Jun.-Prof. Dr. C. Mukherjee Yannic Bröker Winter Semester 2019/20 11/13/2019

Probability theory II

Exercise Sheet 6 Submission is due on 11/20/2019 2 p.m. Box 133

Please note that only the 4 best exercises will count for your marks. But we recommend to do all exercises, since they are all relevant for the exam.

Exercise 1 (5 points)

Consider the SRW on \mathbb{Z} with a slight drift towards 0:

- $\pi(x, x+1) \pi(x, x-1) \ge \frac{a}{|x|}$ if $x \le -l$
- $\pi(x, x 1) \pi(x, x + 1) \ge \frac{a}{|x|}$ if $x \ge l$.

Show that the RW with these transition probabilities is positive recurrent.

Hint: Take X to be a countable set. Suppose you can find a function $V \ge 0$, a finite set F = (-l, l) and a constant $C \ge 0$ such that for the transition operator **P**,

$$\mathbf{P}V(x) - V(x) \le \begin{cases} -1, & \text{if } x \notin F \\ C, & \text{if } x \in F. \end{cases}$$

Then show that for any $n \in \mathbb{N}$

$$-V(x) \le -n + (1+C) \sum_{j=1}^{n} \sum_{y \in F} \pi^{(j-1)}(x,y).$$
(1)

If a RW with transition operator \mathbf{P} was null-recurrent, then show that (1) implies a contradiction to the assumptions imposed on V.

Definition: A sequence $(\mu_n)_{n\geq 1}$ of finite measures on (S, d) converges weakly to a finite measure on (S, d), shorthand $\mu_n \xrightarrow{w} \mu$, if

$$\lim_{n \to \infty} \int f \mathrm{d}\mu_n = \int f \mathrm{d}\mu$$

for all bounded, continuous functions $f: S \to \mathbb{R}$.

Exercise 2 (5 points)

Let $(\mu_n)_n$ be a sequence of probability measures on \mathbb{R} . Prove that the following statements are equivalent:

- (i) $\mu_n \xrightarrow{w} \mu$
- (ii) $\liminf_{n \to \infty} \mu_n(G) \ge \mu(G)$ for all $G \subset \mathbb{R}$ open
- (iii) $\limsup_n \mu_n(C) \le \mu(C)$ for all $C \subset \mathbb{R}$ closed
- (iv) $\lim_{n \to \infty} \mu_n(A) = \mu(A)$ for all A with $\mu(\partial A) = 0$

(v) $\lim_{n\to\infty} \int f d\mu_n = \int f d\mu$ for all bounded and Lipschitz f.

Definition: A sequence $(\mu_n)_{n\geq 1}$ of finite measures on (S, d) converges vaguely to a finite measure on (S, d), shorthand $\mu_n \xrightarrow{v} \mu$, if

$$\lim_{n \to \infty} \int f \mathrm{d}\mu_n = \int f \mathrm{d}\mu$$

for all continuous functions $f: S \to \mathbb{R}$ with compact support.

Exercise 3 (5 points)

Prove whether the following sequences of probability measures converge weakly and/or vaguely:

- (a) $\mu_n = \delta_n$
- (b) $\mu_n = \frac{1}{n}\delta_1 + (1 \frac{1}{n})\delta_0$

(c)
$$\mu_n = (1 - \frac{1}{n})\delta_{-1} + \frac{1}{n}\delta_{n^2}$$

(d) $\mu_n = (1 - n\sin(\frac{1}{n}))\mathcal{N}(0, n) + n\sin(\frac{1}{n})\mathcal{N}(\frac{1}{n}, 2)$

(e)
$$\mu_n = \frac{1}{2}\delta_{\sin(n)} + \frac{1}{2}\delta_{\cos(n)}$$

Prokhorov's theorem: Let (S, d) be a separable metric space and $\mathcal{M}_1(S)$ denote the collection of all probability measures defined on S. Let $(\mu_n)_n$ be a sequence in $\mathcal{M}_1(S)$. Then $(\mu_n)_n$ has a convergent subsequence in the weak topology in $\mathcal{M}_1(S)$ if and only if $(\mu_n)_n$ is tight, i.e.

$$\forall \epsilon > 0, \exists K \subset S$$
, such that $\sup_{n} \mu_n(K^{\mathbb{C}}) < \epsilon$.

Exercise 4 (5 points)

Let $(f_n)_n$ be a sequence of continuous functions on \mathbb{R} such that (f_n) is uniformly bounded and $f_n \to f$ uniformly on compact subsets of \mathbb{R} . Let $(\mu_n)_n$ be a sequence of probability measures such that $\mu_n \xrightarrow{w} \mu$. Prove,

$$\int f_n \mathrm{d}\mu_n \longrightarrow \int f \mathrm{d}\mu$$

Hint: You may use Prokhorov's theorem without proving it.

Exercise 5 (5 points)

In exercise 3 of Exercise Sheet 2 you had to prove the identity

$$\limsup_{n \to \infty} \frac{S_n}{\sqrt{2n \log \log n}} = 1$$

Now assume that the identity

$$\liminf_{n \to \infty} \frac{S_n}{\sqrt{2n \log \log n}} = -1$$

holds true. Both identities together are called the "Law of the iterated logarithm".

Now let $(X_n)_{n\geq 1}$ be a sequence of iid Normal(0, 1)-distributed random variables and $S_n = X_1 + \dots + X_n$.

(a) Prove that $\frac{S_n}{\sqrt{2n \log \log n}} - \frac{S_{n+1}}{\sqrt{2(n+1) \log \log(n+1)}}$ converges to 0 a.s.

(b) Let $L = \{ \text{all limit points of } \frac{S_n}{\sqrt{2n \log \log n}} \text{ as } n \to \infty \}$. Prove (e.g. using the Law of the iterated logarithm and part (a)) that L = [-1, 1].