Winter Semester 2019/20 10/23/2019

Probability theory II

Exercise Sheet 3 Submission is due on 10/30/2019 2 p.m. Box 133

Exercise 1 (4 points)

Let $(\xi_n)_{n\in\mathbb{N}}$ be iid with $\mathbb{P}(\xi_n = \pm 1) = \frac{1}{2}$, $S_0 = 0$ and $S_n = \sum_{j=1}^n \xi_j$. Let T be a stopping time with $\mathbb{E}[T] < \infty$. Show that

- (a) $S^{\star}(\omega) = \sup_{1 \le n \le T} |S_n(\omega)|$ is square integrable. **Hint:** $S_n^2 - n$ is a martingale.
- (b) $\mathbb{E}[S_T] = 0.$

Exercise 2 (4 points)

Let $(X_n)_{n \in \mathbb{N}_0}$ be a sub-martingale.

- (a) Show that X_n can be written as $X_n = Y_n + A_n$ with the following properties:
 - (i) $(Y_n)_{n \in \mathbb{N}_0}$ is a martingale
 - (ii) $A_{n+1} \ge A_n$ for almost all ω and every $n \ge 0$
 - (iii) $A_0 \equiv 0$
 - (iv) for all $n \ge 1$, A_n is \mathcal{F}_{n-1} -measurable
- (b) Show that the above decomposition of X_n with the prescribed properties is unique (i.e. if $X_n = Y'_n + A'_n$ with Y'_n, A'_n satisfying (i)-(iv), then $Y_n = Y'_n$ and $A_n = A'_n$ almost everywhere).

Exercise 3 (6 points)

(a) Show that if X is any real valued random variable such that $\mathbb{E}[X] = 0$ and $a \leq X \leq b$ almost everywhere, then

$$\forall \lambda \in \mathbb{R} : \qquad \mathbb{E}[e^{\lambda X}] \le \exp\left(\frac{\lambda^2(b-a)^2}{8}\right).$$

(b) Let $(X_n)_n$ be a martingale such that $|X_n - X_{n-1}| \le C_n$ for all n. Then, for all $\varepsilon > 0$, show that

$$\mathbb{P}(|X_N - X_0| \ge \varepsilon) \le 2 \exp\left(-\frac{\varepsilon^2}{2\sum_{k=1}^N C_k^2}\right).$$

(c) Show that if $(X_n)_n$ is a sub-martingale such that $|X_n - X_{n-1}| \leq C_n$ for all n, then for all $\varepsilon > 0$,

$$\mathbb{P}(X_N - X_0 \le -\varepsilon) \le \exp\left(-\frac{\varepsilon^2}{2\sum_{k=1}^N C_k^2}\right).$$

Hint: For part (c), you may use exercise 2.

Exercise 4 (2 points)

Let $(X_n)_{n \in \mathbb{N}}$ be a martingale such that $X_0 = 0$ and $|X_n - X_{n-1}| \leq 1$ for all n. Show that $\frac{X_n}{n} \to 0$ almost surely.

Exercise 5 (4 points)

Consider the random walk $S_n = \xi_1 + \ldots + \xi_n$ and $S_0 = 0$ where the ξ_n are iid with $\mathbb{P}(\xi_n = \pm 1) = \frac{1}{2}$. Fix two real numbers A, B > 0. Let $N = \min\{n : S_n \ge A \text{ or } S_n \le -B\}$. Compute $\mathbb{P}(S_N \ge A)$ and $\mathbb{E}[N]$.