Probability theory II

Exercise Sheet 14 Submission is due on 01/22/2020 2 p.m. Box 133

In what follows, $\{p(x, \cdot)\}_{x \in S}$ is a transition probability function, μ is an invariant measure and if \mathbb{P} is a stationary Markov chain with 1-dimensional marginal distribution μ and transition probability p(x, dy), it is customary to denote such a stationary Markov chain by \mathbb{P}_{μ} .

Exercise 1 (5 points)

If \mathcal{I} is the *T*-invariant σ -algebra and $A \in \mathcal{I}$, then show that there exists $B \in \mathcal{F}$, such that $p(x, B) = 1_B(x)$ for μ -a.e. x and

$$A = \bigcap_{n \ge 1} \bigcup_{m \ge n} \{ X_m \in B \} = \{ X_0 \in B \}.$$

Exercise 2 (5 points)

Let $\mathcal{M}_{inv}^{(p)} = \{\mu : \mu(A) = \int p(x, A)\mu(dx)\}$. Show that

- (a) $\mu \in \operatorname{extr}(\mathcal{M}_{\operatorname{inv}}^{(p)})$ if and only if, for all $B \in \mathcal{F}$ such that $p(x, B) = 1_B(x)$ for μ -a.e. x, $\mu(B) \in \{0, 1\}$.
- (b) $\mu \in \mathcal{M}_{inv}^{(p)}$ can be written as a convex combination of extreme points of $\mathcal{M}_{inv}^{(p)}$, i.e. for all $\mu \in \mathcal{M}_{inv}^{(p)}$ there exists a probability measure Γ_{μ} on $extr(\mathcal{M}_{inv}^{(p)})$ such that $\mu = \int_{extr(\mathcal{M}_{inv}^{(p)})} \nu \Gamma_{\mu}(d\nu)$.

Exercise 3 (5 points)

- (a) Let $\rho_n = \sup_{x,y \in S} \sup_{A \in \mathcal{F}} |p^{(n)}(x,A) p^{(n)}(y,A)|$. Suppose the transition probability $p(x, dy) = \pi(x,y)\alpha(dy)$ for some reference measure $\alpha \in \mathcal{M}_1(S)$, and $\inf_{x \in S} \pi(x,y) \ge q(y) \ge 0$ for all $y \in S$ and $\int q(y)\alpha(dy) \ge \delta > 0$. Then show that $\rho_n \le (1-\delta)^n$.
- (b) Show that if $\rho_n \to 0$ as $n \to \infty$, then the Markov chain has a unique invariant probability measure.

Exercise 4 (5 points)

Suppose $\mathbb{P} \in \mathcal{M}_s(\Omega)$. \mathbb{P} is called *strongly mixing* if

$$|\mathbb{P}(A \cap T^{-n}B) - \mathbb{P}(A)\mathbb{P}(B)| \to 0$$

for all $A, B \in \mathcal{F}$. Show if \mathbb{P} is strongly mixing, any $\mathbb{P} \in \mathcal{M}_e(\Omega)$.