Probability theory II
 Exercise Sheet 6

Submission is due on $11 / 20 / 20192$ p.m.
Box 133
Please note that only the 4 best exercises will count for your marks. But we recommend to do all exercises, since they are all relevant for the exam.

Exercise 1 (5 points)

Consider the SRW on \mathbb{Z} with a slight drift towards 0 :

- $\pi(x, x+1)-\pi(x, x-1) \geq \frac{a}{|x|} \quad$ if $x \leq-l$
- $\pi(x, x-1)-\pi(x, x+1) \geq \frac{a}{|x|} \quad$ if $x \geq l$.

Show that the RW with these transition probabilities is positive recurrent.
Hint: Take X to be a countable set. Suppose you can find a function $V \geq 0$, a finite set $F=(-l, l)$ and a constant $C \geq 0$ such that for the transition operator \mathbf{P},

$$
\mathbf{P} V(x)-V(x) \leq\left\{\begin{aligned}
-1, & \text { if } x \notin F \\
C, & \text { if } x \in F
\end{aligned}\right.
$$

Then show that for any $n \in \mathbb{N}$

$$
\begin{equation*}
-V(x) \leq-n+(1+C) \sum_{j=1}^{n} \sum_{y \in F} \pi^{(j-1)}(x, y) \tag{1}
\end{equation*}
$$

If a RW with transition operator \mathbf{P} was null-recurrent, then show that (1) implies a contradiction to the assumptions imposed on V.

Definition: A sequence $\left(\mu_{n}\right)_{n \geq 1}$ of finite measures on (S, d) converges weakly to a finite measure on (S, d), shorthand $\mu_{n} \xrightarrow{w} \mu$, if

$$
\lim _{n \rightarrow \infty} \int f \mathrm{~d} \mu_{n}=\int f \mathrm{~d} \mu
$$

for all bounded, continuous functions $f: S \rightarrow \mathbb{R}$.

Exercise 2 (5 points)

Let $\left(\mu_{n}\right)_{n}$ be a sequence of probability measures on \mathbb{R}. Prove that the following statements are equivalent:
(i) $\mu_{n} \xrightarrow{w} \mu$
(ii) $\liminf _{n} \mu_{n}(G) \geq \mu(G)$ for all $G \subset \mathbb{R}$ open
(iii) $\lim \sup _{n} \mu_{n}(C) \leq \mu(C)$ for all $C \subset \mathbb{R}$ closed
(iv) $\lim _{n} \mu_{n}(A)=\mu(A)$ for all A with $\mu(\partial A)=0$
(v) $\lim _{n \rightarrow \infty} \int f \mathrm{~d} \mu_{n}=\int f \mathrm{~d} \mu$ for all bounded and Lipschitz f.

Definition: A sequence $\left(\mu_{n}\right)_{n \geq 1}$ of finite measures on (S, d) converges vaguely to a finite measure on (S, d), shorthand $\mu_{n} \xrightarrow{v} \mu$, if

$$
\lim _{n \rightarrow \infty} \int f \mathrm{~d} \mu_{n}=\int f \mathrm{~d} \mu
$$

for all continuous functions $f: S \rightarrow \mathbb{R}$ with compact support.

Exercise 3 (5 points)
Prove whether the following sequences of probability measures converge weakly and/or vaguely:
(a) $\mu_{n}=\delta_{n}$
(b) $\mu_{n}=\frac{1}{n} \delta_{1}+\left(1-\frac{1}{n}\right) \delta_{0}$
(c) $\mu_{n}=\left(1-\frac{1}{n}\right) \delta_{-1}+\frac{1}{n} \delta_{n^{2}}$
(d) $\mu_{n}=\left(1-n \sin \left(\frac{1}{n}\right)\right) \mathcal{N}(0, n)+n \sin \left(\frac{1}{n}\right) \mathcal{N}\left(\frac{1}{n}, 2\right)$
(e) $\mu_{n}=\frac{1}{2} \delta_{\sin (n)}+\frac{1}{2} \delta_{\cos (n)}$

Prokhorov's theorem: Let (S, d) be a separable metric space and $\mathcal{M}_{1}(S)$ denote the collection of all probability measures defined on S. Let $\left(\mu_{n}\right)_{n}$ be a sequence in $\mathcal{M}_{1}(S)$. Then $\left(\mu_{n}\right)_{n}$ has a convergent subsequence in the weak topology in $\mathcal{M}_{1}(S)$ if and only if $\left(\mu_{n}\right)_{n}$ is tight, i.e.

$$
\forall \epsilon>0, \exists K \subset S, \text { such that } \sup _{n} \mu_{n}\left(K^{\mathrm{C}}\right)<\epsilon
$$

Exercise 4 (5 points)

Let $\left(f_{n}\right)_{n}$ be a sequence of continuous functions on \mathbb{R} such that $\left(f_{n}\right)$ is uniformly bounded and $f_{n} \rightarrow f$ uniformly on compact subsets of \mathbb{R}. Let $\left(\mu_{n}\right)_{n}$ be a sequence of probability measures such that $\mu_{n} \xrightarrow{w} \mu$. Prove,

$$
\int f_{n} \mathrm{~d} \mu_{n} \longrightarrow \int f \mathrm{~d} \mu
$$

Hint: You may use Prokhorov's theorem without proving it.

Exercise 5 (5 points)

In exercise 3 of Exercise Sheet 2 you had to prove the identity

$$
\limsup _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}}=1
$$

Now assume that the identity

$$
\liminf _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}}=-1
$$

holds true. Both identities together are called the "Law of the iterated logarithm".
Now let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of iid $\operatorname{Normal}(0,1)$-distributed random variables and $S_{n}=X_{1}+$ $\ldots+X_{n}$.
(a) Prove that $\frac{S_{n}}{\sqrt{2 n \log \log n}}-\frac{S_{n+1}}{\sqrt{2(n+1) \log \log (n+1)}}$ converges to 0 a.s.
(b) Let $L=\left\{\right.$ all limit points of $\frac{S_{n}}{\sqrt{2 n \log \log n}}$ as $\left.n \rightarrow \infty\right\}$. Prove (e.g. using the Law of the iterated logarithm and part (a)) that $L=[-1,1]$.

