Probability Theory on Trees and Networks

Exercise Sheet 10

Submission is due on 01/25/2021 9 p.m.

Please send the solutions to yannic.broeker@uni-muenster.de as a pdf-file.

Exercise 1 (4 points)

Let \mathbb{T}_3 be the 3-regular tree. Construct 3 non-constant bounded harmonic functions on \mathbb{T}_3 with respect to the simple random walk.

Exercise 2 (4 points)

Consider a network walk on \mathbb{N} by assigning conductance $2^{\binom{k}{2}}$ to the edge between k-1 and k for all $k \geq 2$. Show that the σ -algebra \mathcal{I} is \mathbb{P}_0 -trivial, and show that the σ -algebra \mathcal{T} is not \mathbb{P}_0 -trivial.

Exercise 3 (4 points)

Prove the missing part of the theorem stated in today's lecture. That is, if P is the transition probability matrix of a transitive Markov chain $(X_n)_n$ on V and $\tilde{P} = \frac{I+P}{2}$ is that of the corresponding lazy chain $(\tilde{X}_n)_n$ and if V is equipped with an invariant graph metric d, then $\tilde{\ell} = \ell/2$.

Exercise 4 (8 points)

Given a transitive Markov chain $(X_n)_n$ on a state space V. Let R_n be the number of distinct sites visited by time n. That is, $R_n = \text{range of } X_n \stackrel{\text{def}}{=} \#\{\text{distinct sites visited by } X_1, X_2, ..., X_n\}.$

Fix some $o \in V$ and show that

$$\lim_{n \to \infty} \mathbb{E}_0 \left[\frac{R_n}{n} \right] = \mathbb{P}_0(\text{no return}) = \mathbb{P}_0(X_k \neq 0 \text{ for all } k \ge 1).$$

Deduce that R_n/n converges \mathbb{P}_0 -almost surely to the same limit.