Gaussian Free Field and Liouville Quantum Gravity
 Exercise Sheet 1

Due: Monday, 26.04.2020

Exercise 1 (3+4 Punkte)

Let $n \geq 1$ and Z_{1}, \ldots, Z_{n} be independent and identically distributed standard Gaussians on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$. For $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{R}^{n}$ and a constant $Z_{n, \beta}>0$ define a new measure \mathbb{Q} on (Ω, \mathcal{F}) by

$$
\mathbb{Q}(\mathrm{d} \omega):=\frac{1}{Z_{n, \beta}} \exp \left(\sum_{i=1}^{n} \beta_{i} Z_{i}(\omega)\right) \mathbb{P}(\mathrm{d} \omega)
$$

that is to say for every $A \in \mathcal{F}$

$$
\mathbb{Q}(A):=\frac{1}{Z_{n, \beta}} \int_{A} \exp \left(\sum_{i=1}^{n} \beta_{i} Z_{i}(\omega)\right) \mathbb{P}(\mathrm{d} \omega)
$$

(i) Determine the value of $Z_{n, \beta}$ which makes \mathbb{Q} a probability measure.
(ii) For the above choice of $Z_{n, \beta}$, determine the distribution of the vector $\left(Z_{1}, \ldots, Z_{n}\right)$ under \mathbb{Q}.

For the following exercises let $X=(V, E)$ be a countable, locally finite graph, $\partial \subseteq V$ and $\hat{V}:=V \backslash \partial$. For vertices $x, y \in V$, write $d(x):=\operatorname{deg}(x)$ and $x \sim y$ if x and y are connected by an edge. Moreover let P be the transition matrix of the graph random walk on X, i.e. for $x, y \in V$

$$
P(x, y)=\mathbb{1}_{\{x \sim y\}} \frac{1}{d(x)}
$$

and denote by G the corresponding Green function defined in the lectures.

Exercise 2 (2 +3 Punkte)
(i) Show that $d(\cdot)$ defines a reversible invariant measure for P.
(ii) Assuming that X is finite, show that the matrix G is nonnegative semidefinite, i.e. for every real vector $\lambda=\left(\lambda_{x}\right)_{x \in V}$ we have

$$
\lambda^{T} G \lambda=\sum_{x, y \in V} \lambda_{x} \lambda_{y} G(x, y) \geq 0
$$

Exercise 3 (4+4 Punkte)

(i) Let \hat{P} be the restriction of P to \hat{V}, let \hat{G} be the restriction of G to \hat{V} and let I be the identity matrix of dimension $|\hat{V}|$. Assuming that \hat{V} is finite, show that the matrix $I-\hat{P}$ is invertible with inverse given by

$$
(I-\hat{P})^{-1}=\hat{G} D
$$

where D is the diagonal $\hat{V} \times \hat{V}$-matrix with diagonal entries $d(x)$ for $x \in \hat{V}$.
(ii) In the countable set-up, the infinite matrix P induces a bounded self-adjoint operator \mathbf{P} on the Hilbert space

$$
\ell^{2}(V, d)=\left\{f: V \longrightarrow \mathbb{R}: \sum_{x \in V} f(x)^{2} d(x)<\infty\right\}
$$

with the inner product

$$
\langle f, g\rangle=\sum_{x \in V} f(x) g(x) d(x),
$$

by defining for $f \in \ell^{2}(V, d)$ and $x \in V$

$$
(\mathbf{P} f)(x)=\sum_{y \in V} P(x, y) f(y) .
$$

Let I be the identity operator on $\ell^{2}(V, d)$. Prove that if $\|\mathbf{P}\|<1$ (as an $\ell^{2}(V, d)$-operator), then the operator $\mathbf{I}-\mathbf{P}$ is invertible and its inverse satisfies for all $x, y \in \hat{V}$

$$
G(x, y) d(y)=d(x)^{-1}\left\langle\mathbb{1}_{x},(\mathbf{I}-\mathbf{P})^{-1} \mathbb{1}_{y}\right\rangle .
$$

Hint: Neumann series.

