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Chapter 1

Martingales

1.1 Stochastic process.

A probability space consists of a triplet (Ω,F ,P) consisting of a set Ω, a σ-algebra F and a probability
measure P : F → [0, 1].

Definition 1.1.1. A (real-valued) random variable X on a probability space (Ω,F ,P) is a measurable
function X : (Ω,F)→ (R,B(R)), i.e., for any Borel set B ∈ B(R), X−1(B) ∈ F .

Remark 1 Although the same definition continues to hold when (R,B(R)) is replaced by another
measure space, we will mostly content ourselves with real-valued random variables, unless otherwise
specified.

Example 1.1.2. A typical example of a probability space consists the outcomes of a sequence of
independent coin tosses, which leads to the set up Ω = {H,T}N, F = 2Ω and P[H] = P[T ] = 1/2. A
typical example of a random variable X is X = #

{
heads out of 10 tosses

}
.

Definition 1.1.3. Let T be any non-empty set, typically denoting the index set of a stochastic process
X = (Xt)t∈T , which is just a collection of random variables on some probability space. For any given
ω ∈ Ω, the map t 7→ Xt(ω) is called the sample path of the stochastic process X.

Remark 2 Typically, we will work with T = Z or T = N, or T = N0 or T = [a, b] for a, b ∈
R ∪ {−∞,∞} and in these cases T can be interpreted as time. At times, we will also work with
T = A ⊂ Rd, whence T can be though of as a spatial location too (e.g. Xt could stand for the air
temperature at location t on a given space).

1.2 Filtration and adaptability.

Definition 1.2.1. An increasing family {Fn}n∈N0 of σ-algebras F0 ⊂ F1 ⊂ F2 ⊂ . . . on a given
probability space is called a filtration. A probability space (Ω,F , {Fn}n∈N0 ,P) equipped with a filtration
is called a filtered probability space.
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The σ-algebra Fn in the above definition can be thought of as the “information gathered up until
time n” (i.e., if A ∈ Fn, then by time n we ought to know the (non)-occurrence of A).

Example 1.2.2. 07.10.2019 = 280th-day of the calendar year 2019. Then

• The event A =
{

The average price of beer in August 2019 is below 50 cents per bottle
}
∈

F280.

• The event A =
{

The average price of beer in 2019 is below 50 cents per bottle
}
/∈ F280, as we

would not know the average price through out the year already in October.

Definition 1.2.3. A stochastic process (Xn)n∈N0 is called adapted to the filtration {Fn}n∈N0 if for
each n ∈ N0, Xn is Fn-measurable. Moreover, if X = (Xn)n∈N0 is a stochastic process, then with
Fn = F (X)

n = σ(X0, X1, . . . , Xn) (i.e. Fn is the σ-algebra generated by (X0, X1, . . . , Xn)), {Fn}n∈N0

is called the natural or the canonical filtration of X.

1.3 Martingales in discrete time.

1.3.1 Definition and some examples.

Definition 1.3.1. A stochastic process (Xn)n∈N0 on a filtered probability space (Ω,F , {Fn}n∈N0 ,P)
is called a martingale if the following properties are satisfied for each n ∈ N0:

• Xn is Fn-measurable.

• Xn ∈ L1(P) (i.e.,
∫
|Xn|dP <∞).

• E[Xn+1|Fn] = Xn almost surely.

Remark 3 (i) Note that in the Definition 1.3.1, the third property is equivalent to E[Xn+1 −
Xn|Fn] = 0 almost surely.

(ii) Note that if (Xn)n∈N0 is a martingale, then E[Xn] = E[X0] for all n.

Example 1.3.2. (i) (Simple random walk.) Let {ξj‖j be an independent and identically distributed
random variables with E(ξj) = 0 for all j. Then with S0 = 0, the partial sums Sn = ξ1 + · · ·+ξn
is a martingale w.r.t. the natural filtration. Note taht thsi property holds irrespective of the
distribution of ξj, but it is imperative that the increments are mean-zero for the martingale
property to hold.

(ii) (Geometric random walk.) Let {ξj}j be an independent and identically distributed random
variables with E(ξj) = 1 for all j. Then Mn =

∏n
j=1 ξj is a martingale w.r.t. the natural

filtration. Again thsi property holds true regardless of the underlying distribution of ξj, but the
martingale property relies on the normalization E(ξj) = 1 for all j.
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(iii) (Cameron-Martin-Girsanov transformation.) Let {Zj}j be a sequence of i.i.d. Gaussian ran-

dom variables such that Zj ∼ N(0, 1) (that is, for any j, P[Zj ∈ A] = 1√
2π

∫
A

e−
|z|2
2 dz). Then

for any sequence of real number (βj)j ⊂ R, we set

Mn
def
= exp

{ n∑
j=!

βjZj −
1

2

n∑
j=1

β2
j

}
.

It follows that (Mn)n is a martingale w.r.t. the canonical filtration. Indeed if we set ξj =
exp[βjZj − 1

2
β2
j ], then {ξj}js are i.i.d. random variables with E[ξj] = 1 (this is where we

crucially use the Gaussian property that dictates if Z ∈ N(0, 1), then E[eβZ ] = eβ
2/2). The

martingale property for (Mn)n follows by the second part (geometric random walk example).

Definition 1.3.3. A stochastic process (Xn)n∈N on a filtered probability space (Ω,F , {Fn}n∈N0 ,P) is
called a sub (resp. super)- martingale if the following properties are satisfied for each n ∈ N0:

• Xn is Fn-measurable.

• Xn ∈ L1(P) (i.e.,
∫
|Xn|dP <∞).

•

E[Xn+1|Fn]

{
≥ Xn almost surely for sub-martingale property,

≤ Xn almost surely, for super-martingale property.

Lemma 1.3.4. Let (Xn)n∈N0 be a sub-martingale and f : R → R is such that f(Xn) ∈ L1 for
all n ∈ N. Then (f(Xn))n∈N0 is a sub-martingale if f is convex. Likewise, if (Xn)n∈N is a super-
martingale and f : R → R is such that f(Xn) ∈ L1 for all n ∈ N. Then (f(Xn))n∈N is a super-
martingale if f is concave.

Proof. The proof is an immediate consequence of conditional Jensen’s inequality, see Corollary 2.15.2
[Part (v)]

1.3.2 Previsible processes.

Let us think of a gambling strategy where the increments of a stochastic process (Xn)n∈N0 stands for
the win (resp. loss) per unit stake of game. There is another stochastic process (Cn)n∈N (starting at
time 1) such that each Cn should be thought of as a particular “strategy” or the “bet” which needs
to be decided upon in the time interval between game n − 1 and n (and strictly before the n-th
game). In other words, the value of Cn should be determined by the experience (or the information)
that we would have gathered by the n − 1-th game. In that case, it is conceivable that each Cn is
Fn−1-measurable and such a process (Cn)n∈N is called pre-visible. Then Cn(Xn −Xn−1) defines the
win in the n-th game, while

Yn =
n∑
j=1

Cj(Xj −Xj−1) (1.3.1)

defines the cumulative win process. Note that, Yn − Yn−1 = Cn(Xn −Xn−1) for each n ≥ 1.
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Definition 1.3.5. A stochastic process (Cn)n∈N is called previsible if for each n ≥ 1, Cn is Fn−1-
measurable.

Lemma 1.3.6. Let (Cn)n≥1 be a previsible process such that for each n ≥ 1, there is a constant Kn

such that |Cn(·)| ≤ Kn (i.e. each Cn is a bounded random variable). If (Xn)n∈N0 is a martingale,
then so is the process (Yn)ninN defined in (1.3.1).

Proof. By definition Yn depends on C1, . . . , Cn as well as X1, . . . , Xn. Since Cn is Fn−1 measurable
and Xn is Fn measurable, it follows that Yn is also Fn measurable. To show that Yn ∈ L1, note that

E(|Yn|) = E[|
n∑
j=1

Cj(Xj −Xj−1)|] ≤ E[
n∑
j=1

|Cj||Xj −Xj−1|] ≤
n∑
j=!

KjE[|Xj|+ |Xj−1|] <∞, (1.3.2)

where the last estimate follows because Xj ∈ L1 for each j. Hence, Yn ∈ L1 for each n ≥ 1.

Finally, the martingale property of (Yn)n∈N follows from that of (Xn)n≥0 because, using previsibility
of (Cn)n,

E[Yn − Yn−1|Fn−1] = E[Cn(Xn −Xn−1)|Fn−1] = CnE[Xn −Xn−1|Fn−1] = 0.

Lemma 1.3.7. Let (Cn)n≥1 be a non-negative and previsible process such that for each n ≥ 1, Cn
is a bounded random variable. If (Xn)n∈N0 is a sub/super-martingale, then so is the process (Yn)ninN
defined in (1.3.1).

Proof. The proof is identical to that of Lemma 1.3.6 and is omitted.

Remark 4 It follows (e.g. by Hölder’s inequality) from (1.3.2) that the boundedness assumption on
Cn in Lemma 1.3.6 and Lemma 1.3.7 can be relaxed by requiring that for each n ∈ N, Cn ∈ Lp and
Xn ∈ Lq where for any p, q ≥ 1, 1

p
+ 1

q
= 1. We will need this fact later for p = q = 2.

1.4 Doob’s (almost sure) martingale convergence theorem.

The main goal of this section is to prove that any non-negative (super)-martingale converges almost
surely to a random variable which is finite almost surely. Throughout this section X = (Xn)n∈N0

stands for a process such that we think of

Xn −Xn−1 = winnings per unit stake on game n

Yn =
n∑
j=1

Cj(Xj −Xj−1) stands for the total winning by time .n

and Cn is Fn−1 measurable.

We follow the following procedure and think of a gambling:
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• Pick two real numbers a < b.

• Wait till the value of X gets below a.

• Start playing and play until the value of X gets above b and stop playing.

• While playing put black blobs for C = 1 and while waiting put open circles for C = 0. Phrased
differently, define recursively,

C1 = 0

. . .

. . .

Cn = 1l{Cn−1 = 11l{Xn−1 ≤ b}+ 1l{Cn−1 = 0}1l|Xn−1 < a}.

(1.4.1)

Definition 1.4.1. Fix N ∈ N. Then

UN = U (X·(ω))

N ([a, b]) = #

{
upcrossings of [a, b] made by n 7→ Xn(ω) bytime N

}
(1.4.2)

In other words, UN denotes the largest k ∈ N0 such that we can find a sequence 0 ≤ s1 < t1 < s2 <
t2 < · · · < sk < tk ≤ N with Xsj < a and Xtj > b for 1 ≤ j ≤ k.

Lemma 1.4.2. The monotonic limit U∞ :=↑ UN always exists as N → ∞. Moreover, for any
sequence of measurable functions Z = {Zn}n,{

ω : lim inf
N→∞

U (Z·(ω))

N ([a, b]) < a < b < lim sup
N→∞

U (Z·(ω))

N ([a, b])

}
⊂
{
ω : U (Z·(ω))

∞ ([a, b]) =∞
}

Proof. Note that for each fixed sample ω,
{
U(Z·(ω))([a, b])

}
N

is an increasing sequence, implying the
first assertion. The second assertion follows obviously from the definition of UN .

Lemma 1.4.3. In the above set up,

YN ≥ (b− a)UN − (XN − a)−.

Proof. Note that every upcrossing of [a, b] increases the value of the process Y by at least b−a, while
during the last interval of play (XN − a)− overemphasizes the loss.

Lemma 1.4.4. Let X be a supermartingale. Then in the above set up,

(b− a)E(UN) ≤ E[(XN − a)−]

Proof. Note that by definition (1.4.1), C is non-negative, |Cn| ≤ 2 and Cn is previsible. By Lemma
1.3.7, (Yn)n≥1 is a supermartingale. In particular, E(YN) ≤ E(Y1) = 0. Then by Lemma 1.4.3
(b− a)E(UN) ≤ E(Yn) + E[(XN − a)−] ≤ E[(XN − a)−].

Definition 1.4.5. Let p > 0. A sequence of measurable functions {Zn}n on any measure space
(Ω,F ,P) is called Lp(P)-bounded if supn

∫
|Zn|pdP <∞.
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Corollary 1.4.6. Let X be a supermartingale which is bounded in L1(P). Then (b − a)E(U∞) ≤
|a|+ supn E(|Xn|) <∞. Consequently, with U∞ =↑ UN ,

P[ω : U∞(ω) =∞] = 0.

