Probability theory II

Exercise Sheet 3

Submission is due on $10 / 30 / 20192$ p.m.
Box 133

Exercise 1 (4 points)

Let $\left(\xi_{n}\right)_{n \in \mathbb{N}}$ be iid with $\mathbb{P}\left(\xi_{n}= \pm 1\right)=\frac{1}{2}, S_{0}=0$ and $S_{n}=\sum_{j=1}^{n} \xi_{j}$. Let T be a stopping time with $\mathbb{E}[T]<\infty$. Show that
(a) $S^{\star}(\omega)=\sup _{1 \leq n \leq T}\left|S_{n}(\omega)\right|$ is square integrable.

Hint: $S_{n}^{2}-n$ is a martingale.
(b) $\mathbb{E}\left[S_{T}\right]=0$.

Exercise 2 (4 points)
Let $\left(X_{n}\right)_{n \in \mathbb{N}_{0}}$ be a sub-martingale.
(a) Show that X_{n} can be written as $X_{n}=Y_{n}+A_{n}$ with the following properties:
(i) $\left(Y_{n}\right)_{n \in \mathbb{N}_{0}}$ is a martingale
(ii) $A_{n+1} \geq A_{n}$ for almost all ω and every $n \geq 0$
(iii) $A_{0} \equiv 0$
(iv) for all $n \geq 1, A_{n}$ is \mathcal{F}_{n-1}-measurable
(b) Show that the above decomposition of X_{n} with the prescribed properties is unique (i.e. if $X_{n}=Y_{n}^{\prime}+A_{n}^{\prime}$ with $Y_{n}^{\prime}, A_{n}^{\prime}$ satisfying (i)-(iv), then $Y_{n}=Y_{n}^{\prime}$ and $A_{n}=A_{n}^{\prime}$ almost everywhere).

Exercise 3 (6 points)
(a) Show that if X is any real valued random variable such that $\mathbb{E}[X]=0$ and $a \leq X \leq b$ almost everywhere, then

$$
\forall \lambda \in \mathbb{R}: \quad \mathbb{E}\left[e^{\lambda X}\right] \leq \exp \left(\frac{\lambda^{2}(b-a)^{2}}{8}\right)
$$

(b) Let $\left(X_{n}\right)_{n}$ be a martingale such that $\left|X_{n}-X_{n-1}\right| \leq C_{n}$ for all n. Then, for all $\varepsilon>0$, show that

$$
\mathbb{P}\left(\left|X_{N}-X_{0}\right| \geq \varepsilon\right) \leq 2 \exp \left(-\frac{\varepsilon^{2}}{2 \sum_{k=1}^{N} C_{k}^{2}} .\right)
$$

(c) Show that if $\left(X_{n}\right)_{n}$ is a sub-martingale such that $\left|X_{n}-X_{n-1}\right| \leq C_{n}$ for all n, then for all $\varepsilon>0$,

$$
\mathbb{P}\left(X_{N}-X_{0} \leq-\varepsilon\right) \leq \exp \left(-\frac{\varepsilon^{2}}{2 \sum_{k=1}^{N} C_{k}^{2}}\right)
$$

Hint: For part (c), you may use exercise 2.

Exercise 4 (2 points)
Let $\left(X_{n}\right)_{n \in \mathbb{N}}$ be a martingale such that $X_{0}=0$ and $\left|X_{n}-X_{n-1}\right| \leq 1$ for all n. Show that $\frac{X_{n}}{n} \rightarrow 0$ almost surely.

Exercise 5 (4 points)
Consider the random walk $S_{n}=\xi_{1}+\ldots+\xi_{n}$ and $S_{0}=0$ where the ξ_{n} are iid with $\mathbb{P}\left(\xi_{n}= \pm 1\right)=\frac{1}{2}$. Fix two real numbers $A, B>0$. Let $N=\min \left\{n: S_{n} \geq A\right.$ or $\left.S_{n} \leq-B\right\}$. Compute $\mathbb{P}\left(S_{N} \geq A\right)$ and $\mathbb{E}[N]$.

