Probability theory II

Exercise Sheet 4 Submission is due on 11/06/2019 2 p.m. Box 133

Exercise 1 (4 points)

- (a) Let E be any complete and separable metric space equipped with transition probabilities $\{p(x,\cdot)\}_{x\in E}$. Then $(X_n)_n$ is a Markov chain with values in E with transition probabilities $\{p(x,\cdot)\}_x$ if and only if for all harmonic functions $h: E \to \mathbb{R}$, $(h(X_n))_n$ is a martingale (with respect to the canonical filtration).
- (b) Let E be any complete and separable metric space equipped with transition probabilities $\{p(x, \cdot)\}_{x \in E}$. Then $(X_n)_n$ is a Markov chain with values in E with transition probabilities $\{p(x, \cdot)\}_x$ if and only if for all sub-harmonic (super-harmonic) functions $h : E \to \mathbb{R}$, $(h(X_n))_n$ is a sub-martingale (super-martingale) (with respect to the canonical filtration).

Exercise 2 (2 points)

Let $(X_n)_n$ be a Markov chain taking values in E, which is finite or countable, with transition probabilities $P = (p_{i,j})$. Define

 $f_{i,j} = \mathbb{P}(\tau_j < \infty)$

where $\tau_i = \inf\{n \ge 1 : Z_n = j\}$. Show that

 $f_{i,j} = 1 \forall i, j \in E \Leftrightarrow$ every non-negative P – superharmonic function on E is constant.

Exercise 3 (4 points)

Let $(S_n)_{n\geq 0}$ be a random walk defined as $S_n = \xi_1 + \ldots + \xi_n$ with $S_0 = 0$ and $\mathbb{P}(\xi_1 = \pm 1) = 1/2$.

- (a) Show that there exists $\sigma > 0$ such that $\mathbb{E}_0[e^{\sigma\tau_R}] < \infty$, where $\tau_R = \inf\{n \ge 1 : S_n \notin (-R, R)\}$ and R > 0.
- (b) Is the estimate true for all $\sigma > 0$?

Exercise 4 (6 points)

Let Ω be an open set in \mathbb{R}^n .

(a) If $h : \Omega \to \mathbb{R}$ is twice continuous differentiable and $\Delta h = 0$, then show that for all balls $B_r(x) \subset \Omega$ of radius r around x,

$$u(x) = \frac{1}{nw_n r^{n-1}} \int_{\partial B_r(x)} u(y)\sigma(\mathrm{d}y) \tag{1}$$

and

$$u(x) = \frac{1}{|B_r(x)|} \int_{B_r(x)} u(y) dy$$
(2)

where σ is the (n-1)-dimensional surface measure on $\partial B_r(x)$ and $w_n = |B_1(0)|$.

- (b) Let u be any locally integrable function (i.e. $\int_{K} |u(x)| dx < \infty$) for all $K \subset \Omega$ compact) such that (1) holds for any $B_r(x) \subset \Omega$. Then show that u is infinitely many times differentiable and $\Delta u = 0$.
- (c) Show that the function

$$h(x) = \begin{cases} -\frac{1}{2\pi} \log |x|, & \text{if } n = 2\\ \frac{1}{n(n-2)w_n} \frac{1}{|x|^{n-2}}, & \text{if } n \ge 3 \end{cases}$$

defined on $\Omega = \mathbb{R}^n \setminus \{0\}$ is a harmonic function.

Exercise 5 (4 points)

Let $\Omega \subset \mathbb{R}^n$ be open and bounded. Let $\overline{\Omega}$ denote the closure of Ω . Suppose $u \in C^2(\Omega) \cap C(\overline{\Omega})$ is harmonic within Ω . Then show that

- (a) $\max_{\overline{\Omega}} u = \max_{\partial \Omega} u$.
- (b) Assume that Ω is also connected. If there exists a point $x_0 \in \Omega$ such that $u(x_0) = \max_{\overline{\Omega}} u$, then show that u is constant inside Ω .