Probability Theory on Trees and Networks

Exercise Sheet 13

Submission is due on 02/11/2021 9 p.m.

Please send the solutions to yannic.broeker@uni-muenster.de as a pdf-file.

Exercise 1 (4 points)

Consider a transitive Markov chain $(X_n)_{n\geq 1}$ with an invariant metric on a graph G of at most polynomial growth. Suppose that

$$\mathbb{E}_o\bigg[\log\bigg(1+d(o,X_1)\bigg)\bigg]<\infty$$

where $o \in V(G)$ is fixed and $d(\cdot, \cdot)$ denotes the graph metric. Then show that $H(X_1) < \infty$ and h = 0, where h is the Avez-entropy.

Exercise 2 (6 points)

Let Γ be a group and S is a finite and symmetric set of generators. For any probability measure μ on S let $h(\mu)$ and $\ell(\mu)$ be the Avez-entropy and the speed of the μ -walk on Γ , respectively.

- (i) Show that there exists a symmetric μ of maximal Avez-entropy and a symmetric μ of maximal speed.
- (ii) Now prove that in general there exists no μ that maximizes both. That means, give an example of a group Γ and a set of generators S such that no probability measure μ simultaneously maximizes $h(\cdot)$ and $\ell(\cdot)$.