Gaussian Free Field and Liouville Quantum Gravity

Exercise Sheet 3 Due: Monday, 10.05.2020

Exercise 1 (Reflection Principle) (5+1 Punkte)

Let $(B_t)_{t\geq 0}$ be a one-dimensional Brownian motion started in 0.

(i) For $t \ge 0$ and a > 0, use the strong Markov property to compute

$$\mathbb{P}\Big[\sup_{0\leq s\leq t} B_s \geq a\Big] = 2\,\mathbb{P}[B_t\geq a] = \frac{\sqrt{2}}{\sqrt{\pi t}}\int_a^\infty \exp\left(-\frac{y^2}{2t}\right)\mathrm{d}y$$

(ii) Deduce a similar bound for $\mathbb{P}\left[\sup_{0 \le s \le t} |B_s| \ge a\right]$ in terms of \mathbb{P}^{B_t} .

Exercise 2 (6 Punkte)

Let $p_t(\cdot, \cdot)$ denote the transition probability function of two-dimensional Brownian motion. Show that, as $z \to w, z \neq w$

$$\pi \int_0^1 p_t(z, w) \, \mathrm{d}t = -\log(|z - w|) + O(1).$$

Exercise 3 (Complex Analysis) (1+3+4 Punkte)

(i) Let $z \in \mathbb{C}$ with |z| = 1. Simplify the expression

$$\Big|\frac{z-w}{1-\overline{z}w}\Big|.$$

(ii) Is the function

$$f: \mathbb{C} \longrightarrow \mathbb{C}, \ f(x, y) \coloneqq \left(xe^x \cos(y) - e^x y \sin(y)\right) + i\left(e^x y \cos(y) + xe^x \sin(y)\right)$$

holomorphic?

Hint: You may use that f is holomorphic, if its partial derivatives exist, are continuous and satisfy the Cauchy-Riemann equations.

- (iii) Let $\Omega \subseteq \mathbb{C}$ be open and connected and let $u: \Omega \longrightarrow \mathbb{R}$ be a function. A function $v: \Omega \longrightarrow \mathbb{R}$ is called a *harmonic conjugate* of u, if the complex function u + iv is holomorphic.
 - (a) Show that for any two harmonic conjugates v_1, v_2 of u, the function $v_1 v_2$ is constant.

Hint: You may use the Cauchy-Riemann equations.

(b) Consider $\Omega = \mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Show that every harmonic function $u \in C^2(\mathbb{D})$ admits a harmonic conjugate.

Hint: You may try to define the function

$$v(x,y) \coloneqq \int_0^y \partial_1 u(0,t) \, \mathrm{d}t - \int_0^x \partial_2 u(t,y) \, \mathrm{d}t,$$

where ∂_1 , respectively ∂_2 , denotes the partial derivative with respect to the first, respectively second, coordinate.