Probability Theory on Trees and Networks
 Exercise Sheet 8

Submission is due on $01 / 11 / 20219$ p.m.
Please send the solutions to yannic.broeker@uni-muenster.de as a pdf-file.

Exercise 1 (3 points)
Prove that for every $k \in \mathbb{Z}$ there exists a unique polynomial $Q_{k} \in \mathbb{R}[X]$ of degree k such that

$$
Q_{k}(\cos \xi)=\cos (k \xi) \quad \text { for all } \xi \in \mathbb{R}
$$

Exercise 2 (6 points)
Let S_{n} be the simple random walk on \mathbb{Z}. Show that for all $a>0$,

$$
\mathbb{P}_{0}\left(\left|S_{n}\right|>a\right) \leq 2 \exp \left(-\frac{a^{2}}{2 n}\right)
$$

Exercise 3 (6 points)
Show the following statements.
(i) Let X_{1}, \ldots, X_{n} be independent random variables on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, taking values in \mathbb{R}, and with $\mathbb{E}\left[X_{k}\right]=0$ and $\mathbb{V}\left(X_{k}\right)<\infty$ for all $k=1, \ldots, n$. Then, for all $\lambda>0$,

$$
\mathbb{P}\left(\max _{1 \leq k \leq n}\left|S_{k}\right| \geq \lambda\right) \leq \frac{1}{\lambda^{2}} \mathbb{V}\left(S_{n}\right)
$$

where $S_{k}=X_{1}+\ldots+X_{k}$.
(ii) The entropy on the nearest neighbor random walk on the lamplighter group is equal to 0 .

Hint: Use part (i) to prove part (ii).

Exercise 4 (5 points)

Let Γ be a finitely generated group with respect to a symmetric generating set S and let μ be a probability measure with support on S. Let h be the Avez entropy of the simple random walk and ρ is the spectral radius. Show that

$$
h \geq-2 \log \rho
$$

For the proof you may not use the statement from the lecture that says, positive entropy is equivalent to positive speed.

