# Gaussian Free Field and Liouville Quantum Gravity 

Exercise Sheet 2
Due: Monday, 03.05.2020

## Exercise 1 (Moments of Gaussian Distribution) (3 Punkte)

Let $X$ be a Gaussian random variable with mean zero and variance $\sigma^{2}>0$. Show that for every $n \geq 1$

$$
\mathbb{E}\left[X^{2 n}\right]=c_{n} \sigma^{2 n}
$$

where $c_{n}:=1 \cdot 3 \cdot \ldots \cdot(2 n-1)$. What happens to the odd moments?

## Exercise 2 (Hölder continuity of Brownian motion) (5 Punkte)

Let $\left(B_{t}\right)_{t \in[0,1]}$ be a one-dimensional Brownian motion. Prove that, almost surely, its sample paths do not satisfy a Hölder condition for Hölder exponent $\gamma \geq 1 / 2$ by showing that for any constant $C>0$

$$
\mathbb{P}\left[\sup _{0 \leq s<t \leq 1} \frac{\left|B_{t}-B_{s}\right|}{\sqrt{t-s}} \leq C\right]=0
$$

Exercise 3 (5 Punkte)

Consider a finite graph $X=(V, E)$ with boundary $\partial$ and write $V=\left\{x_{1}, \ldots, x_{n}\right\}$. Again let $P$ be the transition matrix of the graph random walk, $\hat{P}$ its restriction to $\hat{V}=V \backslash \partial$ and $\hat{D}=\operatorname{diag}(d(x)$ : $x \in \hat{V})$. It was proved in the lecture that the law of the discrete GFF $(h(x))_{x \in V}$ is absolutely continuous with respect to $|\hat{V}|$-dimensional Lebesgue measure.

Moreover, for every Borel set $A \subseteq \mathbb{R}^{n}$ such that $\left(y_{1}, \ldots, y_{n}\right) \in A$ implies that $y_{i}=0$ for all indices $i$ corresponding to $x_{i} \in \partial$, we have

$$
\mathbb{P}\left[\left(h\left(x_{1}\right), \ldots, h\left(x_{n}\right)\right) \in A\right]=\frac{1}{Z} \int_{A} \exp \left(-\frac{1}{4} \sum_{i, j \in\{1, \ldots, n\}: x_{i} \sim x_{j}}\left(y_{i}-y_{j}\right)^{2}\right) \prod \mathrm{d} y_{i}
$$

for an appropriate constant $Z>0$. Show that $Z=(2 \pi)^{|\hat{V}| / 2}(\operatorname{det} \hat{D})^{-1 / 2} \operatorname{det}(I-\hat{P})^{-1 / 2}$.

Let $\left(B_{t}\right)_{t \geq 0}$ be a 2-dimensional Brownian motion, let

$$
\mathbb{H}=\{x+i y: x \in \mathbb{R}, y>0\} \subset \mathbb{C}
$$

be the upper half-plane and let $p_{t}^{\mathrm{H}}(\cdot, \cdot)$ denote the transition probability densities of Brownian motion $\left(B_{t}^{\mathbb{H}}\right)_{t \geq 0}$ killed off the domain $\mathbb{H}$ as defined in the lectures.
(i) Show that for every $z, w \in \mathbb{C}$

$$
p_{t}^{\mathbb{H}}(z, w)=p_{t}(z, w)-p_{t}(z, \bar{w}) .
$$

Hint: Write $\left(B_{t}\right)$ as a sum of two independent one-dimensional Brownian motions and use the reflection principle for the imaginary part.
(ii) Using part (i), deduce that for every $z, w \in \mathbb{C}$ with $z \neq w$

$$
G_{0}^{\mathbb{H}}(z, w)=\log \left|\frac{z-\bar{w}}{z-w}\right| .
$$

(iii) Show that $G_{0}^{\mathbb{H}}(z, \cdot)$ is harmonic in $\mathbb{D} \backslash\{z\}$ by proving that the function $w \mapsto \log |z-w|$ is harmonic in $\mathbb{C} \backslash\{z\}$.

