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1 Informal Introduction

This chapter gives a preliminary introduction to financial markets and its ingredients.

1.1 Financial securities

On financial markets so called financial securities are traded. These are for example

- stocks ( VW, Telekom, Apple, Google, Tesla, etc. )

- bonds ( government bonds, corporate bonds, etc. )

- foreign currencies ( Dollar, Euro, British Pound, etc.)

- commodities ( oil, electricity, noble metals like gold, silver etc. , agricultural
commodities etc. )

Based on these assets further financial contracts can be derived. Examples of these
derivatives are

- Options

- Swaps, Floating Rate Note (FRN), Swaptions, Caps, Floors

- forwards, futures

Market places where these assets are traded are so called spot markets and futures
markets. Examples are

- Exchanges ( Stock Exchange, Currency Exchange, Commodities Exchange )

- futures exchange ( German Futures Exchange, Chicago Board of Trade, etc. )

- derivatives exchange ( German Futures and Derivatives Exchange )

The financial securities traded on these market places are

- normalised contracts. These are standardised securities that allow an efficient and
very cheap trading.

- OTC contracts. These are tailor-made and highly specific.
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1.1.1 Options

The so called plain vanilla options are puts and calls. These are simple derivatives on
an underlying and can be explained in the following. Ingredients are

- the running time T , also called maturity,

- the strike K,

- an underlying denoted by S,

1. The call gives its holder the right to buy the underlying at the initially predeter-
mined strike price K at maturity T .

2. The put gives its holder the right to sell the underlying at the initially predeter-
mined strike K at maturity T .

If the price S(T ) at maturity of the underlying exceeds K, then the call holder can use
his option to buy the underling at K and sell it immediately at S(T ). He would achieve
a payoff

C(T ) = (S(T )−K)+.

If S(T ) < K then the holder of a put can buy the underlying at a price S(T ) and uses
his put-option to sell it immediately at a price S(T ). Hence he receives at T a payoff

P (T ) = (K − S(T ))+.

Mathematically speaking, put and call can be seen as derivatives that achieve a payoff

C(T ) = (S(T )−K)+ , resp. , P (T ) = (K − S(T ))+.

1.1.2 long, short

A trader initially buys and sells financial assets and builds a portfolio. During trading
time he changes his positions and balances his portfolio. He takes a

- long position in an asset, if he owns the asset.

- short position in an asset, if he has sold the asset.

For example

- A long call position pays the call value at buying time and receives the payoff at
maturity.

- A short call position receives the value of the call contract when selling and has to
deliver the payoff at maturity.
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- A long stock position pays the stock value at buying time, gets all benefits like
dividends during the holding time and receives the changed stock value at selling
time.

- A short stock position receives the stock value at selling time and has to pay the
changed stock value in order to neutralise his position at a future time point.

The different effects these positions cause can be visualised by payoff resp. profit dia-
grams. These are plots at a specific time point, usually maturity, in dependence of the
underlying value. Examples are

a) long call with strike K and maturity T . Payoff (S(T )−K)+

ST0 K

Payoff

Costs: Initial call price: c > 0
Profit: (ST −K)+ − c

ST
0

K

-c

Profit

b) long put with strike K and maturity T , payoff (K − S(T ))+
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ST0 K

Payoff

Costs: Initial put price: p > 0
Profit: (ST −K)+ − p

ST
0

K

-p

Profit

c) short call with strike K and maturity T

Payoff: −(ST −K)+

Profit: c− (ST −K)+

ST
0

K

Payoff

ST
0

K

c
Profit
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d) short put with strike K and maturity T

Payoff: −(K − ST )+

Profit: p− (K − ST )+

ST
0

K

Payoff

ST
0

K

p
Profit

1.1.3 Zero Coupon Bond

A zero coupon bond denotes a financial security that delivers a payoff of 1 money unit
(Euro) at maturity T . The holder of a zero coupon bond receives no coupons during the
running time. This contract can be seen as loan. The holder pays initially the bond price
B(0, T ) < 1 to the seller and receives at maturity the loan sum 1 Euro. The difference
1−B(0, T ) can be seen as coupon resp. interest which is paid at maturity. Zero coupon
bonds do not have a great volume as traded bonds in bond markets. Its importance
relies in the fact that their prices can be computed from prices of traded bonds. They
are easier to understand and give easier information on the state of the bond market
resp. its evolution. A zero-coupon bond with maturity T is also called T -bond shortly.
Its price-process will be denoted by (B(t, T ))t≤T . The initial-state of the bond market
can be expressed by the so called term-structure of bond prices. This is the bond price
as function of maturity (B(0, T ))T>0. The evolution of the bond-market with time can
be modelled by the change of the term-structure of bond prices with time.

1.2 Arbitrage

An arbitrage denotes an opportunity for a trader to achieve a risk-less profit. For
example, this means that he may receive a positive payoff without any initial capital.
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Thus he is able to get a free lunch which stands as an alternative expression for an
arbitrage opportunity. The main assumption is:

Financial markets are free of arbitrage.

The whole pricing of financial securities rely on this basic assumption and this is justified
in efficient and transparent markets where no barriers on trading exist. If an arbitrage
occurs, for example due to miss-pricing of a financial security, the efficient price-building
in markets would cancel this miss-pricing in very short time.
Based on this no-arbitrage principle several conclusions can be drawn which are of great
importance for pricing derivatives.

Theorem 1.2.1 (Replication Principle). We consider a financial market with dividend-
free assets. If two self-financing trading strategies with value processes V and W coincide
at a time point T they coincide at each time point t ∈ [0, T ] in between. Hence

V (T ) = W (T ) =⇒ V (t) = W (t) for all 0 ≤ t ≤ T.

Note that the replication principle is no mathematical theorem, since we have not es-
tablished a mathematical model so far and cannot state mathematical claims. But we
can give arguments why the replication-principle can be deduced from the no-arbitrage
principle.

Proof. We would like to show that the initial prices V (0) and W (0) of both strategies
coincide and assume first that V (0) > W (0).
But then we can

- initially sell V buy W ,

- follow the trade of W and trade opposite to V in (0, T ),

- take the payoff W (T ) of W at the end to neutralise the obligation of V (T ) at the
end.

This strategy would provide an arbitrage opportunity, the risk-less profit V (0) −W (0)
from the beginning.
In the case W (0) > V (0) the same arguments work the other way round.

1.2.1 Put-Call Parity

As application of the replication principle we will show that there is a correspondence
between put and call price of an underlying with the same maturity and strike. This is
the so called put-call parity.

Theorem 1.2.2 (Put-Call Parity). We consider a put and a call with same strike K
and maturity T on a dividend-free underlying. Let S0, c, p denote the inital price of the
underling, call and put. Then

p+ S0 = c+KB(0, T ). (1.1)
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Proof. To show the assertion we consider two trading strategies.

(i) long in put and long in the underlying,

(ii) long in call and K× long in a T -Bond.

Both strategies get a payoff max{S(T ), K} at T due to

(K − S(T ))+ + S(T ) = max{S(T ), K} = (S(T )−K)+ +K.

The replication principle implies that their initial prices coincide. But this is the claimed
equation (1.1) above.

The first strategy above underlines the importance of the put-option in risk management.
If you buy a stock you face the risk of a downside stock movement. To cover this risk
you can buy in addition a put with strike K. Then your payoff will exceed at least the
strike K. A put can be seen as an insurance contract protecting against downside stock
movements.

1.2.2 Chooser-Option

A further application of the replication principle can be given in order to express the
price of a so called chooser-option by a suitable call and put price.
We consider a financial market with

- deterministic, constant interest rate r > 0. This means that the price of a T bond
is given by B(t, T ) = e−r(T−t),

- an underlying S,

- puts and calls of all maturities and strikes.

A chooser-option gives its holder the right to choose at T1 < T a put or a call with
strike K and maturity T . Let ch(T1, T,K) , c(S0, T,K), p(S0, T1, Ke

−r(T−T1)) denote
the initial price of the chooser-option, the call with maturity T , strike K and the put
with maturity T1 and strike Ke−r(T−T1). Then

Proposition 1.2.3.

ch(T1, T,K) = c(S0, T,K) + p(S0, T1, Ke
−r(T−T1))

Proof. The holder of a chooser-option will take a call in T1 if its more valuable than the
corresponding put. If we denote by c(S(T1), T,K) and p(S(T1), T,K) their prices in T1,
then the chooser-option can be seen as a derivative with payoff

C = (S(T )−K)+
1{c(S(T1),T,K)≥p(S(T1),T,K)} + (K − S(T )+

1{p(S(T1),T,K)>c(S(T1),T,K)}.
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The question is how to replicate this payoff. The key observation is that we can refor-
mulate the choose condition by applying the put-call parity. It holds

c(S(T1), T,K) +Ke−r(T−T1) = p(S(T1), T,K) + S(T1)

and therefore

c(S(T1), T,K) ≥ p(S(T1), T,K)⇐⇒ S(T1) ≥ Ke−r(T−T1).

This leads to the replicating strategy:

1. At the beginning:

- Take a long position in a call with strike K and maturity T

- Take a long position in a put with strike Ke−r(T−T1) and maturity T1

2. at T1, if S(T1) < Ke−r(T−T1):

- exercise the put and receive Ke−r(T−T1) − S(T1)

- sell the call and receive c(S(T1), K, T )

- use the received money to buy a put option with strike K and maturity T .

3. at T1, if S(T1) ≥ Ke−r(T−T1): hold the call until T .

This strategy is self-financing and provides the payoff of the chooser option at T . The
replication principle implies the above assertion.
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2 The Black-Scholes Model

Black and Scholes developed in 1971 the approach of pricing derivatives by computing
replicating trading strategies. They were able to derive pricing formulas for plain-vanilla
options like call and put, in particular the famous Black-Scholes call-price formula. The
benefits of the model are the following:

- simple model

- reasonable economic background

- analytically tractable

This will be explained in this chapter.

2.1 Wiener-Process

The Wiener-process, also called Brownian-motion, is one of the most important stochas-
tic processes in continuous time with continuous paths. It is the starting point for
the development of the stochastic integration theory and many sophisticated models in
physics and economics use this process as basic tool. A Wiener-process can be seen
as the continuous counterpart of a centered random-Walk and can be constructed as
limiting process of suitable normalised centered random-walks.
To be more precise let (Yk)k∈N be a sequence of identically distributed independent
random variables with

P(Yk = 1) =
1

2
= P(Yk = −1)

0
1 2 3

PutW (1)(t) :=
∑t

k=1 Yk.
By linear interpolation we
obtain a continuous time
process with continuous
paths (W (1)(t))t≥0.
Enlarge the frequency at
factor n and compress the
height at

√
n

Define W (n)
(
k
n

)
= 1√

n

∑k
j=1 Yj.
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n

Again linear interpolation leads to a continuous time stochastic process
(
W (n)(t)

)
t≥0

.

This sequence W (n) converges to a limiting process (W (t))t≥0, a Wiener-process.
A random-walk is a discrete time stochastic process with independent and stationary
increments. This property carries over to the limiting process W and can be used to
give a precise definition of a Wiener-process.

Definition 2.1.1. Let (Ω,F ,P) be a probability space and (Ft)t≥0 a filtration. An
adapted stochastic-process W = (W (t))t≥0 is called standard Wiener-process if it ful-
fills the following properties

1. W (0) = 0 P-a.s.

2. W (t+ s)−W (t) is independent of Ft for all s, t ≥ 0

3. W (t+ s)−W (t) has the same law as W (s) for all s, t ≥ 0

4. W (t) is N(0, t) distributed for all t > 0

5. The paths of W are P-a.s. continuous.

Usually we omit the adjective standard and speak of a Wiener-process when a standard
Wiener-process is meant.
Martingales play an essential role in many fields of probability theory, in particular in
finance and stochastic analysis.

Definition 2.1.2. An adapted process M is called an (Ft)t≥0 martingale if the following
holds

1. E|M(t)| <∞ for all t ≥ 0.

2. E(M(t+ s)|Ft) = M(t) for all t, s ≥ 0.

The independence of the increments can be used to easily identify basic martingales
which will play a role in the following.

Proposition 2.1.3. Let W be a Wiener-process w.r.t. a filtration (Ft)t≥0. Then the
following process are martingales.

1. W (t)t≥0
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2. (W (t)2 − t)t≥0

3. (exp(θW (t)− 1
2
θ2t))t≥0 for each θ ∈ R.

The proof of this assertion is very easy and can be done by carefully exploiting the
independence of increments property. The last martingale is an example of a so called
exponential martingale and can be used to define further probability measures. The
therefore needed tool is a generalisation of Bayes-Theorem.

Theorem 2.1.4 (Change of measure). Let (Ω,F ,P) be a probability space with filtration
(Ft)t≥0. Let L be a positive martingale w.r.t. P and P̄ a further probability measure on
(Ω,F ,P) such that

dP̄
dP
|Ft = L(t) for all t ≥ 0.

Then

(i) The conditional expectation w.r.t. P̄ can be calculated by computing the conditional
expectation w.r.t. P. More precisely, if Y is measurable w.r.t. Ft and integrable
w.r.t. P̄, then for s < t

Ē(Y |Fs) =
E(Y L(t)|Fs)

L(s)
.

(ii) M is a P̄-martingale if and only if ML is a P-martingale.

(iii) Let R be a positive P-martingale with ER(t) = 1 for all t ≥ 0. Then a probability
measure QT can be defined on each FT by

dQT

dP
|Ft = R(t) for all t ≤ T.

Proof. (i): We use the definition of conditional expectation directly. For A ∈ Fs we
get ∫

A

Y dP̄ =

∫
A

Y L(t)dP =

∫
A

E(Y L(t)|Fs)dP =

∫
A

E(Y L(t)|Fs)
L(s)

dP̄.

This yields the first assertion.

ad (ii): This follows from (i) due to

(Mt) is a P-martingale ⇔ E(Mt|Fs) = Ms for all s ≤ t

⇔ E(MtLt|Fs)
1

Ls
= Ms for all s ≤ t

⇔ E(MtLt|Fs) = MsLs for all s ≤ t
⇔ ML is a P-martingale
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ad (iii) Due to ER(T ) = 1 an equivalent probability measure on (Ω,FT ) is defined by

QT (A) =

∫
A

R(T )dP for all A ∈ FT .

Due to
dQT

dP
|Ft = E(R(T )|Ft) = R(t)

for all t < T the assertion follows.

The preceding theorem can be used to state a first simple version of Girsanov’s theorem

Theorem 2.1.5 (Girsanov). Let (Ω,F ,P) be a probability space with filtration(Ft)t≥0

and W a Wiener-process w.r.t. P. Let Pϑ be a further probability measure on (Ω,F)
such that

dPϑ
dP
|Ft = exp(ϑW (t)− 1

2
θ2t) = L(t) for all t ≥ 0.

Then
W̄ (t) = W (t)− ϑt, t ≥ 0

defines a Wiener-process w.r.t. Pθ.