Proof. Since (x − y)− ≤ |x| + |y|, Lemma 1.4.4 dictates (b − a)E(UN) ≤ |a| + E(|Xn|) ≤ |a| +
supn E(|Xn|). Since {UN}N is a sequence of non-negative functions such taht UN+1 ≥ UN , by
monotone convergence theorem (b − a)E(U∞) ≤ |a| + supn E(|Xn|) < ∞ which also implies that
U∞ <∞ almost surely.

Theorem 1.4.7. Let X = (Xn)n∈N0 be a supermartingale which is bounded in L1(P). Then there ex-
ists a random variable X∞ such that Xn → X∞ almost surely. Moreover, P[ω : X∞(ω) ∈ {−∞,∞}] =
0. Consequently, any non-negative supermartingale converges almost surely to a limit which is finite
almost surely.

Proof. Note that the second part follows from the first because if a supermartingale is non-negative,
then E(|Xn|) = E(Xn) ≤ E(X0), making the supermartingale L1(P) bounded.

To prove the first part, let

Λ
(def)
=

{
ω : XN(ω)does not converge to any limit in [−∞,∞]

}
=

{
ω : lim inf

N→∞
XN(ω) < lim sup

N→∞
XN(ω)

}
=

⋃
a,b∈Q,a<b

{
ω : lim inf

N→∞
XN(ω) < a < b < lim sup

N→∞
lim sup
N→∞

XN(ω)
}

(def)
=

⋃
a,b∈Q
a<b

Λa,b.

By Lemma 1.4.2, Λa,b ⊂
{
ω : U∞ =∞

}
. But by Corollary 1.4.6, P[ω : U∞(ω) =∞] = 0. Therefore,

P(Λa,b) = 0. Hence, P(Λ) = 0. Hence, XN → X∞ almost surely.

To conclude that |X∞| <∞, note that

E(|X∞|) = E[lim inf
n
|Xn|) ≤ lim inf

n
E(|Xn|) ≤ sup

n
E(|Xn|) <∞,

where the first upper bound follows from Fatou’s lemma (which dictates that for a sequence {fn}n of
non-negative measurable functions lim infn

∫
fn ≥

∫
lim infn fn) and the third upper bound follows

from our assumption. Hence, P[X∞ is finite ] = 1.

Exercise: Give an example of a martingale which is bounded in L1 and therefore converges almost
surely to a finite limit X∞, but Xn does not converge in L1 to X∞.
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1.5 Martingales bounded in L2.

Let us first start with the case p = 2. The goal is to show

Theorem 1.5.1. Let (Xn)n be a martingale which is bounded in L2 (i.e. there exists C ∈ (0,∞)

such that supn E(X2
n) ≤ C). Then there exists a random variable X∞ such that Xn

L2

→ X∞.

Proof. the proof proceeds in three steps.

Step 1: Since (Xn)n is a martingale, by induction E(Xn|Fk) = Xk for all k ≤ n.

Step 2: Let Yn := Xn − Xn−1. Then Step 1 will imply that for n 6= m, Yn⊥Ym, i.e., 〈Yn, Ym〉L2 =
E(YnYm) = 0.

Step 3: Given the above notation, Xn =
∑n

j=1 Yj. Therefore, by Step 2, the parallelogram identity

Y 2
n = E(X2

0 ) +
n∑
j=1

E(Y 2
j ) (1.5.1)

holds. In particular,

sup
n

E(X2
n) ≤ C ⇔

∞∑
j=1

E(Y 2
j ) <∞. (1.5.2)

holds.

Step 4: Now assume that the martingale (Xn)n is L2−bounded. Then it is in particular L1 bounded
too (e.g. by Jensen’s inequality). Hence, by Doob’s almost sure martingale convergence theorem,
there exists a random variable X∞ such that Xn → X∞ almost surely. For any r ∈ N, by (1.5.1) w
ehave

E[(Xn+r −Xn)2] =
n+r∑
j=n+1

E(Y 2
j ) (1.5.3)

For any fixed n, if we let r → ∞, the left hand side in the above display converges (by Fatou’s
lemma or dominated convergence theorem, combined with the almost sure convergence Xn → X∞)
to E[(X∞ − Xn)2], while t he right hand side converges to the increasing limit

∑
j≥n+1 E(Y 2

j ). By

(1.5.2) and our assumption,
∑

j≥n+1 E(Y 2
j ) is the tail of a convergent sum, which converges to zero.

Hence, E((Xn −X∞)2)→ 0, and thus Xn → X∞ in L2.

1.6 Doob’s martingale inequalities.

The goal of this section is to prove two very powerful inequalities, both due to Doob:

Theorem 1.6.1. Let (Xn)n be a sub-martingale. Then for any ` > 0,

P
[

max
1≤j≤n

|Xj| < `
]
≤ 1

`

∫
{maxn

j=1 |Xj |≥`}
|Xn|dP ≤

1

`
E[|Xn|]. (1.6.1)
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Theorem 1.6.2. Fix p > 1. Let (Xn)n be a sub-martingale, and set X?
n = maxnj=1 |Xj|. Then,

E
[
(X?

n)p
]
≤
(

p

p− 1

)p
E
[
|Xn|p

]
. (1.6.2)

We will first prove a useful lemma.

Lemma 1.6.3. Let p > 1. Let X, Y be non-negative random variables such that for all ` > 0,

P[Y ≥ `] ≤ 1

`

∫
{Y≥`}

XdP. (1.6.3)

Then,

E[Y p] ≤≤
(

p

p− 1

)p
E
[
Xp
]

(1.6.4)

Proof of Lemma 1.6.3. We will carry out the proof in two steps.

Step 1: Assume that Y ∈ Lp. Then,

‖Y ‖pLp = E(Y p) =

∫
Ω

P(dω)Y (ω)p

=

∫
Ω

P(dω)

(∫ Y (ω)

0

p`p−1d`

)
=

∫ ∞
0

d`p`p−1

(∫
Ω

P(dω)1lY (ω)≥`

)
(by Fubini’s theorem for non-negative functions)

=

∫ ∞
0

d`p`p−1P[Y ≥ `]

≤
∫ ∞

0

d`p`p−2

(∫
Y≥`

P(dω)X(ω)

)
(by assumption (1.6.5))

=

∫
Ω

P(dω)X(ω)

∫ Y (ω)

0

d`p`p−2 (again by Fubini’s theorem for non-negative functions)

=
p

p− 1

∫
Ω

dPXY p−1

≤ p

p− 1
‖X‖Lp ‖Y ‖p−1

Lp (by Hölder’s inequality),

which proves the claim in case Y ∈ Lp.

Step 2: Suppose Y /∈ Lp. Then follow a routine approximation procedure by applying Step 1 above
for YM := Y ∧M ∈ Lp to get uniform bounds and monotone convergence theorem. The details are
left as exercise.
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Proof of Theorem 1.6.1. Let E be the event

E = {ω :
n

max
j=1
|Xj| ≥ `|}

so that E can be written as a disjoint union E = ∪nj=!Ej with

Ej =
{
|X1| ≤ `, |X2| ≤ `, . . . , |Xj−1| ≤ `, |Xj| ≥ `

}
∈ Fj.

Then by Markov’s inequality, we have

P[Ej] ≤
1

`

∫
Ej

|Xj|dP. (1.6.5)

Since (Xn)n is a sub-martingale, so is (|Xn|)n by Jensen’s inequality. Therefore, exploiting also that
Ej ∈ Fj, we have

E
[
1lEj

(
|Xn| − |Xj|

)∣∣Fj] = 1lEj
E
[(
|Xn| − |Xj|

)∣∣Fj] ≥ 0 a.s.

Applying expectations on both side we get

E
[
1lEj

(
|Xn| − |Xj|

)]
≥ 0. (1.6.6)

Now

P(E) =
n∑
j=1

P(Ej)

(1.6.5)

≤ 1

`

[ ∫
E1

|Xn|dP + · · ·+
∫
En

|Xn|dP
]

=
1

`

∫
E1∪···∪En

|Xn| =
1

`

∫
E

|Xn|dP,

which proves the desired assertion (1.6.1).

Proof of Theorem 1.6.2. The proof is an immediate consequence of Theorem 1.6.1 and Lemma
1.6.3.

1.7 Uniform integrability.

Let us consider a very simple example: Ω = (0, 1), B is the Borel σ-algebra, carrying the probability
measure P = Leb. Let Xn = n1l(0, 1

n
). Then Xn → 0 =: X∞ almost everywhere. On the other hand,

1 = E(Xn) = E(|Xn|) = ‖Xn‖L1 9 0 = ‖X∞‖L1

and thus Xn 9 X∞ in L1. What the sequence (Xn)n misses out on is known on uniform integrability,
a very important property in probability theory.
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Definition 1.7.1. A family of random variables (Xn)n is called uniformly integrable (with the
acronym (Xn)n is UI), if for any given ε > 0, there exists a K ∈ (0,∞) (which could possibly
depend on ε but not on n) such that∫

|Xn|≥K
|Xn| < ε for all n.

An immediate consequence of the above definition is

Lemma 1.7.2. If (Xn)n is UI, then (Xn)n is L1 bounded.

Proof. It follows immediately from the definition (1.7.1) that that for a UI family (Xn)n,
supn E[|Xn|] ≤ K + ε.

Here is a couple of suitable criteria that guarantee uniform integrability.

Lemma 1.7.3. Let (Xn)n be a sequence of random variables.

• If (Xn)n is bounded in Lp for p > 1, then (Xn)n is UI.

• If there exists a random variable Y ∈ L1, then

|Xn(·)| ≤ Y (·) ∀n⇒ (Xn)n is UI. (1.7.1)

Proof. Let us prove the first part. Assume that (Xn)n is bounded in Lp for some p > 1. Fix any
ε > 0.Then by Hölder’s inequality, for 1/p+ 1/q = 1, for some K (to be chosen later)∫

|Xn|≥K
|Xn| ≤ ‖Xn‖LpP[|Xn| > K]1/q

Markov′s≤
≤ ‖Xn‖LpK−q‖Xn‖1/q

L1 .

Since supn ‖Xn‖Lp ≤ 1 for p > 1, we can now choose K large enough to make the above quantity
smaller than ε, which proves that (Xn)n is UI.

The proof of the second part depends on the following simple assertion which is of fundamental
use in probability theory. In a sense the following lemma says that if the measure of a set is small,
the integral of an L1 function over that set is also small. The proof involves yet another beautiful
application of Borel-Cantelli lemma.

Lemma 1.7.4. Let X ∈ L1.

• Given ε > 0, there exists δ > 0 such that for all measurable set F ∈ F ,

P(F ) < δ ⇒
∫
F

|X|dP < ε. (1.7.2)

• Given ε > 0 there exists K ∈ (0,∞) such that∫
{|X|>K}

|X| < ε. (1.7.3)
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Proof of Lemma 1.7.4. Let us first prove (1.7.2). Assume that there is ε > 0 such that for all
δ = 2−n for n = 1, 2, 3, . . . and some Fn ∈ F ,

P(Fn) < 2−n, and

∫
Fn

|X| ≥ ε ∀n ∈ N.

Since
∑

n P(Fn) <∞, by Borel-Cantelli lemma,

P(F ) = 0, where F := lim sup
n

Fn := ∩n≥1 ∪m≥n Fm.

But ∫
F

|X|dP =

∫
limn→∞(|X|1lFn) ≥ limn→∞

∫
Fn

|X| ≥ ε

which contradicts the fact that P(F ) = 0, proving the first assertion. In the above assertion, the
lower bound follows from reverse Fatou’s lemma. 1

The second assertion follows from the first one since we can take F = {|X| > K}. Since X ∈ L1,
we can choose K large enough so that P(F ) < δ, which, combined with the first part implies that∫
|X|≥K |X| < ε.

Proof of (1.7.2). Since Y ∈ L1, by the second part of Lemma 1.7.4, given any ε > 0, there exists K
such that E(Y 1l{Y > K‖) < ε. Now by our assumption E(|Xn|1l{|Xn| ≥ K}) ≤ E(Y 1l{Y > K}) <
ε.

The following fact is also quite useful.

Lemma 1.7.5. Let X ∈ L1. Then the family

F :=
{
E[X|G] : G ⊂ F

}
is UI.

