Probability theory II
 Exercise Sheet 7

Submission is due on $11 / 27 / 20192$ p.m.
Box 133
Please note that only the 4 best exercises will count for your marks. But we recommend to do all exercises, since they are all relevant for the exam.

Exercise 1 (5 points)
Let $\left(\xi_{n}\right)_{n}$ be iid random variables such that $\mathbb{E}\left[\xi_{n}^{+}\right]=\infty$ and $\mathbb{E}\left[\xi_{n}^{-}\right]<\infty$. Does $S_{n}=\xi_{1}+\ldots+\xi_{n}$ converge almost surely? If yes, prove the statement, if no, give a counterexample.

Exercise 2 (5 points)
Let T be a stopping time such that for some $N \in \mathbb{N}$, some $\varepsilon>0$ and for all $n \in \mathbb{N}$,

$$
\mathbb{P}\left(T \leq n+N \mid \mathcal{F}_{n}\right)>\varepsilon \quad \text { a.s. }
$$

Prove that $\mathbb{E}[T]<\infty$.

Exercise 3 (5 points)
Let $\left(\xi_{i}\right)_{i}$ be iid such that $\xi_{i} \sim \operatorname{Normal}(0,1)$. Let $M_{n}=e^{a \sum_{i=1}^{n} \xi_{i}-b n}$ for $a, b \in \mathbb{R}$. Prove:
(a)

$$
M_{n} \longrightarrow 0 \quad \text { a.s. } \quad \Longleftrightarrow \quad b>0
$$

(b) For $p \geq 1$:

$$
M_{n} \longrightarrow 0 \quad \text { in } L^{p} \quad \Longleftrightarrow \quad p<\frac{2 b}{a^{2}}
$$

Exercise 4 (5 points)
Let $\left(S_{n}\right)_{n}$ be a sequence of \mathbb{R}-valued random variables such that for any closed set $K \subset \mathbb{R}$,

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}\left(S_{n} \in K\right) \leq-\inf _{x \in K} I(x)
$$

where $I: \mathbb{R} \rightarrow[0, \infty]$ is some lower semicontinuous function such that $\{x: I(x)=0\}=\{0\}$. Prove that $S_{n} \rightarrow 0$ almost surely.

Exercise 5 (5 points)
Let $\left(X_{n}\right)_{n}$ be a Markov chain taking values in a compact state space E. Let $\mu_{n}=\frac{1}{n} \sum_{j=0}^{n-1} \delta_{X_{j}} \in$ $\mathcal{M}_{1}(E)$. Prove that for all $K \subset \mathcal{M}_{1}(E)$ closed,

$$
\sup _{x \in E} \limsup _{n \rightarrow \infty} \frac{1}{n} \log \mathbb{P}_{x}\left(\mu_{n} \in K\right) \leq-\inf _{\mu \in K} I(\mu)
$$

where $I(\mu)=\sup _{u>0} \int_{E} \log \left(\frac{u(y)}{(\mathbf{P} u)(y)}\right) \mu(\mathrm{d} y)$.
Hint: You may use (exponential) Chebyshev's inequality and exercise 5 from the Exercise sheet 5 .

