Probability Theory on Trees and Networks
 Exercise Sheet 2

Submission is due on $11 / 16 / 20209$ p.m.
Please send the solutions to yannic.broeker@uni-muenster.de as a pdf-file.

Exercise 1 (4 points)

Let $n \in \mathbb{N}$ and let Γ be the reduced residue class of n (i.e. Γ consists of all positive integers $<n$ which are coprime to n) equipped with the operation $*$ defined in the lecture (i.e. for all $x, y \in \Gamma$, $x * y=$ remainder of $x \times y$ w.r.t. n). Prove that $(\Gamma, *)$ is a group.

Hint: To prove that every element has an inverse w.r.t. the $*$-operation you need the following fact that you can assume:
If a, b are coprime to each other, then there exist $x, y \in \mathbb{Z}$ such that $a x+b y=1$.

Exercise 2 (6 points)

Let f be a bounded μ-harmonic function on a group Γ. We define

$$
u_{n}(x):=\sum_{y_{1}, \ldots, y_{n}}\left(f\left(x+\sum_{i=1}^{n} y_{i}\right)-f\left(x+\sum_{i=2}^{n} y_{i}\right)\right)^{2} \prod_{i=1}^{n} \mu\left(y_{i}\right) .
$$

(i) Show that $u_{n}(x) \leq u_{n+1}(x)$.
(ii) Show that

$$
u_{n}(x)=\sum_{y_{1}, \ldots, y_{n}} f\left(x+\sum_{i=1}^{n} y_{i}\right)^{2} \prod_{i=1}^{n} \mu\left(y_{i}\right)-\sum_{y_{2}, \ldots, y_{n}} f\left(x+\sum_{i=2}^{n} y_{i}\right)^{2} \prod_{i=2}^{n} \mu\left(y_{i}\right) .
$$

(iii) Show that $\sum_{n} u_{n}(x)<\infty$.
(iv) Show that $u_{1}(x)=0$.

Exercise 3 (4 points)
Show that if G is a Cayley graph of a finitely generated abelian group Γ and μ is a symmetric probability measure on Γ (i.e. $\mu(g)=\mu\left(g^{-1}\right)$ for all $g \in \Gamma$) with finite support that generates Γ, then there are no nonconstant μ-harmonic functions h whose growth is sublinear in distance, that is, such that $h(x) / \operatorname{dist}_{G}(0, x) \rightarrow 0$ as $\operatorname{dist}_{G}(0, x) \rightarrow \infty$.

Exercise 4 (2 points)
Let $\left(X_{n}\right)_{n}$ be a Markov chain taking values in E, which is finite or countable, with transition probabilities $P=\left(p_{i, j}\right)$. Define

$$
f_{i, j}=\mathbb{P}\left(\tau_{j}<\infty\right)
$$

where $\tau_{j}=\inf \left\{n \geq 1: Z_{n}=j\right\}$. Show that

$$
f_{i, j}=1 \forall i, j \in E \Leftrightarrow \text { every non-negative } P \text { - superharmonic function on } E \text { is constant. }
$$

Exercise 5 (4 points)
Let $\left(S_{n}\right)_{n \geq 0}$ be a random walk defined as $S_{n}=\xi_{1}+\ldots+\xi_{n}$ with $S_{0}=0$ and $\mathbb{P}\left(\xi_{1}= \pm 1\right)=1 / 2$.
(a) Show that there exists $\sigma>0$ such that $\mathbb{E}_{0}\left[e^{\sigma \tau_{R}}\right]<\infty$, where $\tau_{R}=\inf \left\{n \geq 1: S_{n} \notin(-R, R)\right\}$ and $R>0$.
(b) Is the estimate true for all $\sigma>0$?