Proof. Fix ε > 0. Choose δ > 0 such that for all F ∈ F , P(F ) < δ implies E(|X|1lF ) < ε. Let
Y = E(Y |G) so that

|Y | ≤ E(|X||G)⇒ E(|Y |) ≤ E(|X|)⇒ /P (|Y | > K) < δ, for suitable K.

By definition Y is G-measurable, so that {Y > K} ∈ G. Hence,

E[|Y |1l{|Y | ≥ K‖] ≤ E
[
E(|X||G)1l{|Y | ≥ K}

]
=

∫
{|Y |>K}

|X| < ε

since P(|Y | > K) < δ and by the first part of Lemma 1.7.4.

1Reverse Fatou’s lemma asserts that if fn ≥ 0 and fn ≤ g such that g ∈ L1, then lim supn

∫
fn ≥

∫
lim supn fn. To

see this, set f̃n = g − fn ≥ 0 and apply Fatou’s lemma to f̃n. The argument will need that g ∈ L1.
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The next result provides an important result. Roughly speaking, it says

Convergence in L1 ⇔ (Convergence in probability + UI).

Theorem 1.7.6. Let (Xn)n be a sequence of random variables such that Xn ∈ L1 for all n. Let
X ∈ L1. Then the following conditions are equivalent:

(i) Xn → X in L1.

(ii) Xn → X in probability and (Xn)n is UI.

Proof. Let us first prove

(ii) ⇒ (i): Fix some K ∈ (0,∞) to be chosen later. We define the following approximation of the
identity function:

ϕ(x) = ϕK(x) =


K if x > K

x if |x| ≤ K

−K if x < −K.

Then obviously ϕ is Lipschitz, i.e. |ϕ(x)−ϕ(y)| ≤ |x− y| and in particular ϕ(x) ≤ x. Note also that
ϕ differs from the identity function only when |x| ≥ K. Using these properties,

E
[
|Xn −X|

]
≤ E

[
|Xn − ϕ(Xn)|

]
+ E

[
|ϕ(X)−X|

]
+ E

[
|ϕ(Xn)− ϕ(X)|

]
≤ 2 sup

n
E
[
|Xn|1l{|Xn| ≥ K}

]
+ 2E

[
|X|1l{|X| ≥ K}

]
+ E

[
|ϕ(Xn)− ϕ(X)|

]
.

Since (Xn)n is UI, the first term on the last display above is less than ε for a suitable K = K1, while
the second term is also less than ε because of the second part of Lemma 1.7.4 for (possibly another)
suitable K = K2 (if K1 and K2 differ, we will choose K = max{K1, K2} at the end). To handle
the third term, note that Xn → X in probability. Since |ϕ(x) − ϕ(y)| ≤ |x − y|, it follows that
ϕ(Xn) → ϕ(X) in probability too. Moreover, since |ϕ(Xn)| ≤ K , bounded convergence theorem 2

allows us make the third term smaller than ε too.

We now prove the converse

(i) ⇒ (ii): Obviously convergence in l1 implies convergence in probability by Markov’s inequality.
We need to prove the UI property. Indeed, since Xn → X in L1 and X ∈ L1, it follows that

2Bounded convergence theorem says that if Xn → X in probability and |Xn| ≤ K for some finite K, then Xn → X
in L1. It can be proved easily. Indeed, note that

∫
|Xn −X| ≤

∫
|Xn−X|≥ε |Xn −X| + ε, which can be made smaller

than 2KP[|Xn −X| ≥ ε] + ε if we can show that |X| ≤ K almost surely, which will imply the desired claim. To see
|X| ≤ K a.s. note that P[|X| ≥ K + 1

m ] ≤ P[|Xn −X| > 1
m ] for all n. Since the last probability converges to zero, it

follows that P[|X| ≥ K + 1
m ] = 0 for all m ∈ N. We now take m ↑ ∞ to conclude the proof of the bounded convergence

theorem.
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supn E(|Xn|) ≤ δK for all δ > 0 and a suitable K ∈ (0,∞). Hence, P[|Xn| > K] < δ by Markov’s
inequality. But we can estimate∫

{|Xn|>K}
|Xn| ≤

∫
{|Xn|>K}

|X −Xn|+
∫
{|Xn|>K}

|X|

so that the first term is smaller than ε since Xn → X in L1 and the second term is smaller than ε
because of the second part of Lemma 1.7.4 and the fact that we can make P[|Xn| > K] < δ.

1.8 Martingale convergence theorems in Lp for p ≥ 1.

Throughout this section we will assume that we have a filtered probability space (Ω,F , {Fn}n,P)
such that F = σ(∪nFn). The first observation is

Lemma 1.8.1. Let X ∈ Lp for some p ≥ 1. Then Xn := E[X|Fn] defines a martingale (Xn)n.

Proof. Obviously Xn ∈ L1 and Xn is Fn measurable. Moreover

E[Xn −Xn−1|Fn−1] = E
[
E
[
X|Fn

]
− E

[
X|Fn−1

]∣∣Fn−1

]
= E

[
E(X|Fn)|Fn−1

]
− E

[
E(X|Fn−1)|Fn−1

]
(by part (iv) + (ii) of Lemma2.15.2)

= E[X|Fn−1]− E[X|Fn−1] = 0.

The next theorem shows that martingales of the above form converge in Lp to the fixed random
variable X.

Theorem 1.8.2. Let X ∈ Lp for some p ≥ 1. Then Xn := E[X|Fn] defines a martingale (Xn)n and
Xn → X in Lp.

Proof. We will split the proof into two cases.

Step 1: We assume that X is bounded. Then in particular,

|Xn| ≤ E[|X||Fn]⇒ sup
n,ω
|Xn(ω)| <∞.

That is (Xn)n is bounded in L∞. In particular, (Xn)n is a sequence of martingales which is bounded
in L2. By Theorem 1.5.1, there exists a random variable Y such that Xn → Y in L2. Now fix m ∈ N0
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and A ∈ Fm. Then in particular,∫
A

Y dP =

∫
A

XndP
(

Since

∫
A

|Xn − Y |dP ≤ C

(∫
A

|Xn − Y |2dP
)1/2

→ 0

)
= lim

n

∫
A

XndP = lim
n

E[Xn1lA]

= lim
n

E
[
E(X|Fn)1lA

]
∀m>n

=

∫
A

XdP.

Hence, ∫
A

Y dP =

∫
A

XdP ∀A ∈ Fm.

Since F = σ(∪nFn), it follows that
∫
A
Y dP =

∫
A
XdP ∀A ∈ F and therefore X = Y almost

everywhere. Thus Xn → X in L2. Since (Xn)n is bounded in L∞, convergence in Lp are equivalent
for all p ≥ 1 3. Hence Xn → X in Lp for all p ≥ 1.

Step 2: Now assume that X ∈ Lp but X /∈ L∞. Define

X ′ =

{
X if {|X| ≤M},
0 else.

Obviously X ′ ∈ L∞ and moreover
∫
|X − X ′|p =

∫
|X|>M |X|

pdP < ε by the second part of Lemma

1.7.4. Now let
X ′n = E[X ′|Fn]⇒ X ′n

Lp

→ X ′.

Now by definitions of Xn, X ′n and Jensen’s inequality,

‖Xn −X ′n‖
p
Lp ≤ ‖X −X ′‖pLp < ε,

and therefore,

‖Xn −X‖pLp ≤ ‖Xn −X ′n‖
p
Lp + ‖Xn −X ′‖pLp + ‖X −X ′‖pLp < 3ε,

which proves the claim.

The next theorem shows that the martingales analyzed in Lemma 1.8.1 and Theorem 1.8.2 come up
in a natural way, provided we assume that they are bounded in Lp for p > 1 (and thus, in particular
they are UI).

Theorem 1.8.3. Fix p > 1. Let (Xn)n be a martingale bounded din Lp. Then there exist X ∈ Lp
such that Xn = E[X|Fn] for all n. In particular, Xn → X in Lp.

3Indeed, convergence in L2 implies convergence in Lp for p ∈ [1, 2] and if p > 2, then
∫
|Xn − X|p =

∫
|Xn −

X|2|Xn −X|p−2 ≤ C(‖Xn‖p−2∞ + ‖X‖p−2∞ )
∫
|Xn −X|2 ≤ C ′‖Xn −X‖2L2 → 0.



1.8. MARTINGALE CONVERGENCE THEOREMS IN LP FOR P ≥ 1. 17

Proof. Since (Xn)n is bounded in Lp for p > 1, by Banach-Alaoglu theorem (See Appendix), 4 we
have some X ∈ Lp and a subsequence (Xnj

)j such that
∫
Xnj

Y →
∫
XY for all Y ∈ Lq with

1/p+ 1/q = 1. Choose A ∈ Fm for some fixed m and take Y = 1lA ∈ Lq. Note that∫
A

XdP = lim
j

∫
A

Xnj
dP = lim

j
E[Xnj

1lA] = E[Xm1lA],

where the last identity follows from the observation that eventually nj > m and A ∈ Fm and (Xn)n
is a martingale. Thus, ∫

A

XndP =

∫
A

XdP ∀A ∈ Fm.

Uniqueness of conditional expectation enforces Xm = E[X|Fm]. By Theorem 1.8.2 it also follows
that Xm → X in Lp as m→∞.

4This is exactly where we need reflexivity of the Banach space Lp which holds only if p > 1. The argument would
not work for p = 1.
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1.9 Stopping times

To be written down.



Chapter 2

Markov chains

2.1 Examples

Example 2.1.1 (Markov chain with two states). Consider a phone which can be in two states:
“free”= 0 and “busy”= 1. The set of the states of the phone is

E = {0, 1}.

We assume that the phone can randomly change its state in time (which is assumed to be discrete)
according to the following rules.

case1. If at some time n the phone is free, then at time n + 1 it becomes busy with probability p
or it stays free with probability 1− p.

case2. If at some time n the phone is busy, then at time n + 1 it becomes free with probability q
or it stays busy with probability 1− q.

Denote by Xn the state of the phone at time n = 0, 1, . . .. Thus, Xn : Ω → {0, 1} is a random
variable and our assumptions can be written as follows:

p00 := P[Xn+1 = 0|Xn = 0] = 1− p, p01 := P[Xn+1 = 1|Xn = 0] = p,

p10 := P[Xn+1 = 0|Xn = 1] = q, p11 := P[Xn+1 = 1|Xn = 1] = 1− q.

We can write these probabilities in form of a transition matrix

P =

(
1− p p
q 1− q

)
.

Additionally, we will make the following assumption which is called the Markov property: Given that
at some time n the phone is in state i ∈ {0, 1}, the behavior of the phone after time n does not
depend on the way the phone reached state i in the past.

Problem 2.1.2. Suppose that at time 0 the phone was free. What is the probability that the phone
will be free at times 1, 2 and then becomes busy at time 3?

19
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Solution 2.1.3. This probability can be computed as follows:

P[X1 = X2 = 0, X3 = 1] = p00 · p00 · p01 = (1− p)2p.

Problem 2.1.4. Suppose that the phone was free at time 0. What is the probability that it will be
busy at time 3?

Solution 2.1.5. We have to compute P[X3 = 1]. We know the values X0 = 0 and X3 = 1, but the
values of X1 and X2 may be arbitrary. We have the following possibilities:

(i) X0 = 0, X1 = 0, X2 = 0, X3 = 1. Probability: (1− p) · (1− p) · p.

(ii) X0 = 0, X1 = 0, X2 = 1, X3 = 1. Probability: (1− p) · p · (1− q).

(iii) X0 = 0, X1 = 1, X2 = 0, X3 = 1. Probability: p · q · p.

(iv) X0 = 0, X1 = 1, X2 = 1, X3 = 1. Probability: p · (1− q) · (1− q).

The probability we look for is the sum of these 4 probabilities:

P[X3 = 1] = (1− p)2p+ (1− p)(1− q)p+ p2q + p(1− q)2.

Example 2.1.6 (Gambler’s ruin). At each unit of time a gambler plays a game in which he can either
win 1 Euro (which happens with probability p) or he can loose 1 Euro (which happens with probability
1−p). Let Xn be the capital of the gambler at time n. Let us agree that if at some time n the gambler
has no money (meaning that Xn = 0), then he stops to play (meaning that Xn = Xn+1 = . . . = 0).
We can view this process as a Markov chain on the state space E = {0, 1, 2, . . .} with transition
matrix

P =


1 0 0 0 0 . . .

1− p 0 p 0 0 . . .
0 1− p 0 p 0 . . .
0 0 1− p 0 p . . .
. . . . . . . . . . . . . . . . . .

