Probability Theory on Trees and Networks

Exercise Sheet 3

Submission is due on 11/23/2020 9 p.m.

Please send the solutions to yannic.broeker@uni-muenster.de as a pdf-file.

Recall that a group G is freely generated by a set $S \subset G$ if for any group Γ and any map $\phi : S \to \Gamma$ there is a unique homomorphism $\phi : G \to \Gamma$ extending ϕ (i.e. $\phi(x) = \phi(x)$ for all $x \in S$).

Exercise 1 (6 points)

- (a) Suppose that G is freely generated by S and G' is freely generated by S' and |S| = |S'|. Then prove that G is isomorphic to G'.
- (b) Prove that a free group is torsion-free (i.e. if $x^n = id$ then x = id).

Exercise 2 (4 points)

Recall that the normal closure of a subset A of a group G is the smallest normal subgroup of G containing A (written as $\langle \langle A \rangle \rangle$). Show that

$$\langle \langle A \rangle \rangle = \langle \{ gag^{-1} : g \in G, a \in A \} \rangle.$$

Exercise 3 (4 points)

Let S and T be finite and symmetric generating sets in a group G and let d_S and d_T be the word metrics corresponding to S and T. Then show that there exists a real number K > 1 such that for all $g, h \in G$

$$\frac{1}{K} d_T(g,h) \le d_S(g,h) \le K d_T(g,h).$$

Exercise 4 (6 points)

- (a) Let $\langle S|R \rangle$ is a presentation of a group G and $\langle S'|R' \rangle$ is a presentation of a group G'. Define $g * g' = \langle S \cup S'|R \cup R' \rangle$. Prove that the Cayley graph of $\mathbb{Z} * \mathbb{Z}_2$ is isomorphic to that of $\mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2$ (i.e. $\operatorname{Cay}(\mathbb{Z} * \mathbb{Z}_2) \simeq \operatorname{Cay}(\mathbb{Z}_2 * \mathbb{Z}_2 * \mathbb{Z}_2)$).
- (b) Compute the velocity $\lim_{n\to\infty} \frac{d(e,X_n)}{n}$ of a simple random walk on this Cayley graph.