Proof. One has to verify that W̄ satisfies the defining properties of a Wiener-process
w.r.t. Pϑ. Clearly W̄ starts at 0 and has continuous paths. To show that the increments
are independent we consider g : R −→ R measurable and bounded. Then

Eϑ(g(W (t)−W (s))|Fs) = E(g(W (t)−W (s))Lt|Fs)
1

Ls

with Lt = exp(ϑW (t)− 1

2
ϑ2t)

= E(g(W (t)−W (s)− ϑ(t− s))Lt
Ls
|Fs)

= E(g(W (t)−W (s)− ϑ(t− s)) exp(ϑ(W (t)−W (s))− 1

2
ϑ2(t− s))|Fs)

= Eg(W (t)−W (s)− ϑ(t− s)) exp(ϑ(W (t)−W (s))− 1

2
ϑ2(t− s))

= Eg(W (t− s)− ϑ(t− s)) exp(ϑW (t− s)− 1

2
ϑ2(t− s))

= Eϑg(W (t− s))

Hence, W̄ (t) − W̄ (s) is independent of Fs and equally distributed as W̄ (t − s) with a
N(0, t− s)-distribution due to
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Eϑg(W (t)) = Eg(W (t)− ϑt) exp(ϑW (t)− 1

2
ϑ2t)

= Eg(W (t)− ϑt) exp(ϑ(W (t)− ϑt) +
1

2
ϑ2t)

= e
1
2
ϑ2t

∫
g(x)eϑxN(−ϑt, t)(dx)

= e
1
2
ϑ2t 1√

2πt

∫
g(x)eϑx exp(− 1

2t
(x+ ϑt)2)dx

=
1√
2πt

∫
g(x)e−

1
2t
x2

dx

=

∫
g(x)N(0, t)(dx)

The Wiener-process W fulfills a further property which is of interest in finance for pricing
barrier options. This is the so called reflection principle.
Let τ be a stopping time with P(τ < ∞) = 1 . Then the reflected process w.r.t. τ is
defined by

Ŵ (t) =

{
W (t) for t ≤ τ

W (τ)− (W (t)−W (τ)) for t ≥ τ
(2.1)

The reflection principle states that Ŵ is also a Wiener-process. This can be proven by
exploiting the strong Markov property of the Wiener-process. A useful application is
the computation of the joint distribution of W (T ) and M(T ) = supt≤T W (s).

Theorem 2.1.6. Let W denote a Wiener-process and M its running maximum. Then
for x ∈ R and z ≥ x it holds

P(W (T ) ≤ x,M(T ) ≤ z) = Φ(
x√
T

)− Φ(
x− 2z√

T
)

with Φ denoting the distribution function of the N(0, 1)-distribution.
For the process X defined by X(t) = W (t) + at it follows

P(X(T ) ≤ x, sup
t≤T

X(t) ≤ z) = Φ(
x− aT√

T
)− e2azΦ(

x− 2z − aT√
T

).

Proof. For x ∈ R and z > x we consider the first time that W reaches z, i.e.

τ = inf{t ≥ 0 : W (t) = z}

and denote by Ŵ the reflected process w.r.t. τ . Then Ŵ is a Wiener-process and

P(W (T ) ≤ x,M(T ) ≥ z) = P(Ŵ (T ) ≥ z + z − x,M(T ) ≥ z)

17



= P(Ŵ (T ) ≥ 2z − x, sup
t≤T

Ŵ (t) ≥ z) = P(Ŵ (T ) ≥ 2z − x)

= Φ(
x− 2z√

T
)

But this implies

P(W (T ) ≤ x,M(T ) ≤ z) = P(W (T ) ≤ x)− P(W (T ) ≤ x,M(T ) ≥ z)

= Φ(
x√
T

)− Φ(
x− 2z√

T
).

which yields the first formula.
To prove the second formula we change the measure by applying Girsanov’s theorem
and introducing

dPa
dP
|Ft = exp(aW (t)− 1

2
a2t) for all t ≤ T.

Then W has the same distribution w.r.t. Pa as X w.r.t. P. Hence

P(X(T ) ≤ x, sup
t≤T

X(t) ≤ z) = Pa(W (T ) ≤ x,M(T ) ≤ z)

=

∫
{W (T )≤x,M(T )≤z}

exp(aW (T )− 1

2
a2T )dP

= Eg(W (T ))1{M(T )≤z}

with g(y) = exp(ay − 1
2
a2T )1(−∞,x](y).

Due to the first formula the condition distribution function fulfills

P(W (T ) ≤ x|M(T ) ≤ z) =

{
1 if x ≥ z
Φ( x√

T
)−Φ(x−2z√

T
)

P(M(T )≤z) if x ≤ z.
(2.2)

Taking derivative w.r.t. x yields the conditional density

h(y) =
1√

TP(M(T ) ≤ z)
(ϕ(

y√
T

)− ϕ(
y − 2z√

T
))

for all y ≤ z. This implies

Eg(W (T ))1{M(T )≤z} = P(M(T ) ≤ z)

∫ ∞
−∞

g(y)h(y)dy

=

∫ x

−∞

1√
T

(ϕ(
y√
T

)− ϕ(
y − 2z√

T
)) exp(ay − 1

2
a2T )dy

= Φ(
x− aT√

T
)− e2azΦ(

x− 2z − aT√
T

),

since ∫ x

−∞

1√
T
ϕ(

y√
T

) exp(ay − 1

2
a2T )dy
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= E1{W (T )≤x} exp(aW (T )− 1

2
a2T )

= Pa(W (T ) ≤ x) = Pa(W (T )− aT ≤ x− aT ) = Φ(
x− aT√

T
)

and ∫ x

−∞

1√
T
ϕ(
y − 2z√

T
) exp(ay − 1

2
a2T )dy

= E1{W (T )+2z≤x} exp(a(W (T ) + 2z)− 1

2
a2T )

= exp(2az)Pa(W (T ) + 2z ≤ x)

= exp(2az)Φ(
x− 2z − aT√

T
)

2.2 Pricing in the Black-Scholes Model

The Black-Scholes model is a continuous time model for a financial market that consists
of

- a money market account with price process β(t) = ert for all t ≥ 0 and

- a risky asset with price-process

S(t) = S(0)eµt exp(σW (t)− 1

2
σ2t).

The process W denotes a Wiener-process and µ, σ, r can be seen as parameters that fix
the distribution.

- The number µ ∈ R denotes the so called rate of return and affects the expected
evolution of the risky asset, since

ES(t) = eµt for all t ≥ 0.

- The value σ > 0 affects the fluctuation of the risky asset due to

Var log(
S(t)

S(0)
) = VarσW (t) = σ2t

and is often called volatility.

- The interest rate r ∈ R represents the evolution of a risk-free money market
account.
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To take into account the time-value of money the so called discounted price-process is
introduced by

S∗(t) =
S(t)

β(t)
= S(0)e(µ−r)t exp(σW (t)− 1

2
σ2t) for all t ≥ 0.

We observe that only for µ = r the discounted price-process is a martingale. In this case
the risky asset has the same expected return as the money market account and we say
that the market is risk-neutral. The question arises whether starting from µ a change of
the stand-point, a change of measure, can be done such that the market is risk-neutral.
This consideration is incorporated in the term equivalent martingale measure.

Definition 2.2.1. We consider a Black-Scholes model along the running-time T . An
equivalent martingale measure P∗ is a probability measure on (Ω,FT ) with the following
properties

1. P and P∗ are equivalent probability measures on (Ω,FT ).

2. The discounted price process S∗(t) = S(t)
β(t)

, 0 ≤ t ≤ T is a martingale w.r.t. P∗.

An application of Girsanov’s theorem provides the existence of an equivalent martingale
measure.

Theorem 2.2.2. In a Black-Scholes model with running-time T > 0 an equivalent
martingale measure exists.

Proof. We know form 2.1.5 that an equivalent probability measure P∗ can be defined by

dP∗

dP
|Ft = L(t) = exp(ϑW (t)− 1

2
ϑ2t) for all t ≤ T.

The parameter ϑ has to be chosen such that the discounted price process becomes a
martingale. Since W ∗(t) = W (t)− ϑt is a Wiener-process w.r.t. P∗ we obtain

S∗(t) = S(0)e(µ−r)t exp(σW (t)− 1

2
σ2t)

= S(0)e(µ−r)t exp(σ(W ∗(t) + ϑt)− 1

2
σ2t)

= S(0)e(µ−r+σϑ)t exp(σ(W ∗(t)− 1

2
σ2t)

Thus S∗ is a martingale if and only if

µ− r + σϑ = 0 ⇐⇒ ϑ = −µ− r
σ

and the theorem is proven.
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The existence of an equivalent martingale measure is an important property of the Black-
Scholes model. It opens a probabilistic way to pricing derivatives. As we will see later
in the course all financial derivatives with an integrable payoff C at T can be replicated
and the initial value of each replicating strategy coincides with the expected discounted
payoff under the equivalent martingale measure. Therefore the following definition is
justified.

Definition 2.2.3. Let P∗ be the equivalent martingale measure in the Black-Scholes
model and C be an FT -measurable payoff at T with E∗ C

β(T )
< ∞. Then the initial

arbitrage-free price of C is defined by

p0(C) = E∗
C

β(T )
= E∗C∗.

Later we will clarify why this definition is reasonable. Simply speaking, pricing of a
derivative with payoff C at T means

- determine a reasonable equivalent martingale measure P∗

- compute E∗C∗

This pricing mechanism is reasonable in more or less all financial market models and
mainly used in practise.
Before we give some applications we note that S∗ is a positive martingale under P∗. Thus
a further equivalent change of measure can be done by defining a probability measure
P∗σ via

dP∗σ
dP∗
|Ft =

S∗(t)

S(0)
= exp(σW ∗(t)− 1

2
σ2(t))

for all t ≤ T . Girsanov provides that

W ∗∗(t) = W ∗(t)− σt

is a Wiener-process w.r.t. P∗σ.
To give a full picture we have the following evolution of the stock price process under
the different measure

- The subjective probability measure P:

S(t) = S(0)eµt exp(σW (t)− 1

2
σ2t)

- The equivalent martingale measure P∗:

S(t) = S(0)ert exp(σW ∗(t)− 1

2
σ2t)

- The further transformed measure P∗σ:

S(t) = S(0)e(r+σ2)t exp(σW ∗∗(t)− 1

2
σ2t)
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This means that S is a geometric Wiener-process with

- trend µ and volatility σ w.r.t P,

- trend r and volatility σ w.r.t. P∗,

- trend r + σ2 and volatility σ w.r.t. P∗σ.

This can be exploited by deriving the Black-Scholes formula.

Theorem 2.2.4. We consider a call with maturity T and strike K in a Black-Scholes
model with volatility σ and initial stock price S(0). Then the initial arbitrage-free price
of the call is given by

c(S(0), T, σ,K) = S(0)Φ(h1(S(0), T )−Ke−rTΦ(h2(S(0), T ) (2.3)

with

h1(S0, T ) =
log
(
S(0)
K

)
+ (r + 1

2
σ2)T

σ
√
T

h2(S0, T ) =
log
(
S(0)
K

)
+ (r − 1

2
σ2)T

σ
√
T

.

Proof. In the first step we compute

E∗e−rT (S(T )−K)+ = E?e−rTST1{ST>K} − E?e−rTK1{St>K}

= S(0)E?
S?T
S(0)

1{ST>K} − e−rTKE?1{ST>K}

= S(0)P?σ(ST > K)︸ ︷︷ ︸
(1)

−e−rTK P?(ST > K)︸ ︷︷ ︸
(2)

To compute the probabilities we remind you on the representation of S under P∗ and
P∗σ. It follows

P?σ(ST > K) = P?σ
(

log

(
ST
S(0)

)
> log

(
K

S(0)

))
= P?σ

(
σW ??

T −
1

2
σ2T + (r + σ2)T > log

(
K

S(0)
S

))

= P?σ

 W ??
T√
T︸︷︷︸

∼N(0,1)

>
log
(

K
S(0)

)
+ 1

2
σ2T − (r + σ2)T

σ
√
T


= Φ

 log
(
S(0)
K

)
+ (r + 1

2
σ2)T

σ
√
T

 .
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and

P?(ST > K) = P?
(

log

(
ST
S(0)

)
> log

(
K

S(0)

))
= P?

(
σW ?

T −
1

2
σ2T + rT > log

(
K

S(0)

))

= P?

 W ?
T√
T︸︷︷︸

∼N(0,1)

>
log
(

K
S(0)

)
+ 1

2
σ2T − rT

σ
√
T


= Φ

 log
(
S(0)
K

)
+ (r − 1

2
σ2)T

σ
√
T

 .

Hence (2.3) follows.

Note that due to the put-call parity the price of a put can be easily calculated too. Put
and call are examples of so called path independent options since the payoff at maturity
is only a function of the terminal stock-price. More delicate is the problem of finding
pricing formulas for path dependent options. This can be done for so called one-sided
barrier options.

Theorem 2.2.5. A down and out call with maturity T , strike K and barrier B < S(0)
is an option with payoff (S(T ) − K)+ at maturity T if the barrier B is not hit during
the running-time. This corresponds to a derivative with payoff

C = (S(T )−K)∗1{inft≤T S(t)>B}.

The initial price of a down and out call is given by

p0(C) = c(S0, T,K)− (
S0

B
)

2b
σ c(S0, T,K

S2
0

B2
) (2.4)

with b = − r
σ
− 1

2
σ .

This means that the price of a down and out call can be expressed by call prices w.r.t.
different strikes.

Proof. Nearly the same calculations as in the ordinary call can be done here.

p0(C) = E∗e−rT (S(T )−K)+1{inft≤T S(t)>B}

= E∗e−rTS(T )1{S(T )>K,inft≤T S(t)>B} −Ke−rTP∗(S(T ) > K, inf
t≤T

S(t) > B)

= S0P∗σ(S(T ) > K, inf
t≤T

S(t) > B)−Ke−rTP∗(S(T ) > K, inf
t≤T

S(t) > B),
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Further elementary calculations yield

P∗(S(T ) > K, inf
t≤T

S(t) > B) = P∗(− log
S(T )

S0

< log
S0

K
,− inf

t≤T
log

S(t)

S0

< log
S0

B
)

= P∗(X(T ) <
1

σ
log

S0

K
, sup
t≤T

X(t) <
1

σ
log

S0

B
)

with

X(t) = − 1

σ
log

S(t)

S0

= −W ∗(t) + (
1

2
σ − r

σ
)t.

The process X is a Wiener-process with drift a = 1
2
σ − r

σ
and therefore the probability

is given by

P(X(T ) ≤ x, sup
t≤T

X(t) ≤ z) = Φ(
x− aT√

T
)− e2azΦ(

x− 2z − aT√
T

).

due to 2.1.6.
W.r.t. P∗σ the processX is a Wiener-process with drift b = − r

σ
− 1

2
σ. Hence an application

of 2.1.6 provides

P(X(T ) ≤ x, sup
t≤T

X(t) ≤ z) = Φ(
x− bT√

T
)− e2bzΦ(

x− 2z − bT√
T

).

Due to 2a
σ

= 2b
σ

+ 2 and collecting all terms (2.4) follows.