 .

2.2 Definition of Markov chains

Let us consider some system. Assume that the system can be in some states and that the system can
change its state in time. The set of all states of the system will be denoted by E and called the state
space of the Markov chain. We always assume that the state space E is a finite or countable set.
Usually, we will denote the states so that E = {1, . . . , N}, E = N, or E = Z.

Assume that if at some time the system is in state i ∈ E, then in the next moment of time it can
switch to state j ∈ E with probability pij. We will call pij the transition probability from state i to
state j. Clearly, the transition probabilities should be such that

(i) pij ≥ 0 for all i, j ∈ E.
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(ii)
∑

j∈E pij = 1 for all i ∈ E.

We will write the transition probabilities in form of a transition matrix

P = (pij)i,j∈E.

The rows and the columns of this matrix are indexed by the set E. The element in the i-th row and
j-th column is the transition probability pij. The elements of the matrix P are non-negative and the
sum of elements in any row is equal to 1. Such matrices are called stochastic.

Definition 2.2.1. A Markov chain with state space E and transition matrix P is a stochastic process
{Xn : n ∈ N0} taking values in E such that for every n ∈ N0 and every states i0, i1, . . . , in−1, i, j we
have

P[Xn+1 = j|Xn = i] = P[Xn+1 = j|X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = i] (2.2.1)

= pij,

provided that P[X0 = i0, . . . , Xn−1 = in−1, Xn = i] 6= 0 (which ensures that the conditional probabili-
ties are well-defined).

Condition (2.2.1) is called the Markov property.

In the above definition it is not specified at which state the Markov chain starts at time 0. In fact,
the initial state can be in general arbitrary and we call the probabilities

αi := P[X0 = i], i ∈ E, (2.2.2)

the initial probabilities. We will write the initial probabilities in form of a row vector α = (αi)i∈E.
This vector should be such that αi ≥ 0 for all i ∈ E and

∑
i∈E αi = 1.

Theorem 2.2.2. For all n ∈ N0 and for all i0, . . . , in ∈ E it holds that

P[X0 = i0, X1 = i1, . . . , Xn = in] = α0pi0i1pi1i2 . . . pin−1in . (2.2.3)

Proof. We use the induction over n. The induction basis is the case n = 0. We have P[X0 = i0] = αi0
by the definition of initial probabilities, see (2.2.2). Hence, Equation (2.2.3) holds for n = 0.

Induction assumption: Assume that (2.2.3) holds for some n. We prove that (2.2.3) holds with
n replaced by n + 1. Consider the event A = {X0 = i0, X1 = i1, . . . , Xn = in}. By the induction
assumption,

P[A] = αi0pi0i1pi1i2 . . . pin−1in .

By the Markov property,

P[Xn+1 = in+1|A] = pinin+1 .
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It follows that

P[X0 = i0, X1 = i1, . . . , Xn = in, Xn+1 = in+1] = P[Xn+1 = in+1|A] · P[A]

= pinin+1 · αi0pi0i1pi1i2 . . . pin−1in

= αi0pi0i1pi1i2 . . . pin−1inpinin+1 .

This completes the induction.

Remark 5 If P[A] = 0, then in the above proof we cannot use the Markov property. However, in the
case P[A] = 0 both sides of (2.2.3) are equal to 0 and (2.2.3) is trivially satisfied.

Theorem 2.2.3. For every n ∈ N and every state in ∈ E we have

P[Xn = in] =
∑

i0,...,in−1∈E

αi0pi0i1 . . . pin−1in .

Proof. We have

P[Xn = in] =
∑

i0,...,in−1∈E

P[X0 = i0, X1 = i1, . . . , Xn = in]

=
∑

i0,...,in−1∈E

αi0pi0i1 . . . pin−1in ,

where the last step is by Theorem 2.2.2.

2.3 General state spaces.

While we will mostly be concerned with the case when the state space of a Markov chain E is a
discrete set, it is useful to consider state spaces E which is just assumed to be a complete separable
metric space. For any Markov chain taking vales in E we will need a transition probability measure
P (x, ·) (i.e. for any x ∈ E, P (x, ·) is a probability measure) and a starting distribution α which is
assumed to be any given probability measure on E.

Definition 2.3.1. Let B(E) be the set of all Borel-measurable and bounded functions f : E → R.
For any transition probability measure P (x, ·), we will write

P : B(E)→ B(E), (Pf)(x) =

∫
E

f(y)P (x, dy).

We will also write
L := P− Id

Definition 2.3.2. A stochastic process (Xn)n taking values in a complete, separable metric space E
is called a Markov chain with initial distribution α and transition probability measure P (x, ·) if
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• X0 is distributed according to α.

• For any bounded and measurable function f : E → R, almost surely,

Eα
[
f(Xn+1)

∣∣Fn] = Eα[f(Xn+1|Xn] = EXn [f(Xn+1)]

=

∫
f(y)P (Xn, dy) =: (Pf)(Xn)

2.4 An important result: Martingale characterization of

Markov chains.

The following result is extremely useful for various reasons.

Theorem 2.4.1. Let P (x, ·) be a transition probability measure on a space E. Then a stochastic
process (Xn)n is a Markov chain with transition probability P (x, ·) if and only if for any bounded
measurable function f : E → R,

Mn(f) = f(Xn)− f(X0)
n−1∑
j=1

(Lf)(Xj), (Lf)(x) = (P− I)f(x) =

∫
E

(f(y)− f(x))P (x, dy)

defines a martingale (Mn(f))n w.r.t. the canonical filtration of (Xn)n.

Proof. (⇒): Since f is bounded, obviously Mn(f) ∈ L1 and by definition also Mn(f) ∈ Fn = σ(Xj :
j ≤ n). Now,

E
[
Mn+1(f)−Mn(f)|Fn

]
= E[f(Xn+1)|Fn]− f(Xn)− (P− I)f(Xn) = E[f(Xn+1)|Fn]︸ ︷︷ ︸

E[f(Xn+1)|Xn)]

−(Pf)(Xn)

= (Pf)(Xn)− (Pf)(Xn) = 0.

(⇐): We simply revert the argument. Indeed, the martingale property of (Mn(f))n dictates that,
for every bounded measurable f ,

E[f(Xn+1)|Xn] = (Pf)(Xn) =

∫
f(y)P (Xn, dy),

which is the desired Markov property with transition probability P (x, ·).
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2.5 Application: Solution of the Dirichlet problem

A key goal in probability theory and analysis is the complete description of a harmonic function in
terms of its boundary values. To illustrate a simple case, we consider a Markov chain (Xn)n taking
values in a state space E. Let A ⊂ E and

τA = inf
{
n ≥ 0 : Xn ∈ A

}
, u(x) = uA(x) : − = Px[τA <∞] ∈ [0, 1].

It is an exercise to check that τA is a stopping time. Clearly, if x ∈ A, then u(x) = 1. Now if x /∈ A,
then by the Markov property, we have

u(x) = P (x,A) +

∫
Ac

u(y)P (x, dy) =

∫
E

u(y)P (x, dy) = (Pu)(x),

which implies that Lu = 0 (i.e. the function u is harmonic in Ac) and on A, u = 1, which is a
solution of the Dirichlet problem {

Lv = 0 on Ac

v = 1 on A.
(2.5.1)

The following statement provides a stronger statement.

Theorem 2.5.1. • Among all non-negative solutions of (??), u(x) = Px[τA <∞] is the samm-
lest.

• u(x) = Px[τA <∞] = 1, then any bounded solution of{
Lv = 0 on Ac

v = f on A.
(2.5.2)

is equal to
v(x) := Ex

[
f(XτA)

]
. (2.5.3)

Proof. Step 1: Let us prove the first part, i.e. if v is any non-negative solution of (??), then we
want to show that v(x) ≥ u(·) = Px[τA <∞]. Let

w(·) = v(·) ∧ 1 ∈ [0, 1]

We claim that {W (Xn)}n is a supermartingale. Indeed, first note that w(x) = 1 on A and if x 6 inA,
then, since v solves Lv = 0,

(Pw)(x) ≤
∫ ∫

v(y)P (x, dy) = v(x).

But obviously, Pw(·) ≤ 1 which, combined with the last upper bound, also implies PW (·) ≤ W (·)
on Ac. On the other hand, clearly, PW (·) ≤ 1 = W (·) on A. Thus,

PW (·) ≤ W (·) evereywhere ,⇒ Lw(·) ≤ 0 evereywhere.
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Hence, W is superharmonic w.r.t. the transition probability P , and thus by Theorem ??, {W (Xn)}n
is a supermartingale. Thus, by the optional stopping theorem, if τ is any bounded stopping time,
then

Ex[w(Xτ )] ≤ Ex[w(X0)] = w(x).

Since τA = inf{n ≥ 0 : Xn ∈ A} need not be bounded, we let τ (N)

A = τA ∧N . Then

Ex[w(X
τ
(N)
A

)] ≤ Ex[w(X0)] = w(x) (2.5.4)

the event {τA < ∞}, τ (N)

A ↑ τA and on this event, also w(X
τ
(N)
A

) → w(XτA = 1, by definition of w.

Thus,

u(x) = Px[τA <∞] =

∫
τA<∞

1dPx =

∫
τA<∞

w(XτA)dPx

≤ lim sup
N→∞

∫
τA<∞

w(X
τ
(N)
A

)dPx

≤ lim sup
N→∞

Ex
[
w(X

τ
(N)
A

)
]

≤ w(x) ≤ v(x),

(2.5.5)

which proves the desired claim.

Step 2: Let h := Lv. Then we know that h = 0 on Ac, and

Mn(v) = v(Xn)− v(X0)−
n−1∑
j=1

h(Xj)

defines a martingale. Note that h(Xj−1) = for j ≤ τA. Thus again with τ (N)

A = τA ∧ N , by the
optional stopping theorem,

v(x) = Ex[v(X
τ
(N)
A

)].

Since we assume that u(x) = Px[τA < ∞] = 1, by an argument similar to (2.5.5), we again have by
bounded convergence theorem,

v(x) = Ex[v(XτA)],

which proves the second part of Theorem 2.5.1.

Remark 6 Such arguments are powerful tools for the study of qualitative proper- ties of Markov
chains. If h is given, solutions v to equations of the type

Lv = (P− I) = h

are often easily constructed. They can be used to produce martingales, sub- martingales or super-
martingales that have certain behavior and that in turn implies certain qualitative behavior of the
Markov chain. We will see several illustrations of this method as we move on.
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2.6 n-step transition probabilities

If we want to indicate that the Markov chain starts at state i ∈ E at time 0, we will write Pi instead
of P.

Definition 2.6.1. The n-step transition probabilities of a Markov chain are defined as

p
(n)
ij := Pi[Xn = j].

We will write these probabilities in form of the n-step transition matrix P (n) = (p
(n)
ij )i,j∈E.

By Theorem 2.2.3 we have the formula

p
(n)
ij =

∑
i1,...,in−1∈E

pii1pi1i2 . . . pin−1j.

The next theorem is crucial. It states that the n-step transition matrix P (n) can be computed as
the n-th power of the transition matrix P .

Theorem 2.6.2. We have P (n) = P n = P · . . . · P .

Proof. We use induction over n. For n = 1 we have p
(1)
ij = pij and hence, P (1) = P . Thus, the

statement of the theorem is true for n = 1.

Let us now assume that we already proved that P (n) = P n for some n ∈ N. We compute P (n+1).
By the formula of total probability, we have

p
(n+1)
ij = Pi[Xn+1 = j] =

∑
k∈E

Pi[Xn = k]P[Xn+1 = j|Xn = k] =
∑
k∈E

p
(n)
ik pkj.

On the right hand-side we have the scalar product of the i-th row of the matrix P (n) and the j-th
column of the matrix P . By definition of the matrix multiplication, this scalar product is exactly
the entry of the matrix product P (n)P which is located in the i-th row and j-th column. We thus
have the equality of matrices

P (n+1) = P (n)P.

But now we can apply the induction assumption P (n) = P n to obtain

P (n+1) = P (n)P = P n · P = P n+1.

This completes the induction.

In the next theorem we consider a Markov chain with initial distribution α = (αi)i∈E and transition

matrix P . Let α(n) = (α
(n)
j )j∈E be the distribution of the position of this chain at time n, that is

α
(n)
j = P[Xn = j].

