Probability theory II

Exercise Sheet 12

Submission is due on $01 / 08 / 20202$ p.m.
Box 133

In what follows, S is a complete separable metric space, and $\Omega=S^{\mathbb{Z}}$ equipped with the translation map $T: \Omega \rightarrow \Omega$ such that if $\omega=\left(x_{n}\right)_{n \in \mathbb{Z}} \in \Omega, T \omega=\left(x_{n+1}\right)_{n \in \mathbb{Z}}$. Also, we will write, for all $\omega \in \Omega$, $X_{n}(\omega):=\omega(n)$ for the co-ordinate mapping process.

Exercise 1 (4 points)
Let $\mathbb{P} \in \mathcal{M}_{s}(\Omega)$. Show that $\mathbb{P} \in \mathcal{M}_{e}(\Omega)$ if and only if

$$
\frac{1}{n} \sum_{j=1}^{n} Y_{j} \rightarrow \mathbb{E}[Y]
$$

where $Y: \Omega \rightarrow \mathbb{R}$ is measurable such that $\mathbb{E}[Y]$ exists and $Y_{j}(\omega)=Y\left(T^{j-1} \omega\right)$.

Exercise 2 (4 points)

(a) Let $I=[0,1)$ and $\mathbb{P}=$ Lebesgue and $T: I \rightarrow I$ such that $T(x)=2 x(\bmod 1)$. Show that T is \mathbb{P} - preserving and ergodic
(b) Let $X: I \rightarrow \mathbb{R}$ such that $X(\omega)=\omega$. Show that the proportion of 1 's, in the expansion of X to base 2 , equals $1 / 2$ almost surely.

Exercise 3 (4 points)
Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be periodic with period 1 , and uniformly continuous and integrable over $(0,1)$. Let $X \sim \operatorname{Unif}([0,1])$ and α is irrational. If $\xi_{n}=g(X+(n-1) \alpha)$ for $n \geq 1$, show that $\frac{1}{n} \sum_{j=1}^{n} \xi_{j} \rightarrow$ $\int_{0}^{1} g(x) \mathrm{d} x$ almost surely.

Exercise 4 (8 points)

Let $\left\{\xi_{j}\right\}_{j}$ be iid random variables taking values on \mathbb{Z}. Let $S_{0}=0$ and $S_{n}=\xi_{1}+\ldots+\xi_{n}$ be the random walk and $R_{n}=$ range of $S_{n} \stackrel{\text { def }}{=} \#\left\{\right.$ distinct sites visited by $\left.S_{1}, S_{2}, \ldots, S_{n}\right\}$.
(a) Show that $\frac{1}{n} \mathbb{E}\left[R_{n}\right] \rightarrow \mathbb{P}($ no return $)=\mathbb{P}\left(S_{k} \neq 0\right.$ for all $\left.k \geq 1\right)$.
(b) Prove that almost surely, $\lim \sup _{n}\left[\frac{R_{n}}{n}\right] \leq \mathbb{P}$ (no return $)$.
(c) Let

$$
V_{k}= \begin{cases}1, & \text { if } S_{j} \neq S_{k} \text { for all } j>k \\ 0, & \text { else }\end{cases}
$$

Show that $\frac{1}{n} \sum_{k=1}^{n} V_{k} \rightarrow \mathbb{E}\left[V_{1}\right]$ almost surely.
(d) Use part (c) to prove, that almost surely,

$$
\underset{n}{\liminf }\left[\frac{R_{n}}{n}\right] \geq \mathbb{E}\left[V_{1}\right]
$$

(e) Show that $\mathbb{E}\left[V_{1}\right]=\mathbb{P}$ (no return) and hence

$$
\lim _{n \rightarrow \infty} \frac{R_{n}}{n}=\mathbb{P}(\text { no return })
$$

almost surely.

