Jun.-Prof. Dr. C. Mukherjee Yannic Bröker Winter Semester 2019/20 11/27/2019

Probability theory II

Exercise Sheet 8 Submission is due on 12/04/2019 2 p.m. Box 133

Please note that only the 4 best exercises will count for your marks. But we recommend to do all exercises, since they are all relevant for the exam.

Exercise 1 (4 points)

- (a) Prove that if $T: V \to V$ is a linear transformation of a finite dimensional vector space, then either one of the following statements holds:
 - $\forall v \in V, \exists u \in V \text{ s.t. } Tu = v \text{ (i.e. } T \text{ is surjective)}$
 - dim(ker T) > 0 where ker $T = \{v \in V : Tv = 0\}$.
- (b) Let A be an $n \times n$ matrix over the field of complex numbers \mathbb{C} . Prove that if b is a column vector $b \in \mathbb{C}^n$, then

 $b \in \text{range}(A) \iff b \in (\ker(A^{\mathrm{T}}))^{\perp}$

Exercise 2 (4 points)

Let *H* be a Hilbert space (normed, linear space with an inner product $\langle \cdot, \cdot \rangle_H$) and $T: H \to H$ is a bounded operator (i.e. $||Tx|| \leq ||x||$ for all $x \in H$). Prove that,

$$(\ker T)^{\perp} = \overline{\text{range } (T^{\star})}$$

and $\operatorname{range} (T)^{\perp} = \ker (T^{\star})$

where T^* is the adjoint operator given by $\langle Tx, y \rangle = \langle x, T^*y \rangle$.

Exercise 3 (4 points)

It has been shown in the lectures that if $(X_n)_n$ is a stationary and ergodic Markov chain taking values in a finite state space E with unique invariant probability measure μ , then for all $f: E \to \mathbb{R}$ with $\int f d\mu = 0$ and $\mathbb{E}^{\mu}[f(X_1)^2] < \infty$, $\frac{1}{\sqrt{n}} \sum_{j=1}^n f(X_j) \xrightarrow{(d)} \mathcal{N}(0, \sigma^2)$ for some $\sigma^2 > 0$.

Show that σ^2 admits a representation in terms of the Dirichlet form $\sigma^2 = \langle u, -Lu \rangle_{L^2(\mu)}$ where as usual L = P - I and u is the solution of -Lu = f.

Exercise 4 (5 points)

Let $(X_n)_n$ be a Markov chain taking values in $\{1,2\}$ and with transition probabilities

$$p_{11} = p_{22} = p > 0$$
, $p_{12} = p_{21} = q > 0$ and $p + q = 1$.

(a) Find out the invariant probability measure.

- (b) Let $A_n = \#$ visits to the state {1} by time n and $B_n = \#$ visits to the state {2} by time n and $S_n = A_n B_n$. Prove that $\frac{S_n}{\sqrt{n}} \xrightarrow{(d)} \mathcal{N}(0, \sigma^2(p))$ and compute $\sigma^2(p)$ as a function of p.
- (c) What happens to $\sigma^2(p)$ as $p \to 0$ or $p \to 1$? Without doing the computation before, can you guess $\sigma^2(1/2)$? Justify the answer.

Exercise 5 (8 points)

Consider a random walk taking values on \mathbb{Z}_+ with transition probability

$$p_{xy} = \begin{cases} 1/2, & \text{if } x = y \ge 0\\ \frac{1-\delta}{4}, & \text{if } y = x+1, x \ge 1\\ \frac{1+\delta}{4}, & \text{if } y = x-1, x \ge 1\\ 1/2, & \text{if } x = 0, y = 1. \end{cases}$$

- (a) Write down the transition matrix and prove that the chain is positive recurrent, aperiodic and irreducible.
- (b) Compute the invariant probability measure μ explicitly.
- (c) If $f : \mathbb{Z}_+ \to \mathbb{R}$ is a function with compact support, solve the equation -Lu = f for u explicitly (where L = P I).
- (d) Show that either u grows exponentially at infinity or is a constant for large x. Moreover, u is a constant outside a finite region and only if

$$\sum_{j\in\mathbb{Z}_+}\mu(j)f(j)=0.$$

(e) What is the limiting distribution of $\frac{1}{\sqrt{n}} \sum_{j=1}^{n} f(X_j)$ if $\sum_{j \in \mathbb{Z}_+} \mu(j) f(j) = 0$?