Probability theory II
 Exercise Sheet 4

Submission is due on $11 / 06 / 20192$ p.m.
Box 133

Exercise 1 (4 points)

(a) Let E be any complete and separable metric space equipped with transition probabilities $\{p(x, \cdot)\}_{x \in E}$. Then $\left(X_{n}\right)_{n}$ is a Markov chain with values in E with transition probabilities $\{p(x, \cdot)\}_{x}$ if and only if for all harmonic functions $h: E \rightarrow \mathbb{R},\left(h\left(X_{n}\right)\right)_{n}$ is a martingale (with respect to the canonical filtration).
(b) Let E be any complete and separable metric space equipped with transition probabilities $\{p(x, \cdot)\}_{x \in E}$. Then $\left(X_{n}\right)_{n}$ is a Markov chain with values in E with transition probabilities $\{p(x, \cdot)\}_{x}$ if and only if for all sub-harmonic (super-harmonic) functions $h: E \rightarrow \mathbb{R},\left(h\left(X_{n}\right)\right)_{n}$ is a sub-martingale (super-martingale) (with respect to the canonical filtration).

Exercise 2 (2 points)

Let $\left(X_{n}\right)_{n}$ be a Markov chain taking values in E, which is finite or countable, with transition probabilities $P=\left(p_{i, j}\right)$. Define

$$
f_{i, j}=\mathbb{P}\left(\tau_{j}<\infty\right)
$$

where $\tau_{j}=\inf \left\{n \geq 1: Z_{n}=j\right\}$. Show that
$f_{i, j}=1 \forall i, j \in E \Leftrightarrow$ every non-negative P - superharmonic function on E is constant.

Exercise 3 (4 points)

Let $\left(S_{n}\right)_{n \geq 0}$ be a random walk defined as $S_{n}=\xi_{1}+\ldots+\xi_{n}$ with $S_{0}=0$ and $\mathbb{P}\left(\xi_{1}= \pm 1\right)=1 / 2$.
(a) Show that there exists $\sigma>0$ such that $\mathbb{E}_{0}\left[e^{\sigma \tau_{R}}\right]<\infty$, where $\tau_{R}=\inf \left\{n \geq 1: S_{n} \notin(-R, R)\right\}$ and $R>0$.
(b) Is the estimate true for all $\sigma>0$?

Exercise 4 (6 points)
Let Ω be an open set in \mathbb{R}^{n}.
(a) If $h: \Omega \rightarrow \mathbb{R}$ is twice continuous differentiable and $\Delta h=0$, then show that for all balls $B_{r}(x) \subset \Omega$ of radius r around x,

$$
\begin{equation*}
u(x)=\frac{1}{n w_{n} r^{n-1}} \int_{\partial B_{r}(x)} u(y) \sigma(\mathrm{d} y) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
u(x)=\frac{1}{\left|B_{r}(x)\right|} \int_{B_{r}(x)} u(y) \mathrm{d} y \tag{2}
\end{equation*}
$$

where σ is the $(n-1)$-dimensional surface measure on $\partial B_{r}(x)$ and $w_{n}=\left|B_{1}(0)\right|$.
(b) Let u be any locally integrable function (i.e. $\left.\int_{K}|u(x)| \mathrm{d} x<\infty\right)$ for all $K \subset \Omega$ compact) such that (1) holds for any $B_{r}(x) \subset \Omega$. Then show that u is infinitly many times differentiable and $\Delta u=0$.
(c) Show that the function

$$
h(x)=\left\{\begin{aligned}
-\frac{1}{2 \pi} \log |x|, & \text { if } n=2 \\
\frac{1}{n(n-2) w_{n}} \frac{1}{\left.x\right|^{n-2}}, & \text { if } n \geq 3
\end{aligned}\right.
$$

defined on $\Omega=\mathbb{R}^{n} \backslash\{0\}$ is a harmonic function.

Exercise 5 (4 points)
Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded. Let $\bar{\Omega}$ denote the closure of Ω. Suppose $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is harmonic within Ω. Then show that
(a) $\max _{\bar{\Omega}} u=\max _{\partial \Omega} u$.
(b) Assume that Ω is also connected. If there exists a point $x_{0} \in \Omega$ such that $u\left(x_{0}\right)=\max _{\bar{\Omega}} u$, then show that u is constant inside Ω.

