Probability theory II
 Exercise Sheet 8

Submission is due on $12 / 04 / 20192$ p.m.
Box 133

Please note that only the 4 best exercises will count for your marks. But we recommend to do all exercises, since they are all relevant for the exam.

Exercise 1 (4 points)

(a) Prove that if $T: V \rightarrow V$ is a linear transformation of a finite dimensional vector space, then either one of the following statements holds:

- $\forall v \in V, \exists u \in V$ s.t. $T u=v$ (i.e. T is surjective)
- $\operatorname{dim}(\operatorname{ker} T)>0$ where ker $T=\{v \in V: T v=0\}$.
(b) Let A be an $n \times n$ matrix over the field of complex numbers \mathbb{C}. Prove that if b is a column vector $b \in \mathbb{C}^{n}$, then

$$
b \in \operatorname{range}(A) \quad \Longleftrightarrow \quad b \in\left(\operatorname{ker}\left(A^{\mathrm{T}}\right)\right)^{\perp}
$$

Exercise 2 (4 points)
Let H be a Hilbert space (normed, linear space with an inner product $\langle\cdot, \cdot\rangle_{H}$) and $T: H \rightarrow H$ is a bounded operator (i.e. $\|T x\| \leq\|x\|$ for all $x \in H$). Prove that,

$$
\begin{aligned}
(\operatorname{ker} T)^{\perp} & =\overline{\operatorname{range}\left(T^{\star}\right)} \\
\text { and } \quad \operatorname{range}(T)^{\perp} & =\operatorname{ker}\left(T^{\star}\right)
\end{aligned}
$$

where T^{\star} is the adjoint operator given by $\langle T x, y\rangle=\left\langle x, T^{\star} y\right\rangle$.

Exercise 3 (4 points)

It has been shown in the lectures that if $\left(X_{n}\right)_{n}$ is a stationary and ergodic Markov chain taking values in a finite state space E with unique invariant probability measure μ, then for all $f: E \rightarrow \mathbb{R}$ with $\int f \mathrm{~d} \mu=0$ and $\mathbb{E}^{\mu}\left[f\left(X_{1}\right)^{2}\right]<\infty, \frac{1}{\sqrt{n}} \sum_{j=1}^{n} f\left(X_{j}\right) \xrightarrow{(\mathrm{d})} \mathcal{N}\left(0, \sigma^{2}\right)$ for some $\sigma^{2}>0$.
Show that σ^{2} admits a representation in terms of the Dirichlet form $\sigma^{2}=\langle u,-L u\rangle_{L^{2}(\mu)}$ where as usual $L=P-I$ and u is the solution of $-L u=f$.

Exercise 4 (5 points)
Let $\left(X_{n}\right)_{n}$ be a Markov chain taking values in $\{1,2\}$ and with transition probabilities

$$
p_{11}=p_{22}=p>0, \quad p_{12}=p_{21}=q>0 \quad \text { and } p+q=1 .
$$

(a) Find out the invariant probability measure.
(b) Let $A_{n}=\#$ visits to the state $\{1\}$ by time n and $B_{n}=\#$ visits to the state $\{2\}$ by time n and $S_{n}=A_{n}-B_{n}$. Prove that $\frac{S_{n}}{\sqrt{n}} \xrightarrow{(d)} \mathcal{N}\left(0, \sigma^{2}(p)\right)$ and compute $\sigma^{2}(p)$ as a function of p.
(c) What happens to $\sigma^{2}(p)$ as $p \rightarrow 0$ or $p \rightarrow 1$? Without doing the computation before, can you guess $\sigma^{2}(1 / 2)$? Justify the answer.

Exercise 5 (8 points)
Consider a random walk taking values on \mathbb{Z}_{+}with transition probability

$$
p_{x y}= \begin{cases}1 / 2, & \text { if } x=y \geq 0 \\ \frac{1-\delta}{4}, & \text { if } y=x+1, x \geq 1 \\ \frac{1+\delta}{4}, & \text { if } y=x-1, x \geq 1 \\ 1 / 2, & \text { if } x=0, y=1\end{cases}
$$

(a) Write down the transition matrix and prove that the chain is positive recurrent, aperiodic and irreducible.
(b) Compute the invariant probability measure μ explicitly.
(c) If $f: \mathbb{Z}_{+} \rightarrow \mathbb{R}$ is a function with compact support, solve the equation $-L u=f$ for u explicitly (where $L=P-I$).
(d) Show that either u grows exponentially at infinity or is a constant for large x. Moreover, u is a constant outside a finite region and only if

$$
\sum_{j \in \mathbb{Z}_{+}} \mu(j) f(j)=0
$$

(e) What is the limiting distribution of $\frac{1}{\sqrt{n}} \sum_{j=1}^{n} f\left(X_{j}\right)$ if $\sum_{j \in \mathbb{Z}_{+}} \mu(j) f(j)=0$?