We write both α(n) and α as row vectors. The next theorem states that we can compute α(n) by taking
α and multiplying it by the n-step transition matrix P (n) = P n from the right.
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Theorem 2.6.3. We have
α(n) = αP n.

Proof. By the formula of the total probability

α
(n)
j = P[Xn = j] =

∑
i∈E

αiPi[Xn = j] =
∑
i∈E

αip
(n)
ij .

On the right-hand side we have the scalar product of the row α with the j-th column of P (n) = P n.
By definition of matrix multiplication, this means that α(n) = αP n.

2.7 Invariant measures

Consider a Markov chain on state space E with transition matrix P . Let µ : E → R be a function.
To every state i ∈ E the function assigns some value which will be denoted by µi := µ(i). Also, it
will be convenient to write the function µ as a row vector µ = (µi)i∈E.

Definition 2.7.1. A function µ : E → R is called a measure on E if µi ≥ 0 for all i ∈ E.

Definition 2.7.2. A function µ : E → R is called a probability measure on E if µi ≥ 0 for all i ∈ E
and ∑

i∈E

µi = 1.

Definition 2.7.3. A measure µ is called invariant if µP = µ. That is, for every state j ∈ E it
should hold that

µj =
∑
i∈E

µipij.

Remark 7 If the initial distribution α of a Markov chain is invariant, that is αP = α, then for every
n ∈ N we have αP n = α which means that at every time n the position of the Markov chain has the
same distribution as at time 0:

X0
(d)
= X1

(d)
= X2

(d)
= . . . .

Example 2.7.4. Let us compute the invariant distribution for the Markov chain from Example 2.1.1.
The transition matrix is

P =

(
1− p p
q 1− q

)
.

The equation µP = µ for the invariant probability measure takes the following form:

(µ0, µ1)

(
1− p p
q 1− q

)
= (µ0, µ1).

Multiplying the matrices we obtain the following two equations:

µ0(1− p) + µ1q = µ0,

µ0p+ µ1(1− q) = µ1.
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From the first equation we obtain that µ1q = µ0p. Solving the second equation we obtain the same
relation which means that the second equation does not contain any information not contained in
the first equation. However, since we are looking for invariant probability measures, we have an
additional equation

µ0 + µ1 = 1.

Solving this equation together with µ1q = µ0p we obtain the following result:

µ0 =
q

p+ q
, µ1 =

p

p+ q
.

Problem 2.7.5. Consider the phone from Example 2.1.1. Let the phone be free at time 0. What is
(approximately) the probability that it is free at time n = 1000?

Solution 2.7.6. The number n = 1000 is large. For this reason it seems plausible that the probability
that the phone is free (busy) at time n = 1000 should be approximately the same as the probability
that it is free (busy) at time n + 1 = 1001. Denoting the initial distribution by α = (1, 0) and the
distribution of the position of the chain at time n by α(n) = αP n we thus must have

α(n) ≈ α(n+1) = αP n+1 = αP n · P = α(n)P.

Recall that the equation for the invariant probability measure has the same form µ = µP . It follows
that α(n) must be approximately the invariant probability measure:

α(n) ≈ µ.

For the probability that the phone is free (busy) at time n = 1000 we therefore obtain the approxima-
tions

p
(n)
00 ≈ µ0 =

q

p+ q
, p

(n)
01 ≈ µ1 =

p

p+ q
.

Similar considerations apply to the case when the phone is busy at time 0 leading to the approximations

p
(n)
10 ≈ µ0 =

q

p+ q
, p

(n)
11 ≈ µ1 =

p

p+ q
.

Note that p
(n)
00 ≈ p

(n)
10 and p

(n)
01 ≈ p

(n)
11 which can be interpreted by saying that the Markov chain almost

forgets its initial state after many steps. For the n-step transition matrix we therefore may conjecture
that

lim
n→∞

P n = lim
n→∞

(
p

(n)
00 p

(n)
01

p
(n)
10 p

(n)
11

)
=

(
µ0 µ1

µ0 µ1

)
.

The above considerations are not rigorous. We will show below that if a general Markov chain
satisfies appropriate conditions, then

(i) The invariant probability measure µ exists and is unique.

(ii) For every states i, j ∈ E we have limn→∞ p
(n)
ij = µj.
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Example 2.7.7 (Ehrenfest model). We consider a box which is divided into 2 parts. Consider N
balls (molecules) which are located in this box and can move from one part to the other according to
the following rules. Assume that at any moment of time one of the N balls is chosen at random (all
balls having the same probability 1/N to be chosen). This ball moves to the other part. Then, the
procedure is repeated. Let Xn be the number of balls at time n in Part 1. Then, Xn takes values in
E = {0, 1, . . . , N} which is our state space. The transition probabilities are given by

p0,1 = 1, pN,N−1 = 1, pi,i+1 =
N − i
N

, pi,i−1 =
i

N
, i = 1, . . . , N − 1.

For the invariant probability measure we obtain the following system of equations

µ0 =
µ1

N
, µN =

µN−1

N
, µj =

N − j + 1

N
µj−1 +

j + 1

N
µj+1, j = 1, . . . , N − 1.

Additionally, we have the equation µ0 + . . .+µN = 1. This system of equations can be solved directly,
but one can also guess the solution without doing computations. Namely, it seems plausible that after
a large number of steps every ball will be with probability 1/2 in Part 1 and with probability 1/2 in
Part 2. Hence, one can guess that the invariant probability measure is the binomial distribution with
parameter 1/2:

µj =
1

2N

(
N

j

)
.

One can check that this is indeed the unique invariant probability measure for this Markov chain.

Example 2.7.8. Let X0, X1, . . . be independent and identically distributed random variables with
values 1, . . . , N and corresponding probabilities

P[Xn = i] = pi, p1, . . . , pN ≥ 0,
N∑
i=1

pi = 1.

Then, X0, X1, . . . is a Markov chain and the transition matrix is

P =

p1 . . . pN
. . . . . . . . .
p1 . . . pN

 .

The invariant probability measure is given by µ1 = p1, . . . , µN = pN .

2.8 Class structure and irreducibility

Consider a Markov chain on a state space E with transition matrix P .

Definition 2.8.1. We say that state i ∈ E leads to state j ∈ E if there exists n ∈ N0 such that
p

(n)
ij 6= 0. We use the notation i; j.
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Remark 8 By convention, p
(0)
ii = 1 and hence, every state leads to itself: i; i.

Theorem 2.8.2. For two states i, j ∈ E with i 6= j, the following statements are equivalent:

(i) i; j.

(ii) Pi[∃n ∈ N : Xn = j] 6= 0.

(iii) There exist n ∈ N and states i1, . . . , in−1 ∈ E such that pii1 . . . pin−1j > 0.

Proof. We prove that Statements 1 and 2 are equivalent. We have the inequality

p
(n)
ij ≤ Pi[∃n ∈ N : Xn = j] ≤

∞∑
n=1

Pi[Xn = j] =
∞∑
n=1

p
(n)
ij . (2.8.1)

If Statement 1 holds, then for some n ∈ N we have p
(n)
ij > 0. Hence, by (2.8.1), we have Pi[∃n ∈ N :

Xn = j] > 0 and Statement 2 holds. If, conversely, Statement 2 holds, then Pi[∃n ∈ N : Xn = j] > 0.

Hence, by (2.8.1),
∑∞

n=1 p
(n)
ij > 0, which implies that at least one summand p

(n)
ij must be strictly

positive. This proves Statement 1.

We prove the equivalence of Statements 1 and 3. We have the formula

p
(n)
ij =

∑
i1,...,in−1∈E

pii1 . . . pin−1j. (2.8.2)

If Statement 1 holds, then for some n ∈ N we have p
(n)
ij > 0 which implies that at least one summand

on the right-hand side of (2.8.2) must be strictly positive. This implies Statement 3. If, conversely,
Statement 3 holds, then the sum on the right-hand side of (2.8.2) is positive which implies that

p
(n)
ij > 0. Hence, Statement 1 holds.

Definition 2.8.3. States i, j ∈ E communicate if i; j and j ; i. Notation: i! j.

Theorem 2.8.4. i! j is an equivalence relation, namely

(i) i! i.

(ii) i! j ⇐⇒ j ! i.

(iii) i! j, j ! k ⇒ i! k.

Proof. Statements 1 and 2 follow from the definition. We prove Statement 3. If i! j and j ! k,
then, in particular, i ; j and j ; k. By Theorem 2.8.2, Statement 3, we can find r ∈ N,
s ∈ N and states u1, . . . , ur−1 ∈ E and v1, . . . , vs−1 ∈ E such that piu1pu1u2 . . . pur−1j > 0 and
pjv1pv1v2 . . . pvs−1k > 0. Multiplying both inequalities, we get

piu1pu1u2 . . . pur−1jpjv1pv1v2 . . . pvs−1k > 0.

By Theorem 2.8.2, Statement 3, we have i; k. In a similar way one shows that k ; i.
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Definition 2.8.5. The communication class of state i ∈ E is the set {j ∈ E : i ! j}. This set
consists of all states j which communicate to i.

Since communication of states is an equivalence relation, the state space E can be decomposed into
a disjoint union of communication classes. Any two communication classes either coincide completely
or are disjoint sets.

Definition 2.8.6. A Markov chain is irreducible if every two states communicate. Hence, an irre-
ducible Markov chain consists of just one communication class.

Definition 2.8.7. A communication class C is open if there exist a state i ∈ C and a state k /∈ C
such that i; k. Otherwise, a communication class is called closed.

If a Markov chain once arrived in a closed communication class, it will stay in this class forever.

Example 2.8.8. Show that a communication class C is open if and only if there exist a state i ∈ C
and a state k /∈ C such that pik > 0.

Theorem 2.8.9. If the state space E is a finite set, then there exists at least one closed communi-
cation class.

Proof. We use a proof by contradiction. Assume that there is no closed communication class. Hence,
all communication classes are open. Take some state and let C1 be the communication class of this
state. Since C1 is open, there is a path from C1 to some other communication class C2 6= C1. Since
C2 is open, we can go from C2 to some other communication class C3 6= C3, and so on. Note that
in the sequence C1, C2, C3, . . . all classes are different. Indeed, if for some l < m we would have
Cl = Cm (a “cycle”), this would mean that there is a path starting from Cl, going to Cl+1 and then
to Cm = Cl. But this is a contradiction since then Cl and Cl+1 should be a single communication
class, and not two different classes, as in the construction. So, the classes C1, C2, . . . are different (in
fact, disjoint) and each class contains at least one element. But this is a contradiction since E is a
finite set.

2.9 Aperiodicity

Definition 2.9.1. The period of a state i ∈ E is defined as

gcd{n ∈ N : p
(n)
ii > 0}.

Here, gcd states for the greatest common divisor. A state i ∈ E is called aperiodic if its period is
equal to 1. Otherwise, the state i is called periodic.

Example 2.9.2. Consider a knight on a chessboard moving according to the usual chess rules in a
random way. For concreteness, assume that at each moment of time all moves of the knight allowed
by the chess rules are counted and then one of these moves is chosen, all moves being equiprobable.



32 CHAPTER 2. MARKOV CHAINS

This is a Markov chain on a state space consisting of 64 squares. Assume that at time 0 the knight is
in square i. Since the knight changes the color of its square after every move, it cannot return to the
original square in an odd number of steps. On the other hand, it can return to i in an even number
of steps with non-zero probability (for example by going to some other square and then back, many
times). So,

p
(2n+1)
ii = 0, p

(2n)
ii > 0.

Hence, the period of any state in this Markov chain is 2.

Example 2.9.3. Consider a Markov chain on a state space of two elements with transition matrix

P =

(
0 1
1 0

)
,

We have
p

(2n+1)
ii = 0, p

(2n)
ii = 1.

Hence, the period of any state in this Markov chain is 2.

Example 2.9.4. Show that in the Ehrenfest Markov chain (Example 2.7.7) every state is periodic
with period 2.

Lemma 2.9.5. Let i ∈ E be any state. The following conditions are equivalent:

(i) State i is aperiodic.

(ii) There is N ∈ N such that for every natural number n > N we have p
(n)
ii > 0.

Proof. If Statement 2 holds, then for some sufficiently large n we have p
(n)
ii > 0 and p

(n+1)
ii > 0. Since

gcd(n, n+ 1) = 1, the state i has period 1. Hence, Statement 1 holds.

