Omega, T \omega=\left(x_{n+1}\right)_{n \in \mathbb{Z}}$. Also, we will write, for all $\omega \in \Omega$, $X_{n}(\omega):=\omega(n)$ for the co-ordinate mapping process.

Exercise 1 (4 points)
(a) Let $\{p(x, \cdot)\}_{x \in S}$ be a transition probability function and $\mathbb{P} \in \mathcal{M}_{1}(\Omega)$ is a stationary Markov process with respect to $p(\cdot, \cdot)$ (i.e. \mathbb{P} is T-invariant and $\mathbb{P}\left(X_{n+1} \in A \mid \mathcal{F}_{n}\right)=p\left(X_{n}, A\right)$ almost surely with respect to $\mathbb{P})$. Then show that the 1-dimensional marginal distribution $\mu \in \mathcal{M}_{1}(S)$ which is given by $\mu(A)=\mathbb{P}\left(X_{n} \in A\right)$ for all $A \subset S$ (and is independent of n because of stationarity of $\mathbb{P})$ is p-invariant in the sense $\mu(A)=\int_{S} p(x, A) \mu(\mathrm{d} x)$.
(b) Conversely, given any transition probability $\{p(x, \cdot)\}_{x \in S}$ on S and any $\mu \in \mathcal{M}_{1}(S)$ such that μ is p-invariant, show that there exists a unique stationary Markov process \mathbb{P} with transition probability $\{p(x, \cdot)\}_{x \in S}$ and 1-dimensional marginal μ.

Exercise 2 (4 points)

Let $F: \Omega \rightarrow \Omega$ such that with $\omega=\left(x_{n}\right)_{n \in \mathbb{Z}} \in \Omega, F \omega=\left(x_{-n}\right)_{n \in \mathbb{Z}}$. Let \mathbb{P} be a stationary Markov process with transition probability $p(\cdot, \cdot)$ and 1-dimensional marginal μ. If $\mathbb{Q}=\mathbb{P} F^{-1}$ is the pushforward of \mathbb{P} under the map F, show that \mathbb{Q} is a stationary Markov process and determine its transition probability $q(\cdot, \cdot)$ in terms of $p(\cdot, \cdot)$ and μ.

Exercise 3 (6 points)

(a) For any $p \in[1, \infty]$, prove that $(P f)(x)=\int_{S} f(y) p(x, \mathrm{~d} y)$ defines a contraction map $L^{p}(\mu)$ if μ is p-invariant.
(b) In the notation of Exercise 2, let $\mathbb{Q}=\mathbb{P}$. Then show that the operator $P: L^{2}(\mu) \rightarrow L^{2}(\mu)$ is symmetric (or self-adjoint in the sense $\langle P f, g\rangle_{L^{2}(\mu)}=\langle f, P g\rangle_{L^{2}(\mu)}$ for all $f, g \in L^{2}(\mu)$ (Here μ is again a p-invariant probability measure).

Notation: Let $\{p(x, \cdot)\}_{x \in S}$ be a transition probability function. Define $\mathcal{M}_{s}^{(p)}=\left\{\mu \in \mathcal{M}_{1}(S)\right.$: μ is p - invariant i.e. $\mu(A)=\int_{S} p(x, A) \mu(\mathrm{d} x)$ for all $\left.A \subset S\right\}$. Then obviously $\mathcal{M}_{s}^{(p)}$ is a convex set. Let $\mathcal{M}_{s, \text { extr }}^{(p)}$ denote the (possibly empty) set of extreme points of the convex set $\mathcal{M}_{s}^{(p)}$.

If \mathbb{P} is a stationary Markov chain with 1-dimensional marginal distribution $\mu=\delta_{x}$ (for any $x \in S$) and transition probability $p(x, \mathrm{~d} y)$, it is customary to denote such a stationary Markov chain by
\mathbb{P}_{x}.

Exercise 4 (6 points)

Let \mathbb{P}_{x} be a stationary Markov chain with transition probability $p(x, \mathrm{~d} y)$. Let f be any bounded measurable function $f: S \rightarrow \mathbb{R}$. Show that for almost all x with respect to any $\nu \in \mathcal{M}_{s, \text { extr }}^{(p)}$

$$
\lim _{n \rightarrow \infty} \frac{1}{n}\left(f\left(X_{1}\right)+\ldots+f\left(X_{n}\right)\right)=\int f(y) \nu(\mathrm{d} y)
$$

for almost all ω with respect to \mathbb{P}_{x}. That is, fix any $\nu \in \mathcal{M}_{s, \text { extr }}^{(p)}$ and show that

$$
\nu\left(x \in S: \mathbb{P}_{x}\left[\omega: \lim _{n \rightarrow \infty} \frac{1}{n}\left(f\left(X_{1}(\omega)\right)+\ldots+f\left(X_{n}(\omega)\right)\right)=\mathbb{E}^{\nu}[f(\omega)]\right]=1\right)=1
$$