Example 2.2.6. As application of our pricing framework in the Black-Scholes model we
consider an equity-linked bond and as a specific example an equity-linked bond on the
Tesla stock. Ingredients are

• Security Identification Number: ISIN DE000HVB50E1

• Underlying: Tesla A1CX3T stock traded at Nasdag in Dollar

• Nominal: 1000 Euro

• reference price: price of the underlying at 22.01.2021 = 846, 64 USD

• strike: 677.312 USD = 80% of the reference price

• interest rate: 16%

• running time: 1 year

• exchange-ratio: 1 Euro = 1.217 USD at 21.01.2021

• subscription ratio: Nominal * exchange-ratio/strike = 1000 ∗ 1.217/677.312 =
1.7968
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Figure 2.1: payoff equity-linked bond Tesla at maturity T
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Pay-off:
Denote by N the Nominal, R the interest-rate, K the strike, T the maturity, w the
exchange-ratio Euro to USD and S the price-process of the Tesla stock in USD.
The holder of the equity-linked bond receives at maturity the coupon

C = N ·R · T Euro = N ·R · T · w Dollar

in any case.
If the Tesla stock price is at maturity above the strike, he receives the nominal. Other-
wise Tesla-stocks will be delivered corresponding to the subscription ratio 1.7968. This
corresponds to a pay-off in USD at maturity

A =

{
Nw + Cw , S(T ) > K
Nw
K
S(T ) + Cw , S(T ) ≤ K

.

In the case S(T ) ≤ K there is a loss in comparison with the nominal

(Nw − Nw

K
S(T )) =

Nw

K
(K − S(T ))

in comparison with the nominal. By buying of Nw
K

put-options according to the strike
K one can eliminate the down-side risk and the portfolio of

• equity-linked bond

• Nw
K

put-options on the Tesla stock with strike K and maturity T

replicate the risk-free pay-off Nw + Cw Dollar at T . The replication-principle implies
that the initial USD price of the equity-linked bond can be expressed by

p0(A) = (N + C)wB(0, T )− Nw

K
p(S(0), T,K).

By division with the exchange-ratio w one would receive an initial price in Euro. We
are able to calculate the put-price in a Black-Scholes Model with the Black-Scholes call
formula and applying the put-call parity. Therefore we are able to compute the today’s
model-price of the equity-linked bond, if the parameters in the BS-model are fixed. As
values of the volatility σ for Tesla and the interest-rate r of a money-market account it
is reasonable to take

r = 0, 043% and σ = 60%.

Then we end up at a price
949, 123 Euro.
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3 Preliminaries from Stochastic
Analysis

In this chapter we will give a short overview of results from stochastic analysis that are
used in mathematical finance. The following books can be recommended for a further
reading:

1. Rogers, Williams [1]

2. Karatzas, Shreve [2]

3. Revuz, Yor [3]

The presented contents can be found with more detailed proofs in the lecture notes (in
German) to the course Stochastic Analysis.

3.1 Martingales

We start by repeating some basic facts on martingales.

Setup

We consider a probability space (Ω,F ,P) and want to confirm some basic definitions.

- a filtration F = (Ft)t≥0 is a family of increasing sub σ-fields, i.e. Fs ⊂ Ft ⊂ F for

s ≤ t. Let F∞ := σ
(⋃

t≥0Ft
)

denote all the information gained from the whole
filtration.

- a stochastic process X is a family (Xt)t≥0 of random variables.

- the process X is adapted w.r.t. F, if each X(t) is measurable w.r.t. Ft.

- the canonical filtration of X is defined by FXt := σ (Xs : s ≤ t) for all t ≥ 0. It is
the smallest filtration that covers the information obtained by observing X.

- We say that X has continuous paths if

t→ Xt(ω)

is a.s. continuous. The process X is right continuous resp. left continuous if its
paths are a.s. right resp. left continuous.
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- We say that X is a cadlag process if its paths are a.s. right continuous with existing
limits from the left.

- A subset A ⊂ Ω is called negligible, if there is a nullset N such that A ⊂ N

- We say that a path-property E is a.s. fulfilled if

{ω ∈ Ω : ω does not fulfill E }

is negligible.

For processes in continuous time there exist two equivalence terms.

Definition 3.1.1. Two stochastic processes X and Y are called indistinguishable if

{ω : ∃t ≥ 0 : Xt(ω) 6= Yt(ω)} =
⋃
t≥0

{ω : Xt(ω) 6= Yt(ω)}

is negligible.

If the paths of two processes coincide almost surely they are undistinguishable. A weaker
property is the following.

Definition 3.1.2. Two stochastic processes X and Y are modifications if

{ω : Xt(ω) 6= Yt(ω)}

is negligible for all t ≥ 0.

It two process are modifications they coincide on countably infinite time values a.s.. If
they are indistinguishable they coincide for all time points a.s.
The following remark can be easily proven.

Remark 3.1.3. The following assertions hold:

(i) Are X and Y indistinguishable, they are modifications.

(ii) Are X and Y modifications and do they have right-continuous paths they are in-
distinguishable.

Definition 3.1.4. Some (Ft)t≥0 adapted process X is called martingale w.r.t. (Ft)t≥0,
if:

(i) E|Xt| <∞ for all t ≥ 0

(ii) E(Xt|Fs) = Xs for all 0 ≤ s ≤ t

respectively submartingale, if

(i) E|Xt| <∞ for all t ≥ 0

(ii) E(Xt|Fs) ≥ Xs for all 0 ≤ s ≤ t

and supermartingal, if
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(i) E|Xt| <∞ for all t ≥ 0

(ii) E(Xt|Fs) ≤ Xs for all 0 ≤ s ≤ t

Important examples for martingales are given by the Wiener-process W , the exponential
martingale (exp(ϑW (t)−1

2
ϑt))t≥0 and the compensated squared Wiener-process (W 2(t)−

t). One benefit of stochastic analysis is the fact that martingales can be easily defined
by stochastic integral processes.
At infinity three phenomena may occur.

Theorem 3.1.5 (Martingale convergence). Let (Xt)t≥0 be a right continuous sub-
martingale with

sup
t≥0

EX+
t <∞.

Then there exists some F∞-measurable random variable X∞ such that

Xt −→ X∞ P-a.s.

and
E|X∞| <∞

A proof can be found in [3].
Some corollaries can be drawn from the martingale convergence theorem.

Corollary 3.1.6. The following assertions hold.

(i) Each positive right continuous martingale converges.

(ii) For each ϑ ∈ R the process exp(ϑW (t)− 1
2
ϑ2t)

a.s.−→
t→∞

0.

(iii) Each Lp bounded martingale does converge

(iv) The Wiener-process W does not converge.

Proof. A positive martingale X is also a supermartingale and therefore −X a negative
submartingale which converges due to E(−Xt)

+ < ∞. The process exp(ϑW (t) − 1
2
ϑ2t)

converges since it is a positive martingale. The strong law of large numbers state for the
Wiener-process that

W (t)

t

a.s.−→
t→∞

0.

Hence

exp(ϑW (t)− 1

2
ϑ2t) = exp(t(

ϑW (t)

t
− 1

2
ϑ2)

a.s.−→
t→∞

0.

The process X is called Lp-bounded if supt≥0 E|X(t)|p < ∞. From this condition an
application of Hölders inequality implies supt≥0 E|X(t)| < ∞ and we have convergence
due to 3.1.5.
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The Wiener-process does not fulfill the assumptions on 3.1.5. Since every a ∈ R can be
reached by the Wiener-process a.s.

sup
t≥0

W (t) =∞ = − inf
t≥0

W (t).

Hence a.s. every path of W does not converge.

Besides a.s. convergence Lp convergence is of interest, in particular in L1. The martingale
convergence theorem only establishes a.s. convergence, a slight stronger condition must
be satisfied to ensure L1-convergence. This leads to the term uniformly integrability.

Definition 3.1.7. Let I be an index set and (X(t))t∈I be a family of real-valued random
variables. This family is called uniformly integrable if

sup
t∈I

E|Xt|1{|Xt|>a}
a→∞−→ 0.

A random variable Y is integrable iff E|Y |1{|Y |>a}
a→∞→ 0. Uniformly integrability means

that his convergence takes place uniformly in i ∈ I.
To check the definition can be tedious. The following proposition can be helpful.

Proposition 3.1.8. Let (X(t))t∈I be a family of real-valued random variables. Then the
following statements are equivalent..

(i) (X(t))t∈I is uniformly integrable,

(ii) The following conditions hold

a) supt∈I E|Xt| <∞,

b) ∀ε > 0∃δ > 0 : ∀A ∈ F : P(A) < δ =⇒ supt∈I E|Xt|1A < ε.

(iii) There exists some non-negative, increasing, convex function G : [0,∞) → [0,∞)
such that

lim
x→∞

G(x)

x
= +∞ and sup

t∈I
EG(|Xt|) <∞.

(iv) There exists some non-negative, increasing, function G : [0,∞)→ [0,∞) such that

lim
x→∞

G(x)

x
= +∞ and sup

t∈I
EG(|Xt|) <∞.

A proof can be found in the book of Klenke [4].
The proposition can be used to prove the following useful results.

Corollary 3.1.9. The following statements hold true

(i) Each finite family of integrable random variable is uniformly integrable.
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(ii) Let (X(t))t∈I and (X(t))t∈J uniformly integrable. Then (X(t))t∈I∪J is also uni-
formly integrable.

(iii) If there exists some integrable random variable Y such that |Xt| < Y for all t ∈ I,
then (X(t))t∈I is uniformly integrable.

(iv) From supt∈I E|Xt| <∞ the uniformly integrability can not be deduced in general.

(v) If supt∈I E|Xt|p <∞ for some p > 1, then (X(t))t∈I is uniformly integrable.

By applying the corollary we can deduce that each Lp bounded martingale with p > 1
is uniformly integrable. The L1 boundedness is not sufficient for L1 convergence and
uniform integrability.
The next important example has applications in stochastic analysis.

Example 3.1.10. Let (Ω,F ,P) be a probability space and I be a set of sub-σ-fields of
F . Then, the family (E(Y |G))G∈I is uniformly integrable if Y is integrable.

This means that w.r.t. Y ∈ L1 a uniformly integrable martingale can be defined by

X(t) = E(Y |Ft) for all t ≥ 0.

Since a uniformly integrable process that converges in probability also converges in L1 the
above defined martingale converges in L1. More precise we have the following theorem.

Theorem 3.1.11. Let (Xt)t≥0 be some stochastic process with E|Xt| <∞ for all t ≥ 0
and let X∞ be some further random variable. Let the following conditions be held true

a) (Xt)t≥0 is uniformly integrable,

b) Xt −→ X∞ converges in probability, i.e.

P(|Xt −X∞| > ε)
t→∞−→ 0

Then Xt converges in L1 to X∞, i.e.

lim
t→∞

E|Xt −X∞| = 0

Proof. At first we have to clarify that X∞ ∈ L1.
There exists a subsequence (tn) such that (X(tn))→ X∞ a.s. Hence,

E|X∞| = E lim inf
n→∞

|Xtn| ≤ lim inf
n→∞

E|Xtn|

≤ sup
n∈N

E|Xtn|

≤ sup
t≥0

E|Xt| <
a)
∞

Prove next the L1 convergence. Let ε > 0.
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Due to uniformly integrability there exists some δ > 0 such that

P(A) < δ ⇒ E|Xt|1A <
ε

3
for all t ≥ 0

and
P(A) < δ ⇒ E|X∞|1A <

ε

3
.

Due to convergence in probability there exists some T ≥ 0 such that

P(|Xt −X∞| >
ε

3
) < δ for allt ≥ T.

Hence, for all t ≥ T

E|Xt −X∞| = E|Xt −X∞|1{|Xt−X∞|≤ ε3} + E|Xt −X∞|1{|Xt−X∞|> ε
3
}

≤ ε

3
P(|Xt −X∞| ≤

ε

3
) + E|Xt|1{|Xt−X∞|> ε

3
} + E|X∞|1{|Xt−X∞|> ε

3
}

≤ 3
ε

3
= ε

An Lp version is the following

Theorem 3.1.12. Let p > 1 and (Xt)t≥0 be some stochastic process with E|Xt|p <∞
for all t ≥ 0. Let X∞ be some further random variable. If

a) (|Xt|p)t≥0 is uniformly integrable and

b) Xt −→ X∞ in probability,

then Xt converges in Lp to X∞, i.e.

lim
t→∞

E|Xt −X∞|p = 0

The main result of this section is that the set of uniformly integrable martingales can
be identified with an L1-space.

Theorem 3.1.13 (Isomorphism I). Let (Ft)t≥0 be some Filtration and M the set of
uniformly integrable (Ft)t≥0-martingales.
Then,

J : M −→ L1(Ω,F∞,P)

X 7→ X∞ := lim
t→∞

Xt
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is an isomorphism with inverse

I : L1(Ω,F∞,P) −→M

Y 7→ (E(Y |Ft))t≥0

3.1.1 Optional Sampling

A martingale can be seen as as a fair game of luck. To specify this statement we have
to introduce stopping times.

Definition 3.1.14. Let (Ft)t≥0 be some Filtration. A stopping time τ is a mapping

τ : Ω −→ [0,∞) ∪ {+∞}

such that
{τ ≤ t} ∈ Ft for all t ≥ 0

The decision of stopping before t may only depend on the information up to time t.
Hence, a stopping time cannot look in the future, it is non-anticipative.
The σ-field of those events that are observable by τ is defined by

Fτ := {A ∈ F∞ : A ∩ {τ ≤ t} ∈ Ft for all t ≥ 0}.

Note, that a definition of the form

Fτ := {A ∈ F : A ∩ {τ ≤ t} ∈ Ft for alle t ≥ 0}

yields the same set of events.
Some basic facts on stopping times are the following.

Proposition 3.1.15. For stopping times σ, τ the following statements hold true:

(i) σ ∧ τ(= min(σ, τ)), σ ∨ τ(= max(σ, τ)), σ + τ are stopping times.

(ii) If σ ≤ τ , then Fσ ⊂ Fτ .

(iii) If X is a cadlag-process, then Xτ1{τ<∞} is Fτ−measurable.

(iv) Fτ∧σ = Fτ ∩ Fσ.

(v) If (τn)n∈N is a sequence of stopping times, then

sup
n
τn

is a (Ft)t≥0 stopping time and
inf
n
τn

a (Ft+)t≥0 stopping time.
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(vi) A random variable X is Fτ -measurable, if and only if X1{τ≤t} is measurable w.r.t.
Ft for all t ≥ 0.

A proof can be found in most text-books of stochastic processes.
One can see a stochastic-process as the evolution of a payoff from a game of luck. A
stopping time can be seen as that random time point τ that a player finishes playing
the game and receiving the payoff X(τ). If this time is bounded a player cannot make
a gain on average. This is the result of the first version of optional stopping.

Theorem 3.1.16 (Optional Sampling I). Let X be some (Ft)t≥0-martingale with cadlag
paths and τ be a bounded stopping time, i.e. there exists some T > 0 with τ ≤ T P-a.s.
Then:

(i) E(XT |Fτ ) = Xτ P-a.s.