Suppose, conversely, that Statement 1 holds. Then, we can find n1, . . . , nr ∈ N such that
gcd{n1, . . . , nr} = 1 and p

(n1)
ii > 0, . . . , p

(nr)
ii > 0. By a result from number theory, the condition

gcd{n1, . . . , nr} = 1 implies that there is N ∈ N such that we can represent any natural number
n > N in the form n = l1n1 + . . .+ lrnr for suitable l1, . . . , lr ∈ N. We obtain that

p
(l1n1+...+lrnr)
ii ≥ (p

(n1)
ii )l1 · . . . · (p(nr)

ii )lr > 0.

This proves Statement 2.

Lemma 2.9.6. If state i ∈ E is aperiodic and i! j, then j is also aperiodic.

Remark 9 We can express this by saying that aperiodicity is a class property : If some state in a
communication class is aperiodic, then all states in this communication class are aperiodic. Simi-
larly, if some state in a communication class is periodic, then all states in this communication class
must be periodic. We can thus divide all communication classes into two categories: the aperiodic
communication classes (consisting of only aperiodic states) and the periodic communication classes
(consisting only of periodic states).
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Definition 2.9.7. An irreducible Markov chain is called aperiodic if some (and hence, all) states in
this chain are aperiodic.

Proof of Lemma 2.9.6. From i ! j it follows that i ; j and j ; i. Hence, we can find r, s ∈ N0

such that p
(r)
ji > 0 and p

(s)
ij > 0. Since the state i is aperiodic, by Lemma 2.9.5 we can find N ∈ N

such that for all n > N , we have p
(n)
ii > 0 and hence,

p
(n+r+s)
jj ≥ p

(r)
ji · p

(n)
ii · p

(s)
ij > 0.

It follows that p
(k)
jj > 0 for all k := n + r + s > N + r + s. By Lemma 2.9.5, this implies that j is

aperiodic.

2.10 Recurrence and transience

Consider a Markov chain {Xn : n ∈ N0} on state space E with transition matrix P .

Definition 2.10.1. A state i ∈ E is called recurrent if

Pi[Xn = i for infinitely many n] = 1.

Definition 2.10.2. A state i ∈ E is called transient if

Pi[Xn = i for infinitely many n] = 0.

A recurrent state has the property that a Markov chain starting at this state returns to this state
infinitely often, with probability 1. A transient state has the property that a Markov chain starting
at this state returns to this state only finitely often, with probability 1.

The next theorem is a characterization of recurrent/transient states.

Theorem 2.10.3. Let i ∈ E be a state. Denote by fi the probability that a Markov chain which
starts at i returns to i at least once, that is

fi = Pi[∃n ∈ N : Xn = i].

Then,

(i) The state i is recurrent if and only if fi = 1.

(ii) The state i is transient if and only if fi < 1.

Corollary 2.10.4. Every state is either recurrent or transient.
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Proof. For k ∈ N consider the random event

Bk = {Xn = i for at least k different values of n ∈ N}.

Then, Pi[Bk] = fki . Also, B1 ⊃ B2 ⊃ . . .. It follows that

Pi[Xn = i for infinitely many n] = Pi[∩∞k=1Bk] = lim
k→∞

Pi[Bk] = lim
k→∞

fki =

{
1, if fi = 1,

0, if fi < 1.

It follows that state i is recurrent if fi = 1 and transient if fi < 1.

Here is one more characterization of recurrence and transience.

Theorem 2.10.5. Let i ∈ E be a state. Recall that p
(n)
ii = Pi[Xn = i] denotes the probability that a

Markov chain which started at state i visits state i at time n. Then,

(i) The state i is recurrent if and only if
∑∞

n=1 p
(n)
ii =∞.

(ii) The state i is transient if and only if
∑∞

n=1 p
(n)
ii <∞.

Proof. Let the Markov chain start at state i. Consider the random variable

Vi :=
∞∑
n=1

1l{Xn=i}

which counts the number of returns of the Markov chain to state i. Note that the random variable
Vi can take the value +∞. Then,

Pi[Vi ≥ k] = P[Bk] = fki , k ∈ N.

Thus, the expectation of Vi can be computed as follows:

Ei[Vi] =
∞∑
k=1

Pi[Vi ≥ k] =
∞∑
k=1

fki . (2.10.1)

On the other hand,

Ei[Vi] = Ei
∞∑
n=1

1l{Xn=i} =
∞∑
n=1

Ei1l{Xn=i} =
∞∑
n=1

p
(n)
ii . (2.10.2)

Case 1. Assume that state i is recurrent. Then, fi = 1 by Theorem 2.10.3. It follows that Ei[Vi] =∞
by (2.10.1). (In fact, Pi[Vi = +∞] = 1 since P[Vi ≥ k] = 1 for every k ∈ N). Hence,

∑∞
n=1 p

(n)
ii =∞

by (2.10.2)

Case 2. Assume that state i is transient. Then, fi < 1 by Theorem 2.10.3. Thus, EiVi < ∞
by (2.10.1) and hence,

∑∞
n=1 p

(n)
ii <∞ by (2.10.2).
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The next theorem shows that recurrence and transience are class properties: If some state in a
communicating class is recurrent (resp. transient), then all states in this class are recurrent (resp.
transient).

Theorem 2.10.6. case1. If i ∈ E be a recurrent state and j ! i, then j is also recurrent.
case2. If i ∈ E be a transient state and j ! i, then j is also transient.

Proof. It suffices to prove Part 2. Let i be a transient state and let j ! i. It follows that there
exist s, r ∈ N0 with p

(s)
ij > 0 and p

(r)
ji > 0. For all n ∈ N it holds that

p
(n+r+s)
ii ≥ p

(s)
ij p

(n)
jj p

(r)
ji .

Therefore,
∞∑
n=1

p
(n)
jj ≤

1

p
(s)
ij p

(r)
ji

∞∑
n=1

p
(n+r+s)
ii ≤ 1

p
(s)
ij p

(r)
ji

∞∑
n=1

p
(n)
ii <∞,

where the last step holds because i is transient. It follows that state j is also transient.

Theorem 2.10.6 allows us to introduce the following definitions.

Definition 2.10.7. A communicating class is called recurrent if at least one (equivalently, every)
state in this class is recurrent. A communicating class is transient if at least one (equivalently, every)
state in this class is transient.

Definition 2.10.8. An irreducible Markov chain is called recurrent if at least one (equivalently,
every) state in this chain is recurrent. An irreducible Markov chain is called transient if at least one
(equivalently, every) state in this chain is transient.

The next theorem states that it is impossible to leave a recurrent class.

Theorem 2.10.9. Every recurrent communicating class is closed.

Proof. Let C be a non-closed class. We need to show that it is not recurrent. Since C is not closed,
there exist states i, j so that i ∈ C, j /∈ C and i ; j. This means that there exists m ∈ N so that
p

(m)
ij = Pi[Xm = j] > 0. If the event {Xm = j} occurs, then after time m the chain cannot return to

state i because otherwise i and j would be in the same communicating class. It follows that

Pi[{Xm = j} ∩ {Xn = i for infinitely many n}] = 0.

This implies that

Pi[Xn = i for infinitely many n] < 1.

Therefore, state i is not recurrent.
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If some communicating class contains only finitely states and the chain cannot leave this class,
then it looks very plausible that the chain which started in some state of this class will return to this
state infinitely often (and, in fact, will visit any state of this class infinitely often), with probability
1. This is stated in the next theorem.

Theorem 2.10.10. Every finite closed communicating class is recurrent.

Proof. Let C be a closed communicating class with finitely many elements. Take some state i ∈ C.
A chain starting in i stays in C forever and since C is finite, there must be at least one state j ∈ C
which is visited infinitely often with positive probability:

Pi[Xn = j for infinitely many n ∈ N] > 0.

At the moment it is not clear whether we can take i = j. But since i and j are in the same
communicating class, there exists m ∈ N0 so that p

(m)
ji > 0. From the inequality

Pj[Xn = j for infinitely many n] > p
(m)
ji · Pi[Xn = j for infinitely many n] > 0

it follows that state j is recurrent. The class C is then recurrent because it contains at leats one
recurrent state, namely j.

So, in a Markov chain with finitely many states we have the following equivalencies

(i) A communicating class is recurrent if and only if it is closed.

(ii) A communicating class is transient if and only if it is not closed.

Lemma 2.10.11. Consider an irreducible, recurrent Markov chain with an arbitrary initial distribu-
tion α. Then, for every state j ∈ E the number of visits of the chain to j is infinite with probability
1.

Proof. Exercise.

2.11 Recurrence and transience of random walks

Example 2.11.1. A simple random walk on Z is a Markov chain with state space E = Z and
transition probabilities

pi,i+1 = p, pi,i−1 = 1− p, i ∈ Z.

So, from every state the random walk goes one step to the right with probability p, or one step to the
left with probability 1− p; see Figure 2.1. Here, p ∈ [0, 1] is a parameter.

Theorem 2.11.2. If p = 1
2
, then any state of the simple random walk is recurrent. If p 6= 1

2
, then

any state is transient.
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Figure 2.1: Sample path of a simple random walk on Z with p = 1
2
. The figure shows 200 steps of

the walk.

Proof. By translation invariance, we can restrict our attention to state 0. We can represent our
Markov chain as Xn = ξ1 + . . . + ξn, where ξ1, ξ2, . . . are independent and identically distributed
random variables with Bernoulli distribution:

P[ξk = 1] = p, P[ξk = −1] = 1− p.

Case 1. Let p 6= 1
2
. Then, Eξk = p− (1− p) = 2p− 1 6= 0. By the strong law of large numbers,

lim
n→∞

1

n
Xn = lim

n→∞

ξ1 + . . .+ ξn
n

= Eξ1 6= 0 a.s.

In the case p > 1
2

we have Eξ1 > 0 and hence, limn→∞Xn = +∞ a.s. In the case p < 1
2

we have
Eξ1 < 0 and hence, limn→∞Xn = −∞ a.s. In both cases it follows that

P[Xn = 0 for infinitely many n] = 0.

Hence, state 0 is transient.

Case 2. Let p = 1
2
. In this case, Eξk = 0 and the argument of Case 1 does not work. We will use

Theorem 2.10.5. The n-step transition probability from 0 to 0 is given by

p
(n)
00 =

{
0, if n = 2k + 1 odd,

1
22k

(
2k
k

)
, if n = 2k even.

The Stirling formula n! ∼
√

2πn(n
e
)n, as n→∞, yields that

p
(2k)
00 ∼

1√
πk
, as k →∞.

Since the series
∑∞

k=1
1√
k

diverges, it follows that
∑∞

n=1 p
(n)
00 =

∑∞
k=1 p

(2k)
00 =∞. By Theorem 2.10.5,

this implies that 0 is a recurrent state.
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Example 2.11.3. The simple, symmetric random walk on Zd is a Markov chain defined as follows.
The state space is the d-dimensional lattice

Zd = {(n1, . . . , nd) : n1, . . . , nd ∈ Z}.

Let e1, . . . , ed be the standard basis of Rd, that is

e1 = (1, 0, 0 . . . , 0), e2 = (0, 1, 0, . . . , 0), e3 = (0, 0, 1, . . . , 0), . . . , ed = (0, 0, 0, . . . , 1).

Let ξ1, ξ2, . . . be independent and identically distributed d-dimensional random vectors such that

P[ξi = ek] = P[ξi = −ek] =
1

2d
, k = 1, . . . , d, i ∈ N.

Define Sn = ξ1 + . . . + ξn, n ∈ N, and S0 = 0. The sequence S0, S1, S2, . . . is called the simple
symmetric random walk on Zd. It is a Markov chain with transition probabilities

pi,i+e1 = pi,i−e1 = . . . = pi,i+ed = pi,i−ed =
1

2d
, i ∈ Zd.
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Figure 2.2: Left: Sample path of a simple symmetric random walk on Z2. Right: Sample path of a
simple symmetric random walk on Z3. In both cases the random walk makes 50000 steps.

Theorem 2.11.4 (Pólya, 1921). The simple symmetric random walk on Zd is recurrent if and only
if d = 1, 2 and transient if and only if d ≥ 3.
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Proof. For d = 1 we already proved the statement in Theorem 2.11.2.

Consider the case d = 2. We compute the n-step transition probability p
(n)
00 . For an odd n this

probability is 0. For an even n = 2k we have

p
(2k)
00 =

1

42k

k∑
i=0

(
2k

i, i, k − i, k − i

)
=

1

42k

(
2k

k

) k∑
i=0

(
k

i

)(
k

k − i

)
=

(
1

22k

(
2k

k

))2

∼ 1

πk
,

as k → ∞, where the last step is by the Stirling formula. The harmonic series
∑∞

k=1
1
k

diverges.

