Probability theory II

Exercise Sheet 2

Submission is due on $10 / 23 / 20192$ p.m.
Box 133

Exercise 1 (3 points)
Let $\left(X_{k}\right)_{k \in \mathbb{N}}$ be independent random variables such that $\mathbb{E}\left[X_{k}\right]=0$ and $X_{k} \in L^{2}(\mathbb{P})$ for all $k \in \mathbb{N}$. If $\sigma_{k}^{2}=\operatorname{Var}\left(X_{k}\right)$ and $S_{n}=\sum_{1 \leq k \leq n} X_{k}$, then $\operatorname{Var}\left(S_{n}\right)=\sum_{1 \leq k \leq n} \sigma_{k}^{2}$. Show that

$$
\mathbb{P}\left(\max _{1 \leq k \leq n} S_{k}>l\right) \leq \frac{\sum_{1 \leq k \leq n} \sigma_{k}^{2}}{l^{2}}
$$

Exercise 2 (4 points)
(a) Let $X \sim \operatorname{Normal}(0,1)$ and $a>0$. Show

$$
\frac{1}{\sqrt{2 \pi}} \frac{a}{1+a^{2}} e^{-\frac{a^{2}}{2}} \leq \mathbb{P}(X>a) \leq \frac{1}{\sqrt{2 \pi}} \frac{1}{a} e^{-\frac{a^{2}}{2}} .
$$

(b) Now let $X \sim \operatorname{Normal}\left(\mathbf{0}_{n}, I_{n}\right)$ and again $a>0$. Show

$$
\frac{n\left|B_{1}(0)\right|}{(2 \pi)^{n / 2}} \frac{a^{n}}{1+a^{2}} e^{-\frac{a^{2}}{2}} \leq \mathbb{P}(|X|>a) \leq\left\{\begin{aligned}
\frac{n\left|B_{1}(0)\right|}{(2 \pi)^{n / 2}} \frac{a^{n}}{a^{2}-(n-1)} e^{-\frac{a^{2}}{2}}, & \text { if } a>\sqrt{n-1} \\
1, & \text { if } a \in(0, \sqrt{n-1}]
\end{aligned}\right.
$$

Exercise 3 (7 points)
Let X_{1}, \ldots, X_{n} be iid with $X_{1} \sim \operatorname{Normal}(0,1)$. The moment generating function of $S_{n}=X_{1}+\ldots+X_{n}$ is $\mathbb{E}\left[e^{\theta S_{n}}\right]=e^{\frac{\theta^{2} n}{2}}$.
(a) Show $\mathbb{P}\left(\sup _{1 \leq k \leq n} S_{k} \geq c\right) \leq e^{\frac{\theta^{2} n}{2}-\theta c}$ for any $\theta>0$.
(b) Maximize over θ to show $\mathbb{P}\left(\sup _{1 \leq k \leq n} S_{k} \geq c\right) \leq e^{-\frac{c^{2}}{2 n}}$.
(c) For $h(n)=\sqrt{2 n \log \log n}$, apply (b) for a sequence, $C_{n}=r h\left(r^{n-1}\right)$ for some $r>1$ and use Borel-Cantelli-Lemma 1 to conclude

$$
\varlimsup_{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}} \leq 1 \quad \text { a.s. }
$$

(d) Apply the estimate

$$
\mathbb{P}(X>a) \geq \frac{1}{\sqrt{2 \pi}} \frac{a}{1+a^{2}} e^{-\frac{a^{2}}{2}}
$$

and use independence and Borel-Cantelli-Lemma 2, to conclude

$$
\varlimsup_{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}} \geq 1 \quad \text { a.s. }
$$

Conclude that $\varlimsup_{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}}=1$ a.s.

Exercise 4 (2 points)
Construct a non-negative martingale $\left(X_{n}\right)_{n}$, such that $\mathbb{E}\left[X_{n}\right]=1$ for all $n \in \mathbb{N}$ but $X^{\star}=$ $\sup _{n \in \mathbb{N}} X_{n} \notin L^{1}$.
Hint: Use the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ where $\Omega=[0,1], \mathcal{F}=\mathcal{B}[0,1], \mathbb{P}=\operatorname{Unif}(0,1)$ with filtration $\mathcal{F}_{n}=\sigma$-alg. generated by intervals ending with $j / 2^{n}$ for some positive integer j and the random variables

$$
X_{n}=\left\{\begin{aligned}
2^{n}, & \text { if } 0 \leq x \leq 2^{-n} \\
0, & \text { if } 2^{-n} \leq x \leq 1
\end{aligned}\right.
$$

Exercise 5 (4 points)
Show the following statements:
(a) Let $X \in L^{1}$. Given $\varepsilon>0$, there exists $\delta>0$ such that for all $F \in \mathcal{F}$,

$$
\mathbb{P}(F)<\delta \Rightarrow \mathbb{E}\left[1_{F}|X|\right]<\varepsilon
$$

(b) Suppose $X \in L^{1}$ and $\varepsilon>0$. There exists $K \in(0, \infty)$ such that

$$
\mathbb{E}\left[1_{\{|X|>K\}}|X|\right]<\varepsilon
$$