(ii) EXτ = EX0

The benefit of this theorem is twofold. First it clarifies the origin of the name martingale
in the sense that the value of the process at a time-point τ can be deduced from the
values at a future time-point by taking conditional expectation. This will be applied in
finance several time. Secondly a gambler cannot find a bounded stopping strategy that
improves on average his payoff. This fairness property is also sufficient for a stochastic
process to become a martingale. We can state the following theorem.

Theorem 3.1.17. Let X be some (Ft)t≥0 adapted process with cadlag paths and

E|Xt| <∞ for all t ≥ 0.

Then the following statements are equivalent:

(i) X is a martingale

(ii) For each bounded stopping time τ

EXτ = EX0.

The disadvantage so far is that only bounded stopping times are treated. This is neces-
sary since counter examples exist. If we consider a Wiener-process and the first hitting
time of an a > 0. Then EW (τ) = a 6= 0. Thus further conditions have to be required to
ensure optional sampling for unbounded stopping times.
One version is the following.

Theorem 3.1.18 (Optional Sampling II). Let X be some (Ft)t≥0 adapted uniformly
integrable martingale with cadlag paths.
Then:
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(i) There exists some F∞-measurable mapping X∞ such that

E(X∞|Fτ ) = Xτ P-almost sure

for each stopping time τ .

(ii) EXτ = EX0 for each stopping time τ .

And also a characterisation of a uniformly integrable martingale can be given.

Theorem 3.1.19. Let (Xt)t≥0 be some (Ft)t≥0 adapted process with cadlag paths and
let X∞ be some F∞-measurable random variable.
The process (Xt)t≥0 is a uniformly integrable martingale with

lim
t→∞

Xt = X∞,

if and only if Xτ is integrable for each stopping time τ with

EXτ = EX0.

The preceding theorems can often be useful in proving results in stochastic analysis.
Here we can give an easy application.

Corollary 3.1.20. Let X be some (Ft)t≥0-martingale with cadlag paths and τ be a
stopping time.
Then, the stopped process Xτ , defined by

Xτ
t := Xt∧τ = Xt1{t≤τ} +Xτ1{t>τ}

is a (Ft)t≥0-martingale.

Proof. The process Xτ is adapted with cadlag paths and for each bounded stopping
time σ it holds

EXτ (σ) = EX(τ ∧ σ) = EX(0).

Hence 3.1.17 yields the assertion.

At the end of this section we will give some applications on optional sampling.

Corollary 3.1.21. Let W be a Wiener-process and τa denote the hitting time of a ∈ R.
Then

(i) P(τa <∞) = 1,

(ii) E τa =∞. ,
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(iii) if a, b > 0 then

P(τb < τ−a) =
a

a+ b
and Eτab = ab

with τab = τ−a ∧ τb denoting the exit time of the interval (−a, b).

Proof. To prove the first and second assertion one has to consider for each λ > 0 the
martingale

Mλ(t) = exp(λW (t)− 1

2
λ2t).

Then M τa
λ is a bounded martingale, hence uniformly integrable and converges to

exp(λa− 1

2
λ2τa)1{τa<∞}.

Optional sampling gives

1 = EM τa
λ (0) = EM τa

λ (∞) = E exp(λa− 1

2
λ2τa)1{τa<∞} = eλaEe−

1
2
λ2τa1{τa<∞}.

Hence
Ee−

1
2
λ2τa1{τa<∞} = e−λa for all λ > 0

and monotone convergence implies

P(τa <∞) = lim
λ→0

Ee−
1
2
λ2τa1{τa<∞} = lim

λ→0
e−λa = 1

With the arguments above we have computed the Laplace-transform of τa, since

Lτa(ν) = E e−ντa =
ν= 1

2
λ2

⇔
√

2ν=λ

e−
√

2νa.

The Laplace-transform determines the distribution of τa and it follows that τa has the
density

ga(t) =
1√
2πt3

exp(−1

2

a2

t
)1(0,∞)(t)

due to

E e−ντa =

∞∫
0

e−νtga(t)dt = e−
√

2νa for all ν > 0.

Amongst others

E τa =

∞∫
0

tga(t)dt =∞

follows.
For the third assertion we can consider the Wiener-process itself as martingale. Then
optional sampling implies

0 = EWτab = −aP(τ−a < τb) + bP(τb < τ−a)
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and together with
1 = P(τ−a < τb) + P(τb < τ−a)

the first part of (iii) follows. For the second part we consider W (t)2 − t. Then, optional
sampling gives

E τab = EW (τab)
2 = a2 b

a+ b
+ b2 a

a+ b
= ab.

3.1.2 Doob’s martingale inequalities

In stochastic analysis the so called Hp-space is of importance. This is the content of this
section. First we apply Jensen’s inequality to obtain certain submartingales.

Proposition 3.1.22. Let E be a convex subset of R.

(i) If X is a martingale with values in E and if

f : E −→ R

is convex, such that E|f(Xt)| <∞ for all t ≥ 0, then (f(Xt))t≥0 is a submartin-
gale.

(ii) If X is a submartingale in E and

f : E −→ R

convex and increasing with E|f(Xt)| < ∞ for all t ≥ 0, then (f(Xt))t≥0 is a
submartingale.

Typical situations where we can apply this are

Corollary 3.1.23. The following assertions are true.

(i) X martingale ⇒ |X| submartingale,

(ii) X martingale and E|Xt|p <∞ for all t ≥ 0⇒ (|Xt|p)t≥0 submartingale,

(iii) X martingale ⇒ X+ submartingale

For a process X we define the running maximum by

X∗(T ) = sup
0≤t≤T

|X(t)| for all T > 0.

Doob’s maximal inequality give bounds of the running maximum in terms of the termi-
nating random variable. The Lp-space is a Banach-space with the norm defined by

||X||p = (E|X|p)
1
p for all X ∈ Lp.

37



Theorem 3.1.24 (Doob’s Maximal Inequalities). Let (Xt)t≥0 be some right continuous
martingale or some positive submartingal w.r.t. a filtration (Ft)t≥0. Then the following
holds for X?

T := sup0≤t≤T |Xt|:

(i) λpP(X?
T ≥ λ) ≤ E|XT |p1{X?

t ≥λ} ≤ E|XT |p for all p ≥ 1,

(ii) λpP(X?
∞ > λ) ≤ supt≥0 E|Xt|p for all p ≥ 1,

(iii) ||X?
T ||p ≤

p
p−1

sup0≤t≤T ||Xt||p for all p > 1,

(iv) ||X?
∞||p ≤

p
p−1

supt≥0 ||Xt||p for all p > 1,

Remark 3.1.25. The assertions (iii) and (iv) are called Doob’s
Lp−inequalities. These are equivalent with

E|X?
T |p ≤

(
p

p− 1

)p
sup

0≤t≤T
E|Xt|p for all p > 1, 0 < T ≤ ∞

Usually the canonical filtration of a stochastic-process X is not sufficient to satisfy the
necessary technical purposes. It has to be slightly enlarged which leads to the so called
usual conditions.

Definition 3.1.26. A filtration F = (Ft)t≥0 fulfills the usual conditions if it fulfills

(i) right continuity, i.e. Ft = Ft+ :=
⋂
ε>0Ft+ε for all t ≥ 0.

(ii) completeness, i.e. F0 contains all negligible sets.

Technical advantages of a filtration that satisfies the usual conditions are.

1. modifications of adapted processes are again adapted,

2. entrance times into Borel sets are stopping times,

3. paths of martingales can be regulated.

More precise:
Each martingale w.r.t. a filtration that satisfies the usual conditions has a modification
with right continuous paths. This is the reason why one can always assume that a
martingale has right continuous paths.

In the following we will show how a filtration
(
F (0)
t

)
t≥0

can be enlarged such that the

usual conditions are fulfilled. In a first step we add the negligible sets N by defining

F (1)
t = σ(Ft ∪N ) ∀t ≥ 0.

In the second step we ensure the right continuity by defining

Ft = F (1)
t+ ∀t ≥ 0.
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Then F(1) is complete and F fulfills the usual conditions. We see that an assumption of
completeness is not very restrictive.
At the end of this section the Hp-spaces are introduced. These enable a characterization
of Lp bounded martingales.

Definition 3.1.27. For p > 1 the space Hp is defined by

Hp := {X : X is a cadlag martingale w.r.t. (Ft)t≥0 with sup
t≥0

E|Xt|p <∞}

The space Hp consists of all those martingales that are bounded in Lp. Due to this
boundedness a norm on Hp can be defined by

||X||Hp := sup
t≥0

(E|Xt|p)
1
p = sup

t≥0
||Xt||p =

(
sup
t≥0

E|Xt|p
) 1

p

.

Doob’s Lp-inequalities ensure that the space Hp is isometric isomorph to an Lp space.

Theorem 3.1.28 (Isometry II). The mapping

J : Hp −→ Lp(Ω,F∞,P)

X 7→ X∞ := lim
t→∞

Xt

defines an isometry between Banach-spaces and its inverse is given by

I : Lp(Ω,F∞,P) −→ Hp

X 7→ (E(X∞|Ft))t≥0

Isometry means that

||J(X)||p = ||X∞||p = ||X||Hp for all X ∈ Hp

Proof. Note that Hp is a subspace of M and Lp a subspace of L1. Due to 3.1.9 the
mappings I and J are inverse isomorphisms of M and  L1. It remains to show that the
subspaces are mapped together and that the isometry property holds. If we take X ∈ Hp

then Doob’s Lp inequality implies

||X∞||p ≤ ||X?
∞||p ≤

p

p− 1
sup
t≥0
||Xt||p =

p

p− 1
||X||Hp <∞.

Since
X?p
∞ = (sup

t≥0
|Xt|p)

is an integrable upper bound the dominated convergence theorem yields

E|X∞|p = lim
t→∞

E|Xt|p = sup
t≥0

E|Xt|p = ||X||pHp .
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Hence
||X∞||p = ||X||Hp .

Contrary let X∞ ∈ Lp. Then I(X∞) = (E(X∞|Ft))t≥0 and

E(|E(X∞|Ft)|p) ≤ EE(|X∞|p|Ft) = E|X∞|p <∞,

which implies ⇒ I(X∞) ∈ Hp.

In stochastic analysis the Hilbert-space H2 is of particular importance. We define

H2,c := {X ∈ H2 : X has continuous paths}.

Then H2,c is a closed subspace of H2.

Proposition 3.1.29. The space H2,c is a closed subspace of H2.

Proof. Clearly H2,c is a subspace of H2. To prove closedness we consider a sequence
X(n) ∈ H2,c that converges to X ∈ H2 and have to show that X has continuous paths.
Due to Doob’s inequality

E(sup
t≥0
|X(n)

t −Xt|)2 ≤ 4 sup
t≥0

E|X(n)
t −Xt|2

n→∞−→ 0

and therefore sup
t≥0
|X(n)

t − Xt|2 −→ 0 in L1. Thus there exists a subsequence (nk) such

that
sup
t≥0
|X(nk)

t −Xt|2 −→ 0 P-almost sure.

Hence also
sup
t≥0
|X(nk)

t −Xt| −→ 0 P-almost sure.

Due to the continuity of X(nk) the process X as uniform limit has continuous paths.

3.2 Stochastic Integration

In this section the mathematical techniques will be developed that are needed to explain
trading in a continuous time market model. It turns out that the so far known analytical
tools of integration are not sufficient since the processes of interest have no paths of finite
variation.
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3.2.1 Motivation

Let S denote the price process of a risky asset, a stock for example. A trader takes at
each time point t a position H(t) in the stock. If H(t) is positive he has a long position of
H(t) stocks. If negative he is short with |H(t)| stocks. The process (H(t))0≤t≤T defines
his trading strategy during the trading time [0, T ]. The gain of his strategy from 0 to T
can be seen as the integral ∫ T

0

H(t)dS(t).

The following question arises.

- How can we mathematically define such an integral?

- Which processes S can be used as integrators?

- Which processes H can be used as integrands?

In a first step we take the standpoint of a real trader. Of course he can’t trade contin-
uously in time. But he can choose dependent on the evolution of information a finite
number of stopping-times

0 = τ0 < τ1 < τ2 < · · · < τN ≤ T

such that he may change his position at these finite trading points. Let’s say that he
takes h(1) stocks in the first trading period (0, τ1], then h(2) in the period (τ1, τ2] etc..
This means he has to choose a process (h(k)){k=1,···N} that indicates his stock position
in the trading periods. Since he cannot look in the future we have to assume that h(k)
is Fτk−1

measurable. Such a strategy we will call performable strategy. Note that N can
be random and formally we can achieve this by taking an infinite sequence of stopping
times such that a.s. only a finite number terminates before T .

0 τ1 τ2 τk−1 τk

h1 h2 hk

Definition 3.2.1. Let (Ft)0≤t≤T be a filtration. Then a sequence of stopping times
(τn)n∈N0 together with a stochastic process (h(n))n∈N is called a performable strategy if
the following holds.

(i) 0 = τ0 < τ1 < τ2 · · ·

(ii) Almost sure there are only a finite number of stopping times that stop before T .

(iii) h(n) is Fτn−1 measurable.

41



Note that
N = sup{n : τn < T}

is random but finite and N+1 can be seen as number of trading periods. In each trading
period (τn−1, τn] the trader receives a gain h(n)(S(τn) − S(τn−1)). Thus his total gain
which can be seen as stochastic integral is

N∑
n=1

h(n)(S(τn)− S(τn−1)) + h(N + 1)(S(T )− S(τN)) =

∫ T

0

H(t)dS(t)

with H defined by

H(t) =
N∑
n=1

h(n)1(τn−1,τn](t) + h(N + 1)1(τN ,T ](t).

One can imagine that the set of performable strategies is very rich and that for a thor-
oughly mathematical treatment also limits of these strategies have to be taken into ac-
count. Hence, it has to be clarified from a mathematical standpoint when such limiting
procedures could be drawn. This is the objective of stochastic integration.
A path-wise approach is justified if the process S has paths of bounded variation. Then
all progressively-measurable processes H with paths that are Lebesgue-Stieltjes inte-
grable can be integrated. More precise:

Definition 3.2.2. Let B[0,t] be the Borel-σ-field on [0, t] for all t ≥ 0. Let furthermore
(Ft)t≥0 be a Filtration. A stochastic process

X : [0,∞]× Ω −→ R

is called progressively-measurable, if for each t > 0

X : [0, t]× Ω −→ R

is measurable w.r.t. B[0,t] ⊗Ft. This means, that for all B ∈ B

{(s, ω) ∈ [0, t]× Ω : Xs(ω) ∈ B} ∈ B[0,t] ⊗Ft.

For processes in continuous time there are many technical difficulties concerning ques-
tions of measurability. The progressively-measurable assumption solves those problems
many times.

Remark 3.2.3. 1. Each process with right continuous paths is progressively measur-
able.

2. If X is progressively-measurable and τ a stopping time, then X(τ)1{τ<∞} is mea-
surable w.r.t. Fτ .

42



3. Let F0 contain all negligible sets and let X be progressively-measurable with∫ t

0

|Xs(ω)|ds <∞ P− a.s. for all t ≥ 0.

Then an adapted process Y with P-a.s. paths is defined by

Y (t) =

∫ t

0

X(s)ds for all t ≥ 0.