Therefore,
∑∞

n=1 p
(n)
00 =∞ and the random walk is recurrent in d = 2 dimensions.

Generalizing the cases d = 1, 2 one can show that for an arbitrary dimension d ∈ N we have, as
k →∞,

p
(2k)
00 ∼

1

(πk)d/2
.

Since the series
∑∞

k=1 k
−d/2 is convergent for d ≥ 3 it holds that

∑∞
n=1 p

(n)
00 < ∞ and the random

walk is transient in d = 3 dimensions.

2.12 Existence and uniqueness of the invariant measure

The next two theorems state that any irreducible and recurrent Markov chain has a unique invariant
measure µ, up to a multiplication by a constant. This measure may be finite (that is,

∑
i∈E µi < +∞)

or infinite (that is,
∑

i∈E µi = +∞).

First we provide an explicit construction of an invariant measure for an irreducible and recurrent
Markov chain. Consider a Markov chain starting at state k ∈ E. Denote the time of the first return
to k by

Tk = min{n ∈ N : Xn = k} ∈ N ∪ {+∞}.

The minimum of an empty set is by convention +∞. For a state i ∈ E denote the expected number
of visits to i before the first return to k by

γi = γ
(k)
i = Ek

Tk−1∑
n=0

1l{Xn=i} ∈ [0,+∞].

Theorem 2.12.1. For an irreducible and recurrent Markov chain starting at state k ∈ E we have

(i) γk = 1.

(ii) For all i ∈ E it holds that 0 < γi <∞.

(iii) γ = (γi)i∈E is an invariant measure.
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Proof. We proceed in three steps.

Step 1. We show that γk = 1. By definition of Tk, we have
∑Tk−1

n=0 1l{Xn=k} = 1, if the chain starts
at k. It follows that γk = Ek1 = 1.

Step 2. We show that for every state j ∈ E,

γj =
∑
i∈E

pijγi. (2.12.1)

(At this moment, both sides of (2.12.1) are allowed to be infinite, but in Step 3 we will show that
both sides are actually finite). The Markov chain is recurrent, thus Tk < ∞ almost surely. By
definition, XTk = k = X0. We have

γj = Ek
Tk∑
n=1

1l{Xn=j} = Ek
∞∑
n=1

1l{Xn=j,n≤Tk} =
∞∑
n=1

Pk[Xn = j, Tk ≥ n].

Before visiting state j at time n the chain must have been in some state i at time n− 1, where i ∈ E
can be, in general, arbitrary. We obtain that

γj =
∑
i∈E

∞∑
n=1

Pk[Xn = j,Xn−1 = i, Tk ≥ n] =
∑
i∈E

∞∑
n=1

pijPk[Xn−1 = i, Tk ≥ n].

Introducing the new summation variable m = n− 1, we obtain that

γj =
∑
i∈E

pij

∞∑
m=0

Ek1l{Xm=i,Tk≥m+1} =
∑
i∈E

pij Ek
Tk−1∑
m=0

1l{Xm=i} =
∑
i∈E

pijγi.

This proves that (2.12.1) holds.

Step 3. Let i ∈ E be an arbitrary state. We show that 0 < γi <∞. Since the chain is irreducible,
there exist n,m ∈ N0 such that p

(m)
ik > 0 and p

(n)
ki > 0. From (2.12.1) it follows that

γi =
∑
l∈E

p
(n)
li γl ≥ p

(n)
ki γk = p

(n)
ki > 0.

On the other hand, again using (2.12.1), we obtain that

1 = γk =
∑
l∈E

p
(m)
lk γl ≥ p

(m)
ik γi.

This implies that γi ≤ 1/p
(m)
ik <∞.

The next theorem states the uniqueness of the invariant measure, up to multiplication by a constant.
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Theorem 2.12.2. Consider an irreducible and recurrent Markov chain and fix some state k ∈ E.
Then, every invariant measure µ can be represented in the form

µj = cγ
(k)
j ∀j ∈ E,

where c is a constant (not depending on j). In fact, c = µk.

Remark 10 Hence, the invariant measure is unique up to a multiplication by a constant. In par-
ticular, the invariant measures (γ

(k1)
i )i∈E and (γ

(k2)
i )i∈E, for different states k1, k2 ∈ E, differ by a

multiplicative constant.

Proof. Let µ be an invariant measure.

Step 1. We show that µj ≥ µkγ
(k)
j for all j ∈ E. We will not use the irreducibility and the

recurrence of the chain in this step. The invariance of the measure µ implies that

µj =
∑
i0∈E

µi0pi0j =
∑
i0 6=k

µi0pi0j + µkpkj.

Applying the same procedure to µi0 , we obtain

µj =
∑
i0 6=k

(∑
i1 6=k

µi1pi1i0 + µkpki0

)
pi0j + µkpkj

=
∑
i0 6=k

∑
i1 6=k

µi1pi1i0pi0j +

(
µkpkj + µk

∑
i0 6=k

pki0pi0j

)
.

Applying the procedure to µi1 and repeating it over and over again we obtain that for every n ∈ N,

µj =
∑

i0,i1,...,in 6=k

µinpinin−1 . . . pi1i0pi0j + µk

pkj +
∑
i0 6=k

pki0pi0j + . . .+
∑

i0,...,in−1 6=k

pki0pi0i1 . . . pin−1j

 .

Noting that the first term is non-negative, we obtain that

µj ≥ 0 + µkPk[X1 = j, Tk ≥ 1] + µkPk[X2 = j, Tk ≥ 2] + . . .+ µkPk[Xn = j, Tk ≥ n].

Since this holds for every n ∈ N, we can pass to the limit as n→∞:

µj ≥ µk

∞∑
n=1

Pk[Xn = j, Tk ≥ n] = µkγ
(k)
j .

It follows that µj ≥ µkγ
(k)
j .

Step 2. We prove the converse inequality. Consider µj := µj − µkγ
(k)
j , j ∈ E. By the above,

µj ≥ 0 for all j ≥ 0 so that µ = (µj)j∈E is a measure. Moreover, this measure is invariant because it
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is a linear combination of two invariant measures. Finally, note that by definition, µk = 0. We will
prove that this implies that µj = 0 for all j ∈ E. By the irreducibility of our Markov chain, for every

j ∈ E we can find n ∈ N0 such that p
(n)
jk > 0. By the invariance property of µ,

0 = µk =
∑
i∈E

µip
(n)
ik ≥ µjp

(n)
jk .

It follows that µjp
(n)
jk = 0 but since p

(n)
jk > 0, we must have µj = 0. By the definition of µj this implies

that µj = µkγ
(k)
j .

We can now summarize Theorems 2.12.1 and 2.12.2 as follows:

Theorem 2.12.3. A recurrent, irreducible Markov chain has unique (up to a constant multiple)
invariant measure.

This invariant measure may be finite or infinite. However, if the Markov chain has only finitely
many states, then the measure must be finite and we can even normalize it to be a probability measure.

Corollary 2.12.4. A finite and irreducible Markov chain has a unique invariant probability measure.

Proof. A finite and irreducible Markov chain is recurrent by Theorem 2.10.10. By Theorem 2.12.1,
there exists an invariant measure µ = (µi)i∈E. Since the number of states in E is finite by assumption
and µi <∞ by Theorem 2.12.1, we have M :=

∑
i∈E µi <∞ and hence, the measure µ is finite. To

obtain an invariant probability measure, consider the measure µ′i = µi/M .

To show that the invariant probability measure is unique, assume that we have two invariant prob-
ability measures ν ′ = (ν ′i)i∈E and ν ′′ = (ν ′′i )i∈E. Take an arbitrary state k ∈ E. By Theorem 2.12.2,

there are constants c′ and c′′ such that ν ′i = c′γ
(k)
i and ν ′′i = c′′γ

(k)
i , for all i ∈ E. But since both ν ′

and ν ′′ are probability measures, we have

1 =
∑
i∈E

ν ′i = c′
∑
i∈E

γ
(k)
i , 1 =

∑
i∈E

ν ′′i = c′′
∑
i∈E

γ
(k)
i .

This implies that c′ = c′′ and hence, the measures ν ′ and ν ′′ are equal.

Above, we considered only irreducible, recurrent chains. What happens if the chain is irreducible
and transient? It turns out that in this case everything is possible:

(i) It is possible that there is no invariant measure at all (except the zero measure).

(ii) It is possible that there is a unique (up to multiplication by a constant) invariant measure.

(iii) It is possible that there are at least two invariant measures which are not constant multiples of
each other.
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Exercise 2.12.5. Consider a Markov chain on N with transition probabilities pi,i+1 = 1, for all
i ∈ N. Show that the only invariant measure is µi = 0, i ∈ N.

Exercise 2.12.6. Consider a Markov chain on Z with transition probabilities pi,i+1 = 1, for all
i ∈ Z. Show that the invariant measures have the form µi = c, i ∈ Z, where c ≥ 0 is constant.

Exercise 2.12.7. Consider a simple random walk on Z with p 6= 1
2
. Show that any invariant measure

has the form

µi = c1 + c2

(
p

1− p

)i
, i ∈ Z,

for some constants c1 ≥ 0, c2 ≥ 0.

2.13 Positive recurrence and null recurrence

The set of recurrent states of a Markov chain can be further subdivided into the set of positive recurrent
states and the set of negative recurrent states. Let us define the notions of positive recurrence and
null recurrence.

Consider a Markov chain on state space E. Take some state i ∈ E, assume that the Markov chain
starts at state i and denote by Ti the time of the first return of the chain to state i:

Ti = min{n ∈ N : Xn = i} ∈ N ∪ {+∞}.

Denote by mi the expected return time of the chain to state i, that is

mi = EiTi ∈ (0,∞]

Note that for a transient state i we always have mi = +∞ because the random variable Ti takes the
value +∞ with strictly positive probability 1− fi > 0, see Theorem 2.10.3. However, for a recurrent
state i the value of mi may be both finite and infinite, as we shall see later.

Definition 2.13.1. A state i ∈ E as called positive recurrent if mi <∞.

Definition 2.13.2. A state i ∈ E is called null recurrent if it is recurrent and mi = +∞.

Remark 11 Both null recurrent states and positive recurrent states are recurrent. For null recurrent
states this is required by definition. For a positive recurrent state we have mi < ∞ which means
that Ti cannot attain the value +∞ with strictly positive probability and hence, state i is recurrent.

Theorem 2.13.3. Consider an irreducible Markov chain. Then the following statements are equiv-
alent:

(i) Some state is positive recurrent.

(ii) All states are positive recurrent.



44 CHAPTER 2. MARKOV CHAINS

(iii) The chain has invariant probability measure µ = (µi)i∈E.

Also, if these statements hold, then mi = 1
µi

for all i ∈ E.

Proof. The implication 2⇒ 1 is evident.

Proof of 1⇒ 3. Let k ∈ E be a positive recurrent state. Then, k is recurrent and all states of the
chain are recurrent by irreducibility. By Theorem 2.12.1, (γ

(k)
i )i∈E is an invariant measure. However,

we need an invariant probability measure. To construct it, note that∑
j∈E

γ
(k)
j = mk <∞

(since k is positive recurrent). We can therefore define µi = γ
(k)
i /mk, i ∈ E. Then,

∑
i∈E µi = 1, and

(µi)i∈E is an invariant probability measure.

Proof of 3 ⇒ 2. Let (µi)i∈E be an invariant probability measure. First we show that µk > 0
for every state k ∈ E. Since µ is a probability measure, we have µl > 0 for at least one l ∈ E. By
irreducibility, we have p

(n)
lk > 0 for some n ∈ N0 and by invariance of µ, we have

µk =
∑
i∈E

p
(n)
ik µi ≥ p

(n)
lk µl > 0.

This proves that µk > 0 for every k ∈ E.

By Step 1 from the proof of Theorem 2.12.2 (note that this step does not use recurrence), we have
for all j ∈ E,

µi ≥ µkγ
(k)
i .

Hence,

mk =
∑
i∈E

γ
(k)
i ≤

∑
i∈E

µi
µk

=
1

µk
<∞.

It follows that k is positive recurrent, thus establishing statement 2.

