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Box 133

Exercise 1 (3 points)

Let (Xi)ren be independent random variables such that E[X};] = 0 and X}, € L*(P) for all £ € N.
If 0 = Var(X;) and S, = >, o, X, then Var(S,) = >, ., o%. Show that
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Exercise 2 (4 points)

(a) Let X ~ Normal(0,1) and a > 0. Show

(b) Now let X ~ Normal(0,, /,,) and again a > 0. Show
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Exercise 3 (7 points)

Let Xi, ..., X,, be iid with X; ~ Normal(0, 1). The moment generating function of S,, = X;+...+ X,
is E[e?Sn] = e"2".

(a) Show P(sup;<j<, Sk > ¢) < %0 for any 6 > 0.
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(b) Maximize over ¢ to show P(sup;<p<, Sk > ¢) < e 2.

(c) For h(n) = v/2nloglogn, apply (b) for a sequence, C,, = rh(r"!) for some r > 1 and use
Borel-Cantelli-Lemma 1 to conclude

Sh
Iim —— <1 a.s.
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(d) Apply the estimate

and use independence and Borel-Cantelli-Lemma 2, to conclude

n >1 a.s.
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Conclude that nh_)ngo Trleateen = 1 a.s.

Exercise 4 (2 points)

Construct a non-negative martingale (X,,),, such that E[X,] = 1 for all n € N but X* =
Sup,en Xn & L.

Hint: Use the probability space (2, F,P) where Q = [0, 1], F = BJ0, 1], P =Unif(0, 1) with filtration
F,. = o-alg. generated by intervals ending with j/2" for some positive integer j and the random
variables

X _ . if0<gz<2™
0, if2m<z<l1

Exercise 5 (4 points)
Show the following statements:

(a) Let X € L'. Given ¢ > 0, there exists § > 0 such that for all F' € F,

P(F) <= E[lp|X]] <e.

(b) Suppose X € L' and € > 0. There exists K € (0, 00) such that

]E[l{‘X|>K}|X|] < E.