3.2.2 The Doléans-measure

Processes S of interest in finance are the Wiener-process, geometric Wiener-process and
in general semi-martingales. These processes have no paths of finite variation. Therefore
a new approach has to be developed such that a stochastic integral can be reasonably
defined. We have seen that performable strategies are in some sense previsible since at a
trading point we have to hold our position for a short time into the future. This concept
will be transferred to continuous time.

Definition 3.2.4. Let (Ft)t≥0 be a filtration that satisfies the usual conditions.

1. A previsible rectangle R is a set of the form

R = 1(s,t]×Fs with 0 ≤ s < t, Fs ∈ Fs.

We denote by R the set of all previsible rectangles.

2. The σ-field P of previsible sets on (0,∞)× Ω is defined by

P = σ(R).

3. A stochastic process X is called previsible if it is measurable w.r.t. P.

There are some parallels between the definition of the previsible σ-field and the definition
of the Borel sets of (0,∞). And also nearly in the same way as the Lebesgue-measure
is defined the Doléans-measure can be constructed.

Note that R is a semi-ring:

(i) ∅ ∈ R

(ii) R1, R2 ∈ R ⇒ R1 ∩R2 ∈ R (∩-stable)

(iii) To R1, R2 ∈ R there exists disjoint sets
H1, ..., Hm ∈ R such that

R1\R2 =
m⋃
i=1

Hi

(
s1

(
s2

]
t1

]
t2

R1 R2
R1 ∩R2
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The semi-ring R can be extended to a field of sets A by adding all finite unions of
elements of R. Thus, we define

A = {A ⊂ (0,∞)× Ω : there exists R1, · · · , Rnwith A =
n⋃
i=1

Ri}.

This field of sets satisfies the following properties:

(i) ∅ ∈ A,

(ii) A,B ∈ A ⇒ B \ A ∈ A,

(iii) A,B ∈ A → A ∪B ∈ A.

Note, that each A ∈ A is a union of disjoint sets of R, i.e. there exists disjoint sets

R1, · · · , Rn such that A =
n⋃
i=1

Ri.

The most important examples of previsible processes are listed below.

1. For each Fs measurable random variable Y the process

H = Y 1(s,t]

is previsible for all 0 ≤ s < t.

2. Let ((sn, tn])n∈N be a sequence of pairwise disjoint intervals and let (Yn)n∈N be a
sequence of random variables such that Yn is Fsn-measurable for all n. Then

H =
∞∑
n=1

Yn1(sn,tn]

is a previsible process.

3. Each adapted process with left-continuous paths is previsible.

4. Let (τn) be an increasing sequence of stopping times and let (Yn)n∈N be a sequence
of random variables such that Yn is Fτn-measurable for all n. Then

H =
∞∑
n=1

Yn1(τn,τn+1]

is a previsible process.

Next we will give some alternative definitions of the previsible σ-field. Note, that for
stopping times σ ≤ τ the stochastic interval (σ, τ ] is defined by

(σ, τ ] = {(t, ω) : σ(ω) < t ≤ τ(ω)}.

44



Proposition 3.2.5. The following statements are true.

1. The previsible σ-field is the smallest σ-field that makes all adapted, left continuous
processes measurable.

2. The previsible σ-field is generated by all stochastic intervals (σ, τ ].

Next we want to construct the Doléans-measure on the previsible σ-field. Let M be
some L2 martingale with right continuous paths, i.e. EM(t)2 < ∞ for all t ≥ 0. Then
we may define an additive set function µ on R by

µM((s, t]×Fs) = E1Fs(M(t)−M(s))2 = E1Fs(M(t)2 −M(s)2).

This set function µM : R −→ [0,∞) has the following properties

(i) µM(∅) = 0,

(ii) If R1, ..., Rn ∈ R are pairwise disjoint such that
n⋃
i=1

Ri ∈ R, then

µM

(
n⋃
i=1

Ri

)
=

n∑
i=1

µM(Ri).

Such an additive set function µM can always be extended to an additive set function on
A by

µM : A −→ [0,∞)

A 7→
n∑
i=1

µM(Ri)

with A =
n⋃
i=1

Ri, Ri ∈ R

In the last step one can show that due to the martingale property the set function µM
is a pre-measure on A, hence σ-additive.
But then the extension theorem of Carathéodory applies and there exists a unique ex-
tension of µM to a measure on the previsible σ-field which is generated from A.

Definition 3.2.6. The Doléans-measure of an L2 martingale M is defined by this
unique extension and will be denoted by µM .

As example we will determine the Doléans-measure of a Wiener-process.

Proposition 3.2.7. The Doléan-measure µW of a Wiener-process W is given by

µW = λ× P

with λ denoting the Lebesgue-measure.
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Proof. It suffices to show the assertion for R = (s, t] × Fs ∈ R since R generates
the previsible σ-field and is closed w.r.t. intersection. Since the Wiener-process has
independent increments it follows

µW ((s, t]×Fs) = E1Fs(W (t)−W (s)2 = P(Fs)(t− s).

3.2.3 The Stochastic Integral

We now introduce the stochastic integral stepwise.
For H = 1R with R = (s, t]× F ∈ R we set

I(H) = 1F (M(t)−M(s)).

This can be linearly extended to the so called space of elementary processes E .

Definition 3.2.8. The vector-space E is defined as the span of the indicator function of
sets from R. This means that each H ∈ E has a representation of the form

H =
n∑
i=1

αi1Ri

with α1 · · ·αn ∈ R and R1 ×Rn ∈ R. Such an H is called elementary process.

For H =
∑n

i=1 αi1Ri ∈ E the stochastic integral is defined by

I(H) =
n∑
i=1

αiI(Hi).

The space of elementary processes E is a subspace of L2(µ) and the so far defined integral
I is a norm-preserving map between E and L2(P).

Theorem 3.2.9. The mapping

I : E −→ L2(P)

is norm-preserving, i.e.
||H||L2(µM ) = ||I(H)||L2(P)

respectively ∫
H2dµM = EI(H)2

for all H ∈ E.
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Proof. For H ∈ E there exists a representation of the form

H =
n∑
i=1

αi1Ri

with α1, .., αn ∈ R and pairwise disjoint sets R1, ..., Rn ∈ R. These have the form
Ri = (si, ti]× Fsi for i = 1, ..., n.
Hence

I(H)2 =

(
n∑
i=1

αi1Fsi (Mti −Msi)

)2

=
n∑
i=1

α2
i1Fsi (Mti −Msi)

2 +
∑
i 6=k

αiαk1Fsi1Fsk (Mti −Msi)(Mtk −Msk)

The mixed terms vanish by taking expectations. Since

Ri ∩Rk = ∅

it follows
Fsi ∩ Fsk = ∅ or (si, ti] ∩ (sk, tk] = ∅

If Fsi ∩ Fsk = ∅ then 1Fsi1Fsk = 1Fsi∩Fsk = 0.
If (si, ti] ∩ (sk, tk] = ∅ we may assume w.l.o.g. ti ≤ sk. Then

E1Fsi1Fsk (Mti −Msi)(Mtk −Msk) = EE
[
1Fsi1Fsk (Mti −Msi)(Mtk −Msk)

∣∣Fsk]
= E1Fsi1Fsk (Mti −Msi)E

[
(Mtk −Msk)

∣∣Fsk]︸ ︷︷ ︸
=0, since M martingale= 0

Hence

||I(H)||L2(P) = EI(H)2

= E
n∑
i=1

α2
i1Fsi (Mti −Msi)

2

=
n∑
i=1

α2
iµM(1(si,ti]×Fsi )

=
n∑
i=1

α2
iµM(Ri)

= ||H||L2(µM )

Since E is a dense subspace in L2(µM) we may extend the norm-preserving linear mapping
I on L2(µM).
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Theorem 3.2.10. There exists a unique linear extension of I on L2(µM) that is norm-
preserving, i.e.

||I(H)||L2(P) = ||H||L2(µM )

for all H ∈ L2(µM).

Proof. For each H ∈ L2(µM) there exists a sequence (H(n))n∈N in E such that

||H(n) −H||L2(µM ) −→ 0.

Then (H(n))n∈N is a Cauchy-sequence in E . Since I is norm-preserving, (I(H(n))n∈N is a
Cauchy-sequence in L2(P) due to

||I(H(n))− I(H(m))||L2(P) = ||I(H(n) −H(m))||L2(P) = ||H(n) −H(m)||L2(µM )
n,m→∞−→ 0.

Since L2(P) is complete, there exists some unique U ∈ L2(P) such that

||U − I(H(n))||L2(P) −→ 0,

hence I(H) is defined by U .
That I is norm-preserving, follows from the fact that ||H(n)||L2(µM ) −→ ||H||L2(µM ).
Then

||I(H(n))||L2(P) −→ ||I(H)||L2(P)

and due to ||I(H(n))||L2(P) = ||H(n)||L2(µM ) it follows

||H||L2(µM ) = ||I(H)||L2(P).

As notation for the integral the integral sign is common and can be used. We define for
H ∈ L2(µM) ∫

HdM = I(H).

The advantage of this here presented approach relies in the fact that the well-known
properties of integration from analysis can be taken over and therefore this procedure
is quite simple. But this leads to the disadvantage that so far explicit formulas for a
stochastic integral are only given for elementary processes H. It is rather tedious to
compute the integral for other processes of interest, for example performable strategies.
In general one has to compute the integral for an H ∈ L2(µM) by finding a suitable
approximating sequence H(n) and calculating the limit of I(H(n)) in L2(P).

Proposition 3.2.11. The following formulas hold true:

(i) Let σ, τ be bounded stopping times with σ ≤ τ and Y be a bounded Fσ-measurable
random variable. Then ∫

Y 1(σ,τ ]dM = Y (M(τ)−M(σ)).
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(ii) If M ∈ H2 then ∫
Y 1(σ,τ ]dM = Y (M(τ)−M(σ))

for all stopping times σ ≤ τ and Y square-integrable Fσ-measurable.

(iii) Let M be some L2-martingale with M(0) = 0, then for each bounded stopping time
τ

µM((0, τ ]) = EM(τ)2.

(iv) Let M be some L2-martingale with M(0) = 0, then for each stopping time τ with
µM((0, τ ]) <∞ the stopped process M τ is an H2-martingale and it holds

µM((0, τ ]) = EM(τ)2.

(v) For the Wiener-process W , bounded stopping times σ ≤ τ and square integrable
Fσ-measurable random variables Y it holds∫

Y 1(σ,τ ]dW = Y (W (τ)−W (σ)).

(vi) For the Wiener-process W it holds∫
1(0,T ]WdW =

1

2
(W (T )2 − T ).

Proof. A proof of these assertion is not really exciting. The last statement is of interest
and can be shown in the following way. Note, that W1(0,T ] is previsible as left continuous
process and is contained in L2(µM) due to∫

H2dµW =

∫
1(0,T ]W

2d(λ⊗ P)

=

∫
[0,∞)×Ω

1(0,T ](t)W
2
t (ω)(λ⊗ P)(dt, dω)

Fubini
=

∫
[0,∞)

1(0,T ](t)

∫
Ω

W 2
t (ω)P(dω)λ(dt)

=

T∫
0

EW 2
t dt

=

T∫
0

tdt

=
1

2
T 2 <∞.
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Approximate H in L2(µW ) by

H(n) :=

l(n)∑
j=1

W
t
(n)
j−1
1(

t
(n)
j−1,t

(n)
j

]

with
0 = t

(n)
0 < t

(n)
1 < ... < t

(n)
l(n) = T

and
max
j
t
(n)
j − t

(n)
j−1

0 = t
(n)
0
t
(n)
1

t
(n)
j−1 t

(n)
j TWt

W
t
(n)
j−1

Then ∫
(H(n) −H)2dµW = E

∫ T

0

(H
(n)
t −Ht)

2dt

= E
l(n)∑
j=1

t
(n)
j∫

t
(n)
j−1

(W
t
(n)
j−1
−Wt)

2dt

=

l(n)∑
j=1

t
(n)
j∫

t
(n)
j−1

E(W
t
(n)
j−1
−Wt)

2dt

=

l(n)∑
j=1

t
(n)
j∫

t
(n)
j−1

t
(n)
j−1 − tdt

≤ (max
j
t
(n)
j − t

(n)
j−1)T

n→∞−→ 0

Hence the continuity of the integral yields∫
H(n)dW −→

∫
HdW in L2(P).

Furthermore ∫
HndW =

l(n)∑
j=1

W
t
(n)
j−1

(W
t
(n)
j
−W

t
(n)
j−1

)
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and therefore

W 2
T =

l(n)∑
j=1

(W 2

t
(n)
j

−W 2

t
(n)
j−1

) =

l(n)∑
j=1

[
(W

t
(n)
j
−W

t
(n)
j−1

)2 + 2W
t
(n)
j−1

(W
t
(n)
j
−W

t
(n)
j−1

)
]

=

l(n)∑
j=1

(W
t
(n)
j
−W

t
(n)
j−1

)2

−→T in L2(P)

+ 2

l(n)∑
j=1

W
t
(n)
j−1

(W
t
(n)
j
−W

t
(n)
j−1

)

−→
∫
HdW in L2(P)

Thus

W 2
T = T + 2

∫
HdW = T + 2

∫
1(0,T ]WdW ⇔

∫
1(0,T ]WdW =

1

2
(W 2

T − T )

3.2.4 The Integral-process

So far the stochastic integral as L2(P) random variable is constructed and can be seen
as the gain a trader would obtain by trading the martingale M w.r.t. a strategy H.
Now we clarify how the evolution of its gain-process can be described. We exploit the
fact that L2(P) is isometric isomorph to H2, see 3.1.13. Hence the integral I(H) can be
transformed in a uniquely manner to anH2-martingale by taking conditional expectation
w.r.t. Ft for all t ≥ 0. More precisely we use the isometry

J : L2(Ω,F∞,P) −→ H2

X∞ 7→ (E(X∞|Ft))t≥0 .

Note that
||X∞||L2(P) = ||J(X)||H2

Definition 3.2.12. For an L2-martingale M with cadlag-paths and H ∈ L2(µM) we
define the stochastic integral-process H ·M by the mapping

H ·M : L2(µM) −→ L2(P) −→ H2

H 7→ J(I(H))

Hence for t ≥ 0
(H ·M)t = E(I(H)|Ft)

By construction we obtain the martingale property of the integral-process. A disadvan-
tage relies in the fact that basic properties of the integral-process have to be shown.
By using the definition explicitly one can calculate the integral-process for elementary-
processes.
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Theorem 3.2.13. Let H ∈ E be of the form

H =
n∑
j=1

αj1Rj

with α0, ..., αn ∈ R and Rj = (sj, tj]× Fsj ∈ R.
Then

H ·M =
n∑
j=1

αj1Fsj (M
tj −M sj).

This means that H ·M is indistinguishable from(
n∑
j=1

αj1Fsj (Mtj∧t −Msj∧t)

)
t≥0

.

In particular
(H ·M)0 = 0 P− a.s. .

This means that the integral-process starts from zero.

Proof. It suffices to prove the claim for H = 1Rj with Rj = (sj, tj]× Fsj ∈ R. Then

I(1Rj) = 1Fsj (Mtj −Msj)

and an elementary calculation yields the assertion.