Proof that mk = 1
µk

. Assume that statements 1,2,3 hold. In particular, the chain is recurrent

and by Theorem 2.12.2, we must have µi = µkγ
(k)
i for all i ∈ E. It follows that

mk =
∑
i∈E

γ
(k)
i =

∑
i∈E

µi
µk

=
1

µk
,

thus proving the required formula.

Example 2.13.4. Any state in a finite irreducible Markov chain is positive recurrent. Indeed, such
a chain has an invariant probability measure by Corollary 2.12.4.

Example 2.13.5. Consider a simple symmetric random walk on Z or on Z2. This chain is irre-
ducible. Any state is recurrent by Pólya’s Theorem 2.11.4. We show that in fact, any state is null
recurrent. To see this, note that the measure assigning the value 1 to every state i ∈ E is invariant
by the definition of the chain. By Theorem 2.12.2, any other invariant measure must be of the form
µi = c, i ∈ E, for some constant c ≥ 0. However, no measure of this form is a probability measure.
So, there is no invariant probability measure and by Theorem 2.13.3, all states must be null recurrent.
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2.14 Convergence to the invariant probability measure

We are going to state and prove a “strong law of large numbers” for Markov chains. First recall
that the usual strong law of large numbers states that if ξ1, ξ2, . . . are i.i.d. random variables with
E|ξ1| <∞, then

ξ1 + . . .+ ξn
n

a.s.→ Eξ1. (2.14.1)

The statement is not applicable if E|ξ1| = ∞. However, it follows (e.g. from the monotone conver-
gence theorem) that if ξ1, ξ2, . . . are i.i.d. random variables which are a.s. nonnegative with Eξ1 = +∞,
then

ξ1 + . . .+ ξn
n

a.s.→ +∞. (2.14.2)

Consider a Markov chain {Xn : n ∈ N0} with initial distribution α = (αi)i∈E. Given a state i ∈ E,
denote the number of visits to state i in the first n steps by

Vn(i) =
n−1∑
k=0

1l{Xk=i}.

Theorem 2.14.1. Consider an irreducible Markov chain {Xn : n ∈ N0} with an arbitrary initial
distribution α = (αi)i∈E.

case 1. If the Markov chain is transient or null recurrent, then for all i ∈ E it holds that

Vn(i)

n
→ 0 a.s. (2.14.3)

case 2. If the Markov chain is positive recurrent with invariant probability measure µ, then for all
i ∈ E it holds that

Vn(i)

n
→ µi a.s. (2.14.4)

Proof. If the chain is transient, then Vi(n) stays bounded as a function of n, with probability 1. This
implies (2.14.3). In the sequel, let the chain be recurrent.

For simplicity, we will assume in this proof that the chain starts in state i. Denote the time of the
k-th visit of the chain to i by Sk, that is

S1 = min {n ∈ N : Xn = i} ,
S2 = min {n > S1 : Xn = i} ,
S3 = min {n > S2 : Xn = i} ,

and so on. Note that S1, S2, S3, . . . are a.s. finite by the recurrence of the chain. Let also ξ1, ξ2, ξ3, . . .
be the excursion times between the returns to i, that is

ξ1 = S1, ξ2 = S2 − S1, ξ3 = S3 − S2, . . . .
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Then, ξ1, ξ2, ξ3, . . . are i.i.d. random variables by the Markov property.

By definition of Vi(n) we have

ξ1 + ξ2 + . . .+ ξVi(n)−1 ≤ n ≤ ξ1 + ξ2 + . . .+ ξVn(i).

Dividing this by Vi(n) we get

ξ1 + ξ2 + . . .+ ξVn(i)−1

Vn(i)
≤ n

Vi(n)
≤
ξ1 + ξ2 + . . .+ ξVn(i)

Vn(i)
. (2.14.5)

Note that by recurrence, Vn(i)→∞ a.s.

Case 1. Let the chain be null recurrent. It follows that Eξ1 =∞. By using (2.14.2) and (2.14.5),
we obtain that

n

Vn(i)
→∞ a.s.

This proves (2.14.3).

Case 2. Let the chain be positive recurrent. Then, by Theorem 2.13.3, Eξ1 = mi = 1
µi
< ∞.

Using (2.14.1) and (2.14.5) we obtain that

n

Vn(i)
→ 1

µi
a.s.

This proves (2.14.4).

In the next theorem we prove that the n-step transition probabilities converge, as n → ∞, to the
invariant probability measure.

Theorem 2.14.2. Consider an irreducible, aperiodic, positive recurrent Markov chain {Xn : n ∈ N0}
with transition matrix P and invariant probability measure µ = (µi)i∈E. The initial distribution
α = (αi)i∈E may be arbitrary. Then, for all j ∈ E it holds that

lim
n→∞

P[Xn = j] = µj.

In particular, limn→∞ p
(n)
ij = µj for all i, j ∈ E.

Remark 12 In particular, the theorem applies to any irreducible and aperiodic Markov chain with
finite state space.

For the proof we need the following lemma.

Lemma 2.14.3. Consider an irreducible and aperiodic Markov chain. Then, for every states i, j ∈ E
we can find N = N(i, j) ∈ N such that for all n > N we have p

(n)
ij > 0.
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Proof. The chain is irreducible, hence we can find r ∈ N0 such that p
(r)
ij > 0. Also, the chain is

aperiodic, hence we can find N0 ∈ N such that for all k > N0 we have p
(k)
ii > 0. It follows that for all

k > N0,
p

(k+r)
ij > p

(k)
ii p

(r)
ij > 0.

It follows that for every n := k + r such that n > N0 + r, we have p
(n)
ij > 0.

Proof of Theorem 2.14.2. We use the “coupling method”.

Step 1. Consider two Markov chains called {Xn : n ∈ N0} and {Yn : n ∈ N0} such that

(i) Xn is a Markov chain with initial distribution α and transition matrix P .

(ii) Yn is a Markov chain with initial distribution µ (the invariant probability measure) and the
same transition matrix P .

(iii) The process {Xn : n ∈ N0} is independent of the process {Yn : n ∈ N0}.

Note that both Markov chains have the same transition matrix but different initial distributions. Fix
an arbitrary state b ∈ E. Denote by T be the time at which the chains meet at state b:

T = min{n ∈ N : Xn = Yn = b} ∈ N ∪ {+∞}.

If the chains do not meet at b, we set T = +∞.

Step 2. We show that P[T < ∞] = 1. Consider the stochastic process Wn = (Xn, Yn) taking
values in E × E. It is a Markov chain on E × E with transition probabilities given by

p̃(i,k),(j,l) = pijpkl, (i, k) ∈ E × E, (j, l) ∈ E × E.

The initial distribution of W0 is given by

µ(i,k) = αiµk, (i, k) ∈ E × E.

Since the chains Xn and Yn are aperiodic and irreducible by assumption of the theorem, we can apply
Lemma 2.14.3 to obtain for every i, j, k, l ∈ E a number N = N(i, j, k, l) ∈ N such that for all n > N
we have

p̃
(n)
(i,k),(j,e) = p

(n)
ij p

(n)
ke > 0.

Thus, the chain Wn is irreducible. Also, it is an exercise to check that the probability measure
µ̃(i,k) := µiµk is invariant for Wn. Thus, by Theorem 2.13.3, the Markov chain Wn is positive
recurrent and thereby recurrent. Therefore, T <∞ a.s. by Lemma 2.10.11.

Step 3. Define the stochastic process {Zn : n ∈ N0} by

Zn =

{
Xn, if n ≤ T,

Yn, if n ≥ T.
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Then, Zn is a Markov chain with initial distribution α and the same transition matrix P as Xn

and Yn. (The Markov chain Zn is called the coupling of Xn and Yn). The chain Yn starts with the
invariant probability measure µ and hence, at every time n, Yn is distributed according to µ. Also,
the chain Zn has the same initial distribution α and the same transition matrix P as the chain Xn,
so that in particular, the random elements Xn and Zn have the same distribution at every time n.
Using these facts, we obtain that

|P[Xn = j]− µj| = |P[Xn = j]− P[Yn = j]| = |P[Zn = j]− P[Yn = j]|.

By definition of Zn, we can rewrite this as

|P[Xn = j]− µj| = |P[Xn = j, n < T ] + P[Yn = j, n ≥ T ]− P[Yn = j]|
= |P[Xn = j, n < T ]− P[Yn = j, n < T ]|
≤ P[T > n].

But we have shown in Step 2 that P[T =∞] = 0, hence limn→∞ P[T > n] = 0. It follows that

lim
n→∞

P[Xn = j] = µj,

thus establishing the theorem.



Appendix

2.15 Conditional expectation.

Let us recall the following consequence of the Radon-Nikodym theorem.

Theorem 2.15.1 (Existence and uniqueness). Let X ∈ L1(P) be defined on a probability space
(Ω,F ,P). Let G ⊂ F be a sub-σ-algebra. Then there exists a random variable Y which is written as
Y = E(X|G) such that the following two properties hold:

• Y is G-measurable.

• For any G ∈ G,
∫
G
XdP =

∫
G
Y dP almost surely.

Such a random variable Y , which is called the conditional expectation of X w.r.t. G, is unique up to
a set of measure zero.

It is useful to collect the following properties of conditional expectation:

Corollary 2.15.2 (Properties of conditional expectation). In what follows X,X ′, Xn ∈ L1(P) for
each n ∈ N0 and G ⊂ F is a sub-σ-algebra of F in the ambient probability space (Ω,F ,P).

(i) (Linearity and monotonicity.) For any c1, c2 ∈ R, we have E[c1X1 + c2X2|G] = c1E[X1|G] +
c2E[X2|G] almost surely. Moreover, if X ≥ X ′ almost surely, then E[X|G] ≥ E[X ′|G] almost
surely.

(ii) (Taking out what is known.) If X is G-measurable, then E[X|G] = X almost surely.

(iii) (The law of total expectation) We always have E[X] = E[E[X|G]].

(iv) (Tower property) If G1 ⊂ G2, both being sub-σ algebras of F , then E
[
E[X|G1]|G2

]
=

E
[
E[X|G2]|G1

]
= E[X|G1] almost surely.

(v) (Jensen’s inequality) If f : R → R is a convex function, then E
[
f(X)|G

]
≥ f

(
E(X|G)

)
al-

most surely. In particular, X 7→ E[X|G] is a contraction in Lp(P) for any p ≥ 1 (i.e.,
E
[∣∣E(X|G)

∣∣p] ≤ E(|X|p)).
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(vi) (Hölder’s inequality) For any p, q ≥ 1 with 1
p

+ 1
q

= 1, we have E[|X1X2||G] ≤
E[|X1|p|G]1/p.E[|X2|q|G]1/q.

(vii) (Fatou’s lemma) If Xn ≥ 0 for each n then lim infn→∞ E[Xn|G] ≥ E[lim infn→∞Xn|G] almost
everywhere.

(viii) (Monotone convergence theorem) If Xn ≥ 0 for each n and Xn ↑ X almost everywhere (i.e.,
for each n, Xn+1 ≥ Xn and Xn converges pointwise to a limit X), then E[Xn|G] → E[X|G]
almost everywhere.

(ix) (Dominated convergence theorem) If supn |Xn(·)| ≤ Y (·) almost everywhere so that Y ∈ L1(P)
and Xn converges pointwise to a limit X, then E[Xn|G]→ E[X|G] almost everywhere.

Theorem 2.15.3 (Orthogonal projection of Hilbert spaces). Let H be a Hilbert space (i.e., H is a
vector space equipped with an inner-product 〈·, ·〉H that defines a norm ‖x‖2

H := 〈x, x〉H making H
a complete metric space). Let K ⊂ H be a closed subspace of H. Then for any x ∈ H, there exists
y ∈ K such that one of the equivalent properties hold:

(i) For any z ∈ K, 〈x− y, z〉H = 0.

(ii) For any z ∈ K, ‖y − x‖H ≤ ‖z − x‖H .

Such y is unique, it is written as y = πK(x) and is called the orthogonal projection of x onto K.

The following result is a direct consequence of the above result. For any σ-algebra A, we denote
by L2(A) to be the space of square integrable functions which are measurable w.r.t. A.

Theorem 2.15.4 (Conditional expectation as a projection). Let H = L2(F) equipped with an inner
product 〈X, Y 〉H = E[XY ]. Fix X ∈ L2(F) and let K = L2(G) where G ⊂ F is a sub-σ-algebra.
Then K ⊂ H is a closed subspace of H and the orthogonal projection of X onto K is uniquely
identified as

πK(X) = E[X|G].
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