By exploiting the explicit form for H ∈ E and the continuity of the integral operator
further properties can easily be deduced.

Theorem 3.2.14. Let M be an L2-martingale with cadlag paths and H ∈ L2(µM).
Then

(i) (H ·M)0 = 0 P-a.s.

(ii) E(H ·M)t = 0 for all t ≥ 0,

(iii) E(H ·M)τ = 0 for all stopping times τ ,

(iv) If M is continuous, then H ·M has continuous paths and H ·M ∈ H2,c.

Proof. One can easily show that the above properties hold true for H ∈ E . By using
continuity they carry over to H ∈ Ē = L2(µM).

The integral operator is a mapping of two variables, the martingale M and the previsible
process H. In the following we will give further properties.

Proposition 3.2.15. Let M,N be L2-martingales with cadlag paths. Then
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(i) µM+N ≤ 2(µM + µN)

(ii) L2(µM + µN) = L2(µM) ∩ L2(µN) ⊂ L2(µM+N)

(iii) H · (M +N) = (H ·M) + (H ·N) for all H ∈ L2(µM) ∩ L2(µN)

We would like to extend the set of integrable processes H and the set of integrators M .
The main technique which has to be applied is the localisation by stopping and cutting.
These operators will be defined next and their properties investigated.

Definition 3.2.16. For each stochastic-process (Xt)t≥0 and each stopping time τ we
define the stopped process Xτ by

Xτ :=

{
Xt t < τ

Xτ t ≥ τ

Short we write Xτ (t) = X(τ ∧ t) for all t ≥ 0. The cutted process X1(0,τ ] is defined by

X1(0,τ ] :=

{
Xt 0 < t ≤ τ

0 t > τ

The following properties are useful for a later localisation.

Theorem 3.2.17. Let τ be a stopping time. Then

(i) If X ∈M, then Xτ ∈M.

(ii) If X ∈ H2, then Xτ ∈ H2.

(iii) If X has continuous paths, then Xτ either.

(iv) If M is an L2-martingale with cadlag paths and H ∈ L2(µM), then

H1(0,τ ] ∈ L2(µM) ∩ L2(µMτ )

and
(H ·M)τ = H1(0,τ ] ·M = H1(0,τ ] ·M τ = H ·M τ

The last property is of main importance since it justifies the notation∫ t

0

H(s)dM(s) =

∫
H1(0,t]dM.

This means that the integral-process evaluated at t coincides with H integrated over the
interval (0, t]. More precisely we have the following corollary
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Corollary 3.2.18. Let M be an L2-martingale with cadlag-paths and H ∈ L2(µM).
Then for each stopping time τ

(H ·M)τ = (H1(0,τ ] ·M)∞ = I(H1(0,τ ]) =

∫
H1(0,τ ]dM P-almost sure

Proof. This follows from

(H ·M)τ = (H ·M)τ∞
Theorem 3.2.16

= (H1(0,τ ] ·M)∞

= I(H1(0,τ ])

=

∫
H1(0,τ ]dM

Therefore it is shown

E(I(H)|Fτ ) = (H ·M)τ = I(H1(0,τ ])

in particular

(H ·M)t =

∫
H1(0,t]dM =

∫ t

0

HsdMs

for all t ≥ 0.
Next we will list some further properties of the integral-process

Remark 3.2.19. Let M be an L2− martingale and τ an arbitrary stopping time. Then

(i) µMτ ≤ µM

(ii) L2(µM) ⊂ L2(µMτ )

(iii) If H is previsible, then Hτ either.

(iv) If H ∈ L2(µM), then (H ·M)τ = Hτ ·M τ

(v) If H is bounded and previsible and M ∈ H2, then

Hτ ·M = H1(0,τ ] ·M +Hτ (M −M τ )

A further useful formula is the following

Proposition 3.2.20. Let M be an L2-martingale with cadlag paths and H ∈ L2(µM).
Let τ be a stopping time and Y a bounded Fτ -measurable random variable. Then∫

Y 1(τ,∞)HdM = Y

∫
1(τ,∞)HdM
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respectively
(Y 1(τ,∞)H) ·M) = Y ((1(τ,∞)H) ·M)

respectively
((Y 1(τ,∞)H) ·M)t = Y ((1(τ,∞)H) ·M)t for all t ≥ 0

respectively

t∫
0

Y 1(τ,∞)(s)HsdMs = Y

t∫
0

1(τ,∞)(s)HsdMs for all t ≥ 0

Very important is the so called associativity of the integral operator.

Theorem 3.2.21. Let M be an L2-martingale with cadlag-paths and H,K previsible
processes such that K ∈ L2(µM) and H ∈ L2(µK·M).
Then

HK ∈ L2(µM)

and
(HK) ·M = H · (K ·M)

Proof. The main observation is that the Doléans measure of the martingale K ·M is
absolutely continuous w.r.t. µM with density K2, i.e.

µK·M(A) =

∫
A

K2dµM for all A ∈ P .

Therefore
H ∈ L2(µK·M)⇐⇒ KH ∈ L2(µM).

To prove the associativity one has to show this directly for H ∈ E and carry this over
by continuity to H ∈ L2(µK·M).

3.3 Quadratic Variation Process

The objectives of this section are the following

- specification of the path fluctuation of a continuous martingale,

- alternative specifikation of the Doléans-measure,

- Doob-Meyer decomposition of the submartingale M2 in a martingale N and an
increasing, previsible process Λ:

M2
t = M2

0 +Nt + Λt
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3.3.1 Finite Variation

In real analysis the fluctuation of a function is measured by its variation.

Definition 3.3.1. Let f : [0, T ] −→ R be a Borel-measurable function and π some
decomposition

π : 0 = t0 < ... < tn = T

of the interval [0, T ].
The variation FVT (f, π) of f according to π is defined by

FVT (f, π) :=
n∑
i=1

|f(ti)− f(ti−1)|

The function f is called of bounded variation on [0, T ], if

FVT (f) := sup
π decomposition

of [0,T ]

FVT (f, π) <∞

Then FVT (f) gives a measure for the fluctuation of f over [0, T ].

Some well known facts are the following

Proposition 3.3.2. The following statements hold true.

1. Each increasing function is of bounded variation.

2. The set of bounded variation functions is a vector-space.

3. Each Lipschitz-continuous function is of bounded variation.

4. Continuous functions need not to be of bounded variation.

5. Absolutely-continuous functions functions are of bounded variation.

If f is continuous and of bounded variation, then we get the variation by taking lim-
its of variation along decompositions whose mesh-size tends to zero. According to a
decomposition π

π : 0 = t0 < ... < tn = T

of the interval [0, T ] we define its mesh-size |π| by

|π| = max
i=1,··· ,n

|ti − ti−1|.

Remark 3.3.3. Let f be a continuous function of bounded variation. Then

FVT (f) = lim
|π|→0

FVT (f, π)

Important is the fact that each function of bounded variation can be written as difference
of increasing functions.
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Theorem 3.3.4. Let f : [0, T ] −→ R be a right continuous function. Then it is of
bounded variation on [0, T ] if and only if there exist increasing functions g1 and g2 such
that

f = g1 − g2

Proof. “⇒ “ we define for all t ∈ [0, T ]

f+(t) :=
1

2
(FVt(f) + f(t))

f−(t) :=
1

2
(FVt(f)− f(t))

Then

f = f+ − f−

FVt(f) = f+(t) + f−(t) for all t ∈ [0, T ]

and f+, f− are increasing functions.

Functions of bounded variation can be seen as distribution function of signed measures
and this gives a measure theoretic view on functions of bounded variation. To be more
precise let f be a right continuous function of bounded variation. Then so f+ and f−

are right-continuous and the decomposition in f+ and f− is uniquely defined by

f = f+ − f−

FVt(f) = f+(t) + f−(t) for all t ∈ [0, T ].

The increasing functions f+ und f− are distribution functions of measures µ+ resp. µ−

on [0, T ]:
µ±f ((a, b]) := f±(b)− f±(a) for all 0 ≤ a < b ≤ T

By
µf (A) := µ+(A)− µ−(A)

for all Borel sets A ⊂ [0, T ] a signed measure µf on [0, T ] is defined. This is a σ-additive
set-function, that can take negative values. We have the follwing relation:

µf ((a, b]) = f(b)− f(a) for all 0 ≤ a < b ≤ T.

The right continuous function
t 7→ FVt(f)

is increasing and defines the so called variation measure ||µf || on [0, T ] by

||µf ||((a, b]) := FVb(f)− FVa(f) for all 0 ≤ a < b ≤ T

It holds:
||µf || = µ+

f + µ−f
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and µ+ and µ− are uniquely determined by

µf = µ+
f − µ

−
f

||µf || = µ+
f + µ−f .

An integration according to functions of bounded variation can be seen as integration
according to signed measures.

Definition 3.3.5. Let f : [0, T ] −→ R be a right continuous function of bounded
variation with unique decomposition:

f = f+ − f−

FVt(f) = f+(t) + f−(t) for all t ∈ [0, T ]

A Borel measurable function g : [0, T ] −→ R is Lebesgue-Stieltjes integrable w.r.t. f , if
g is integrable w.r.t. f+ and f−.
Then we define

T∫
0

gdf :=

T∫
0

gdf+ −
T∫

0

gdf−

at which
T∫

0

gdf+ :=

T∫
0

gdµ+
f

and
T∫

0

gdf− :=

T∫
0

gdµ−f

with
µ±f ((a, b]) = f±(b)− f±(a) for all 0 ≤ a < b ≤ T

To examine integrability one can take the variation measure.

Theorem 3.3.6. The function g is integrable w.r.t. f if and only if g is integrable
w.r.t. the variation measure ||µf || and then∣∣∣∣∣∣

T∫
0

gdf

∣∣∣∣∣∣ ≤
T∫

0

|g|d||µf ||

=

T∫
0

|g(t)|dFVt(f)
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Proof. “⇒ “ Let g be integrable w.r.t. f . Then g is integrable w.r.t. f+ and f−.
Hence

T∫
0

|g|df+ <∞,
T∫

0

|g|df− <∞

Then

T∫
0

|g|d||µf || =
T∫

0

|g|df+ +

T∫
0

|g|df− (<∞, hence g is integrable w.r.t. f)

≥

∣∣∣∣∣∣
T∫

0

gdf+

∣∣∣∣∣∣+

∣∣∣∣∣∣
T∫

0

gdf−

∣∣∣∣∣∣
≥

∣∣∣∣∣∣
T∫

0

gdf+ −
T∫

0

gdf−

∣∣∣∣∣∣
=

∣∣∣∣∣∣
T∫

0

gdf

∣∣∣∣∣∣
“⇐ “ If

T∫
0

|g|d||µf || <∞ then

T∫
0

|g|df+ +

T∫
0

|g|df− =

T∫
0

|g|d||µf || <∞

⇒
T∫
0

|g|df+ <∞,
T∫
0

|g|df− <∞

⇒ g is integrable w.r.t. f .

A function f : [0,∞) −→ R is locally of bounded variation, if it is of bounded variation
on each bounded interval.

Definition 3.3.7. A function f : [0,∞) −→ R is called locally of bounded variation, if

FVT (f) <∞ for all T > 0

holds.

Remark 3.3.8. Is f locally of bounded variation and right continuous, then their exist
unique right continuous increasing functions f+ and f− with

f = f+ − f−

FVt(f) = f+(t) + f−(t) for all t ∈ [0,∞).
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The functions f+ and f− define measures on ([0,∞),B) by

µ±f ((a, b]) = f±(b)− f±(a) for all 0 ≤ a < b <∞.

Then
µf = µ+

f − µ
−
f

denotes the signed measure corresponding to f .

3.3.2 The Quadratic Variation

Martingales with continuous paths have no paths of bounded variation. Their fluctu-
ations are too large. Therefore the quadratic variation instead of the variation will be
used to describe the amount of fluctuation.

Definition 3.3.9. Let f : [0, T ] −→ R and π : 0 = t0 < t1 < ... < tn = T .
The quadratic variation w.r.t. π is defined by

V
(2)
T (f, π) :=

n∑
i=1

|f(ti)− f(ti−1)|2

and
V

(2)
T (f) := lim

|π|→0
V

(2)
T (f, π)

if the limit exists.

Remark 3.3.10. Let f : [0, T ] −→ R be continuous and of bounded variation on [0, T ].
Then

V
(2)
T (f) = 0.

The fluctuation is too small. It can’t be detected by the quadratic variation.

Proof. The continuous f is uniformly continuous on [0, T ]. Hence,

V
(2)
T (f, π) =

n∑
i=1

|f(ti)− f(ti−1)|2

≤ max |f(ti)− f(ti−1)|︸ ︷︷ ︸
|π|→0−→

f unif. cont.
0

n∑
i=1

|f(ti)− f(ti−1)|︸ ︷︷ ︸
|π|→0−→ FVT (f)<∞= 0

To introduce the quadratic variation process of a continuous martingale we proceed in
the following way.

- First we give an abstract definition by exploiting stochastic integration ,
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- Then, we give an extension by localisation,

- At last we show that the defined quadratic variation process coincides with the
quadratic variation of paths.

First a continuous bounded martingale M is considered. This means that there exists a
constant C > 0 such that a.s.

sup
t,ω

Mt(ω) < C.

Then
M ∈ L2(µN)

for each N ∈ H2,c due to∫
M2dµN ≤ C2µN((0,∞)× Ω)) = C2E(N∞ −N0)2 <∞.

In particular
M ∈ L2(µM).

Let us denote by bMc the space of bounded martingales with continuous paths.

Definition 3.3.11. For M ∈ bMc with M0 = 0 we define the quadratic variation proess
by

〈M〉t := M2
t − 2(M ·M)t for all t ≥ 0

resp.

〈M〉t = M2
t − 2

t∫
0

MsdMs for all t ≥ 0.

We have the following properties

Theorem 3.3.12. Let M ∈ bMc with M0 = 0. Then

(i) 〈M〉0 = 0

(ii) t 7→ 〈M〉t is adapted with P-a.s. continuous paths.

(iii) (M2
t − 〈M〉t)t≥0 ∈ H2,c

(iv) t 7→ 〈M〉t is P-a.s. increasing

Proof. The first three properties follow immediately by definition. The last property
cannot be shown easily. It needs a careful approximation by suitable discrete integral
processes. We dispense with the details.
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As an application we can give the Doob-Meyer decomposition of M2 for M ∈ bMc

M2
t = M2

0︸︷︷︸
start

+M2
t − 〈M〉t︸ ︷︷ ︸

martingale part

+ 〈M〉t︸ ︷︷ ︸
previsible,
increasing

part

for all t ≥ 0.

Definition 3.3.13. For M ∈ bMc with M0 6= 0 we define the quadratic variation
process by

〈M〉 := 〈M −M0〉.

It holds

〈M〉t = 〈M −M0〉t = (Mt −M0)2 − 2

t∫
0

(Ms −M0)d(Ms −M0)

= (Mt −M0)2 − 2

t∫
0

(Ms −M0)dMs − 2

t∫
0

(Ms −M0)dM0︸ ︷︷ ︸
=0, due to M0 constant

= M2
t − 2M0Mt +M2

0 − 2

t∫
0

MsdMs + 2

t∫
0

M0dMs︸ ︷︷ ︸
=M0(Mt−M0), due to
M0 F0-measurable= M2

t −M2
0 − 2

t∫
0

MsdMs

and therefore

M2
t = M2

0 + 2

t∫
0

MsdMs + 〈M〉t for all t ≥ 0

This corresponds to the Doob-Meyer decomposition of the submartingale (M2
t )t≥0.

By localisation this definition of 〈M〉 should be extended to L2-martingales. A necessary
property is the compatibility with stopping.

Theorem 3.3.14. Let M ∈ bMc with M0 = 0 P-a.s.. Then for each stopping time τ

〈M〉τ = 〈M τ 〉

Proof. This follows from the definition of 〈M〉 and the compatibility of integration with
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stopping, see 3.2.17.

〈M τ 〉 = (M τ )2 − 2(M τ ·M τ )

= (M2)τ − 2(M τ1(0,τ ] ·M τ )

= (M2)τ − 2(M1(0,τ ] ·M)

= (M2)τ − 2(M ·M)τ

= (M2 − 2M ·M)τ

= 〈M〉τ

The significance relies in the fact that stopping can be interchanged with taking the
quadratic variation and this allows to extend its definition.

Theorem 3.3.15. Let M be a continuous L2-martingale with M0 = 0 P-almost sure.
Then there exists a unique stochastic process 〈M〉 with the following properties:

(i) 〈M〉0 = 0 P-almost sure,

(ii) (〈M〉t)t≥0 is adapted and has P-almost sure continuous and increasing paths,

(iii) (M2
t − 〈M〉t)t≥0 is a martingale.

Definition 3.3.16. The process 〈M〉 from Theorem 3.3.15 will be called quadratic
variation process of M .

Proof. We will give the main idea. For each n ∈ N a stopping time τn is defined by

τn = inf{t ≥ 0 : |M(t)| ≥ n}.

Then, the sequence
τ1 < τ2 < · · · τn

is increasing with
sup
n
τn =∞ , M τn ∈ bMc.

Thus, for each n the quadratic variation 〈M τn〉 is well-defined and putting all of these
together the quadratic variation of 〈M〉 can be uniquely defined using the compatibility
property 3.3.14. Note that

〈M〉1(0,τn] = 〈M τn〉1(0,τn].

The properties of 〈M τn〉, n ∈ N see 3.3.12 carry over to 〈M〉.
The uniqueness of the quadratic variation-process follows from the following proposition.
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Proposition 3.3.17. Let M be an L2-martingale with continuous paths, that are locally
of bounded variation. Then M is P− a.s. constant, i.e.

Mt = M0 for all t ≥ 0 P− a.s.

For general L2-martingales we can define the quadratic variation in the following way.

Definition 3.3.18. For a continuous L2-martingale M with M0 6= 0 we define the
quadratic variation process by

〈M〉 := 〈M −M0〉.

Then 〈M〉 is the unique process with the following properties:

(i) 〈M〉0 = 0

(ii) (〈M〉t)t≥0 is adapted and has P-a.s. increasing and continuous paths.

(iii) (M2
t −M2

0 − 〈M〉t)t≥0 is a martingale.

Note

(Mt −M0)2 = M2
t − 2M0Mt +M2

0

= M2
t −M2

0 − 2M0(Mt −M0)

Hence
M2

t −M2
0 − 〈M〉t = (Mt −M0︸ ︷︷ ︸

martingale

)2 − 〈M〉t︸ ︷︷ ︸
martingale

+ 2M0(Mt −M0)︸ ︷︷ ︸
martingale

is a martingale.
Therefore we obtain the Doob-Meyer decomposition:

M2
t = M2

0 + (Mt −M0)2 − 〈M〉t + 2M0(Mt −M0)︸ ︷︷ ︸
martingale

+〈M〉t

The compatibility property carries over to L2-martingales.

Theorem 3.3.19. For a continuous L2-Martingal M and each stopping time τ

〈M τ 〉 = 〈M〉τ

Proof. We may assume M0 = 0 and verify the defining properties of a quadratic variation
process.
The process 〈M〉τ is adapted, increasing, adapted and starts from zero.
It remains to show that

(M τ )2 − 〈M〉τ
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is a martingale.
For each bounded stopping time σ it follows

E(M τ )2
σ = EM2

τ∧σ = E〈M〉τ∧σ = E〈M〉τσ

This implies the martingale-property, see 3.1.17.

The Doléans-measure can be expressed by the quadratic variation process.

Theorem 3.3.20. Let M ba a continuous L2-martingale. Then the Doléans-measure
µM satisfies

µM(A) = E
∞∫

0

1A(t, ω)d〈M〉t(ω)

for each previsible set A ∈ P. In particular for H ∈ L2(µM)

∫
H2dµM = E

∞∫
0

H2
t (ω)d〈M〉t(ω) (3.1)

Proof. It suffices to prove the claim for previsible rectangles A = (s, t]× Fs ∈ R .

µM(A) = E1Fs(M2
t −M2

s )

= E1Fs(M2
t − 〈M〉t − (M2

s − 〈M〉s)︸ ︷︷ ︸
=0, due to (M2

t −〈M〉t)t≥0
martingale

) + E1Fs(〈M〉t − 〈M〉s)

= E1Fs(〈M〉t − 〈M〉s)

= E1Fs(ω)

∞∫
0

1(s,t](u)d〈M〉u(ω)

= E
∞∫

0

1Fs(ω)1(s,t](u)d〈M〉u(ω)

= E
∞∫

0

1A(u, ω)d〈M〉u(ω)

This is an alternative way to define the stochastic integral for previsible H that fulfills
the right side of (3.1).
In the next step we compute the quadratic variation of a stochastic integral process.
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Theorem 3.3.21. Let M be an L2-martingale with continuous paths and H ∈ L2(µM).
Then

(i) 〈H ·M〉t =
t∫

0

H2
sd〈M〉s for all t ≥ 0 P a.s. .

(ii) 〈H ·M〉τ = 〈H1(0,τ ] ·M〉 for all stopping times τ .

Proof.

(
t∫

0

H2
sd〈M〉s

)
t≥0

is adapted, increasing and has continuous paths.

It remains to prove

Nt := (H ·M)2
t −

t∫
0

H2
sd〈M〉s t ≥ 0

is a martingale. Then the assertion follows with 3.1. For each stopping time τ it holds
true

(H ·M)τ = (H ·M)τ∞ = (H1(0,τ ] ·M)∞

Hence

E(H ·M)2
τ = E(H1(0,τ ] ·M)2

∞

= E(I(H1(0,τ ])
2)

Isometry
=

∫
H21(0,τ ]dµM

= E
∫
H2
s1(0,τ ](s)d〈M〉s

= E
τ∫

0

H2
sd〈M〉s

and ENτ = 0 for each stopping time τ .
The claim (ii) follows immediately from

〈H ·M〉τ = 〈(H ·M)τ 〉 = 〈H1(0,τ ] ·M〉

3.3.3 The quadratic covariation

The quadratic variation process can be seen as a quadratic mapping on the set of L2-
martingales. This means that it satisfies the following properties.

Proposition 3.3.22. The quadratic variation is a quadratic operator.
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(i) 〈cM〉 = c2〈M〉 for all c ∈ R and each continuous L2−martingale M ,

(ii) 〈M +N〉+ 〈M −N〉 = 2(〈M〉+ 〈N〉) for all continuous L2−martingales M,N

Proof. The assertion can be easily shown by exploiting 3.1.

According to a quadratic mapping a bilinear mapping can be constructed by the so
called polarisation technique.

Definition 3.3.23. The covariation process 〈M,N〉 can be defined by

〈M,N〉 :=
1

4
(〈M +N〉 − 〈M −N〉)

for all continuous L2−martingales M,N .

From the properties of the quadratic variation the following properties of the quadratic
covariation can be deduced

Theorem 3.3.24. The quadratic covariation process fulfills:

(i) 〈·, ·〉 is a bilinear mapping, i.e.

〈M1 +M2, N〉 = 〈M1, N〉+ 〈M2, N〉
〈cM,N〉 = c〈M,N〉

〈M,N1 +N2〉 = 〈M,N1〉+ 〈M,N2〉
〈M, cN〉 = c〈M,N〉

(ii) 〈·, ·〉 is symmetric, i.e.
〈M,N〉 = 〈N,M〉

(iii) 〈M,N〉 is uniquely determined by the following properties:

a) 〈M,N〉0 = 0

b) (〈M,N〉t)t≥0 is adapted and has continuous paths of locally bounded varia-
tion,

c) MN − 〈M,N〉 is a martingale.

Due to

〈
·∫

0

HsdMs〉 =

·∫
0

H2
sd〈M〉s

one may expect

〈
·∫

0

HsdMs,

·∫
0

KsdNs〉 =

·∫
0

HsKsd〈M,N〉s.

To prove this conjecture the Kunita Watanabe inequality has to be shown. This is
well-known in the Lebesgue-Stieltjes integration theory.
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Theorem 3.3.25. Let f, g, h : [0,∞) −→ R be right continuous functions with

f(0) = g(0) = h(0)

f is supposed to be of locally bounded variation and g, h are assumed to be increasing.
If

|f(t)− f(s)|2 ≤ (g(t)− g(s))(h(t)− h(s)) for all 0 ≤ s < t,

then for all mearurable functions x, y : [0,∞) −→ R

t∫
s

|x(u)| |y(u)| d||f ||u ≤

 t∫
s

|x(u)|2dg(u)


1
2
 t∫

s

|y(u)|2dh(u)


1
2

Here ||f || denotes the variation measure w.r.t. µf , hence

||f || := ||µf || = µFV·(f)

Proof. see Revuz, Yor [3].

By a pathwise application the Kunita Watanabe inequality can be shown.

Theorem 3.3.26 (Kunita Watanabe Inequality). Let M,N be continuous L2-martingales
and H,K progressively measurable processes.
Then

t∫
s

|H(u)| |K(u)| d||〈M,N〉||u ≤

 t∫
s

H(u)2d〈M〉u


1
2
 t∫

s

K(u)2d〈N〉u


1
2

Proof. Due to Theorem 3.3.25 it remains to prove

|〈M,N〉t − 〈M,N〉s|2 ≤ (〈M〉t − 〈M〉s)(〈N〉t − 〈N〉s) for all 0 ≤ s < t

for P almost all ω ∈ Ω.
Since the quadratic variation is increasing, it follows:

〈M + λN〉t − 〈M + λN〉s ≥ 0 for all λ ∈ R,

hence also

〈M〉t + 2λ〈M,N〉t + λ2〈N〉t − (〈M〉s + 2λ〈M,N〉s + λ2〈N〉s) ≥ 0 for all λ ∈ R,

and

(?) 〈M〉t − 〈M〉s + 2λ(〈M,N〉t − 〈M,N〉s) + λ2(〈N〉t − 〈N〉s) ≥ 0 for all λ ∈ R.
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This will be minimised in λ by

λ? = −〈M,N〉t − 〈M,N〉s
〈N〉t − 〈N〉s

Plugged into (?) yields:

〈M〉t − 〈M〉s +
(〈M,N〉t − 〈M,N〉s)2

〈N〉t − 〈N〉s
≥ 2

(〈M,N〉t − 〈M,N〉s)2

〈N〉t − 〈N〉s

Hence
(〈M,N〉t − 〈M,N〉s)2 ≤ (〈M〉t − 〈M〉s)(〈N〉t − 〈N〉s)

and the claim follows.

This can be used to compute the quadratic covariation of stochastic integral-processes.

Theorem 3.3.27. Let M,N ∈ H2,c and H ∈ L2(µM). Then

a) E
∞∫
0

|Hs|d||〈M,N〉||s <∞

b) E(H ·M)∞N∞ = E
∞∫
0

Hsd〈M,N〉s

c) 〈H ·M,N〉t =
t∫

0

Hsd〈M,N〉s for all t ≥ 0 P a.s.

d) Let M and N be continuous L2-martingales and H ∈ L2(µM), then

〈H ·M,N〉t =

t∫
0

Hsd〈M,N〉s for all t ≥ 0 P a.s.

In particular for K ∈ L2(µN)

〈H ·M,K ·N〉t =

t∫
0

HsKsd〈M,N〉s for all t ≥ 0 P a.s.

Proof. a) Kunita Watanabe inequality implies with K ≡ 1:

∞∫
0

|Hs|d||〈M,N〉||s ≤

 ∞∫
0

H2
sd〈M〉s

 1
2
 ∞∫

0

1d〈N〉s

 1
2

︸ ︷︷ ︸
=〈N〉

1
2∞
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Due to Cauchy-Schwarz inequality we get

E
∞∫

0

|Hs|d||〈M,N〉||s ≤

E
∞∫

0

H2
sd〈M〉s

 1
2

(E〈N〉∞)
1
2

=

(∫
H2dµM

) 1
2

(E〈N〉∞)
1
2

≤ ||H||L2(µM )||N ||H2 <∞

since
E〈N〉∞ = E(N2

∞ −N2
0 ) ≤ EN2

∞ = ||N ||H2

b) For N ∈ H2,c is the mapping

A : L2(µM) −→ R

H 7→ E
(

(H ·M)∞N∞ −
∞∫

0

Hsd〈M,N〉s
)

continuos and linear, since

|A(H)| =

∣∣∣∣∣∣E
(H ·M)∞N∞ −

∞∫
0

Hsd〈M,N〉s

∣∣∣∣∣∣
≤ E|(H ·M)∞| |N∞|+ E

∞∫
0

|Hs|d||〈M,N〉||s

a)

≤
C.S.I.

(
E(H ·M)2

∞
) 1

2 (EN2
∞)

1
2 + ||H||L2(µM )||N ||H2

= ||H ·M ||H2||N ||H2 + ||H||L2(µM )||N ||H2

Isometrie
= ||H||L2(µM )||N ||H2 + ||H||L2(µM )||N ||H2

= 2||H||L2(µM )||N ||H2

For H ∈ E it holds A(H) = 0.
Hence A(H) = 0 for all H ∈ E = L2(µM).

c)

(
t∫

0

Hsd〈M,N〉s
)
t≥0

is an adapted process with continuous paths of locally bounded

variation.
That (H ·M)tNt −

t∫
0

Hsd〈M,N〉s


t≥0

is a martingale can be shown by applying 3.1.17.
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d) as in c) one has to verify, that(H ·M)tNt −
t∫

0

Hsd〈M,N〉s


t≥0

is a martingale and this can be done due to 3.1.17.

At the end of this section we conclude that the quadratic variation process gives exactly
the quadratic variation of the paths. This results will be provided in two steps.

Theorem 3.3.28. Let M be a bounded continuous martingale with M0 = 0, such that
the quadratic variation process is bounded too.
Let π(n) a sequence of lattices of the form

0 = t
(n)
0 < t

(n)
1 < t

(n)
2 < ... sup

i
t
(n)
i = +∞

with
|π(n)| = sup

i
(t

(n)
i − t

(n)
i−1)

n→∞−→ 0

According to a given t > 0 this results into a finite lattice until t.

t
(n)
0 t

(n)
1 t

(n)
2 · · · t

The quadratic variation along such a lattice until t is defined by

V (2)
n (t) :=

∑
i∈N

(M
t
(n)
i ∧t
−M

t
(n)
i−1∧t

)2 for all t ≥ 0.

Then
E sup

t≥0
(V (2)

n (t)− 〈M〉t)2 n→∞−→ 0

In the second step the claim will be extended to L2-martingales by localisation.

Theorem 3.3.29. Let M ba a continuous martingale with M0 = 0. Then for all T > 0:

sup
0≤t≤T

|V (2)
n (t)− 〈M〉t|

n→∞−→ 0 in probability

Proof. Let
τk = inf{t ≥ 0 : |Mt| ≥ k or 〈M〉t ≥ k}

Then M τk satisfies the assumptions Theorem 3.3.28.
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Define

V
(2)
n,k (t) =

∑
i∈N

(M τk

t
(n)
i ∧t
−M τk

t
(n)
i−1∧t

)2

=
∑
i∈N

(M
t
(n)
i ∧t∧τk

−M
t
(n)
i−1∧t∧τk

)2

It follows
E sup

t≥0
(V

(2)
n,k (t)− 〈M τk〉t)2 n→∞−→ 0

and therefore
(?) P(sup

t≥0
|V (2)
n,k (t)− 〈M τk〉t| > ε)

n→∞−→ 0

for each ε > 0. Due to
τ1 ≤ τ2 ≤ ... sup

n∈N
τn = +∞

there exists to η > 0 some k0 ∈ N with

P(τk ≤ T ) < η for all k ≥ k0

On {τk ≥ T}
V

(2)
n,k (t) = V (2)

n (t) for all t ≤ T

and
〈M τk〉t = 〈M〉τkt for all t ≤ T.

Hence

P(sup
t≤T
|V (2)
n (t)− 〈M〉t| > ε) ≤ P(sup

t≤T
|V (2)
n (t)− V (2)

n,k (t)| > ε

3
)

+ P(sup
t≤T
|V (2)
n,k (t)− 〈M τk〉t| >

ε

3
)

+ P(sup
t≤T
|〈M τk〉t − 〈M〉t| >

ε

3
)

≤ 2P(τk ≤ T ) + P(sup
t≥0
|V (2)
n,k (t)− 〈M τk〉t| >

ε

3
)

Due to (?) there exists some n0 ∈ N with

P(sup
t≥0
|V (2)
n,k0

(t)− 〈M τk0 〉t| >
ε

3
) < η for all n ≥ n0

Hence for all n ≥ n0

P(sup
t≤T
|V (2)
n (t)− 〈M〉t| > ε) ≤ 2P(τk0 ≤ T ) + P(sup

t≥0
|V (2)
n,k0

(t)− 〈M τk0 〉t| >
ε

3
)

≤ 3η for all n ≥ n0

This implies the assertion, due to η > 0 arbitrary.
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3.4 Localisation

The main disadvantage so far is that it is quite tedious to examine whether∫
HdM

exists, since the integral ∫
H2dµM = E

∫ T

0

H2
t d〈M〉t

has to be calculated resp. estimated. Two main steps can be done to extend the
definition of a stochastic integral process.

- localizing the integrand H by cutting at suitable stopping times,

- localizing the integrator M by considering the stopped process M τ .

Localising means that one finds a stopping time τ such that

- M τ is a continuous L2-martingale,

- H1(0,τ ] ∈ L2(µMτ ).

Then the integral ∫
(0,τ ]

HdM τ (3.2)

is well defined and the integral-process H ·M can be put by 3.2 on the stochastic interval
(0, τ ]. Repeating this procedure with a sequence of stopping times

τ1 ≤ τ2 ≤ ... sup
n∈N

τn = +∞

results in a definition of an integral-process H ·M on [0,∞)×Ω. This is the main idea
which will be presented in the following section.

3.4.1 Local Spaces

First, we explain in general what localization means.

Definition 3.4.1. Let G be a set of processes, which all start from zero and have
continuous paths. Then X is called local G-process, if there exists a sequence of stopping
times (τn)n∈N such that

(i) τ1 ≤ τ2 ≤ τ3 ≤ ...

(ii) sup
n∈N

τn = +∞

(iii) Xτn ∈ G
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With Gloc we define the set of local G− processes.

Main examples:

- M0 = {M ∈M : M0 = 0}

↪→ M0
loc as local variant.

- M0
c = {M ∈M0 : M has continuous paths}

↪→ M0
c,loc := (M0

c)loc

- H0
2 := {M ∈M0 : sup

t≥0
EM2

t <∞}

↪→ H0
2,loc := (H0

2)loc

- H0
2,c = {M ∈ H0

2 : M has continuous paths}

↪→ H0
2,c,loc := (H0

2,c)loc

- bM0
c = {M ∈M0

c : ∃C > 0 : sup
t≥0
|Mt| < C}

↪→ bM0
c,loc := (bM0

c)loc

We clarify, when Gloc is a vector-space.

Proposition 3.4.2. (i) If G is closed w.r.t. stopping, then Gloc either.

(ii) If G is a vector-space and closed w.r.t. stopping, then Gloc is a vector-space
either.

The proof is rather elementary and omitted here.
Note, that a set A of processes is called closed w.r.t. stopping, if for each X ∈ A and
each stopping time τ the process Xτ belongs to A.
This leads to the following

Corollary 3.4.3. The sets

M0
loc, M0

c,loc, H0
2,c,loc, bM0

c,loc

are vector-spaces.

From main importance is the fact that the continuous local martingales can be localised
into the space of bounded continuous martingales.

Theorem 3.4.4. The following spaces coincide.

bM0
c,loc = H0

2,c,loc = M0
c,loc

74



Proof. Due to
bM0

c $ H0
2,c $ M0

c

it follows
bM0

c,loc ⊂ H0
2,c,loc ⊂M0

c,loc.

it remains to prove:
bM0

c,loc ⊃M0
c,loc

Let M ∈M0
c,loc. Then M0 = 0 and M has continuous paths.

Furthermore there exists a sequence of stopping times (τn)n∈N such that

τ1 ≤ τ2 ≤ ... sup
n∈N

τn = +∞

and
M τn ∈M0

c

Put
σn := inf{t ≥ 0 : |Mt| ≥ n}

Then
σ1 ≤ σ2 ≤ ... sup

n∈N
σn = +∞.

Consider(τn∧σn)n∈N. This sequence localises M into bM0
c , since M τn ∈M0

c and therefore
(M τn)σn ∈ bM0

c for all n ∈ N.

3.4.2 Quadratic Variation for Local Martingales

We may apply 3.4.4 to extend the definition of the quadratic variation process to local
continuous martingales. According to M ∈M0

c,loc we define

τn := inf{t ≥ 0 : |Mt| ≥ n}.

Then M τn ∈ bM0
c and therefore the quadratic variation process of M τn well defined.

Definition 3.4.5. Let M ∈ M0
c,loc. Then the quadratic variation process of M is

uniquely defined by

〈M〉 :=
∞∑
n=1

〈M τn〉1(τn−1,τn]

with
τn := inf{t ≥ 0 : |Mt| ≥ n}

Note that this definition is reasonable due to 3.3.14 and the quadratic variation of
the local martingale M coincide on (0, τn] with the quadratic variation of the bounded
martingale M τn .
The properties carry over from the L2-martingales to local martingales.
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Theorem 3.4.6. According to M ∈ M0
c,loc there exists a unique stochastic process A

with the following properties:

(i) A0 = 0

(ii) (At)t≥0 is adapted with increasing and continuous paths.

(iii) (M2
t − At)t≥0 ∈M0

c,loc

Proof. A := 〈M〉 satisfies the conditions (i)− (iii) and is unique due to 3.3.17.

Remark 3.4.7. The following Doob-Meyer decomposition holds:

M2
t = M2

t − 〈M〉t︸ ︷︷ ︸
local martingale part

+ 〈M〉t︸ ︷︷ ︸
increasing,
previsible

part

So far we have only considered processes that start from the origin. Ba adding an
F0-measurable starting variable we can give the definition for general local martingales.

Definition 3.4.8. A stochastic process M is called continuous local martingale, if M0

is F0−measurable and M −M0 ∈M0
c,loc holds, i.e.

M = M0︸︷︷︸
start

+M −M0︸ ︷︷ ︸
∈M0

c,loc

.

According to continuous local martingales the quadratic variation process is defined by

〈M〉 := 〈M −M0〉

As before we can carry over the quadratic variation process to the quadratic covariation
process by polarisation.
We denote by FV 0

c the set of all adapted processes with continuous paths that are of
locally bounded variation and start from the origin.
Further we denote by Mc,loc the space of all local martingales.
Then

〈·〉 : Mc,loc −→ FV 0
c

M 7→ 〈M〉

is a quadratic mapping, i.e.

(i) 〈cM〉 = c2〈M〉 for all c ∈ R

(ii) 〈M +N〉+ 〈M −N〉 = 2(〈M〉+ 〈N〉) for all M,N ∈Mc,loc
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Definition 3.4.9. We define according to M,N ∈ Mc,loc the quadratic covariation
process by

〈M,N〉 :=
1

4
(〈M +N〉 − 〈M −N〉)

Theorem 3.4.10. The mapping

〈·, ·〉 : Mc,loc ×Mc,loc −→ FV 0
c

is bilinear and symmetric.
According to M,N ∈ Mc,loc the quadratic covariation process 〈M,N〉 is the unique
process in FV 0

c such that
MN − 〈M,N〉 ∈Mc,loc

This theorem gives another opportunity to compute the quadratic covariation process
by verifying the above characterisation.
The quadratic variation can be used to deduce the martingale property of a local mar-
tingale. This is important in many applications.
Clearly true is:

(i) If M is a continuous L2−martingale with M0 = 0, then M2−〈M〉 is a martingale.

(ii) If M ∈ H0
2,c, then M2 − 〈M〉 ∈M0

c

This can be applied to examine the martingale property of a local martingale.

Theorem 3.4.11. For M ∈M0
c,loc it holds true:

(i) If E〈M〉∞ <∞, then M ∈ H0
2,c.

(ii) If E〈M〉t <∞ for all t ≥ 0, then M is a continuous L2−martingale.

Proof. ad (i): First we show the martingale property of M by verifying

EMτ (= EM0) = 0

for all bounded stopping times τ .
Therefore consider a localising sequence of stopping times

τ1 ≤ τ2 ≤ ... sup
n∈N

τn = +∞

with M τn ∈ bM0
c .

Then EM τn
τ = 0, due to M τn ∈ bM0

c ⊂ H0
2,c and
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EM2
τn∧τ = E(M τn)2

τ

= E〈M τn〉τ
= E〈M〉τnτ
= E〈M〉τn∧τ ↑ E〈M〉τ ≤ E〈M〉∞

Hence (Mτn∧τ )n∈N is uniformly integrable.
Together with

Mτn∧τ
n→∞−→ Mτ P a.s.

it follows
0 = EMτn∧τ

n→∞−→ EMτ

hence
EMτ = 0

M is therefore a martingale and due to

sup
t≥0

EM2
t = sup

t≥0
sup
n∈N

EM2
τn∧τ ≤ E〈M〉∞

it follows
M ∈ H0

2,c

ad (ii): For each T > 0 the stopped process MT belongs toH0
2,c, since

E〈MT 〉∞ = E〈M〉T <∞

Hence for all s ≤ t ≤ T :

E(Mt|Fs) = E(MT
t |Fs)

= MT
s

= Ms

Since T is arbitrary, the martingale property follows.
M is an L2−Martingal, since for t ≤ T :

EM2
t = E(MT )2

t = E〈MT 〉t = E〈M〉t <∞

The assertion of the preceding theorem can be improved.

Theorem 3.4.12. For M ∈M0
c,loc it holds true:

(i) If E
√
〈M〉∞ <∞, then M is a uniformly martingale

(ii) If E
√
〈M〉t <∞ for all t ≥ 0, then M is a continuous martingale.
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Proof. This follows from the following two facts

1. for a continuous local martingale M with M0 = 0 the following inequality is true

E sup
t≥0
|M(t)| ≤ cE

√
〈M〉∞

with a constant c that doesn’t depend on M .

2. If
E sup

t≥0
|M(t)| <∞

then M is a uniformly integrable martingale.

3.4.3 Stochastic Integral for Local Martingales

The objective is to define the stochastic integral process H ·M for local martingales and
suitable localised H.

Definition 3.4.13. According to M ∈M0
c,loc we define the space L2

loc(M) by the set of
all those processes H, that fulfill the following conditions:

(i) H is previsible and

(ii)
t∫

0

H2
sd〈M〉s <∞ P a.s. for all t ≥ 0 .

With lbP we denote the set of all locally bounded previsible processes, i.e.:
H ∈ lbP if and only if

(i) H is previsible

(ii) There exists a sequence of stopping times (τn)n∈N such that

τ1 ≤ τ2 ≤ ... sup
n∈N

τn = +∞

and H1(0,τn] ∈ bP for all n ∈ N.

Note, that the preceding definition allows two opportunities to localise a previsible pro-
cess. The space of locally bounded previsible processes is in applications mostly suffi-
cient. But the definition does not depend on a chosen local martingale and is therefore
not so comprehensive as the space L2

loc(M) which allows the extension of the stochastic
integral as far as possible.
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Theorem 3.4.14. The following holds true

(i) L2
loc(M) is a vector-space for each M ∈M0

c,loc.

(ii) L2(µM) ⊂ L2
loc(M) for each continuous L2−martingale.

(iii) lbP ⊂ L2
loc(M) for all M ∈M0

c,loc.

(iv) If H is adapted with left continuous paths and existing limits from the right,
then H ∈ lbP.

Proof. (i) is obvious, since

t∫
0

(Hs +Ks)
2d〈M〉s ≤ 2

 t∫
0

H2
sd〈M〉s +

t∫
0

K2
sd〈M〉s

 <∞

(ii) For H ∈ L2(µM)

E
∞∫

0

H2
sd〈M〉s =

∫
H2dµM <∞,

hence
∞∫

0

H2
sd〈M〉s <∞

P-almost sure and this implies H ∈ L2
loc(M).

(iii) Let (τn)n∈N localise H in bP , i.e. H1(0,τn] ∈ bP .
Due to τn ↑ ∞

t∫
0

H2
sd〈M〉s = lim

n→∞

τn∧t∫
0

H2
sd〈M〉s

Since τn ↑ ∞, there exists some n ∈ N such that τn(ω) > t. Hence

t∫
0

H2
sd〈M〉s =

t∫
0

H2
s1(0,τn]︸ ︷︷ ︸

bounded

d〈M〉s

≤ Cn〈M〉t(ω) <∞

(iv) Define for n ∈ N:
τn = inf{t ≥ 0 : |Ht| ≥ n}

Then (τn)n∈N ia a localising sequence, since

H(0+) := lim
t↓0

Ht

is a finite random variable.
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We are now able to define the stochastic integral process H ·M for M ∈ M0
c,loc and

H ∈ L2
loc(M) by localisation.

Therefore define stopping times (τn)n∈N by

τn := inf{t ≥ 0 : 〈M〉t ≥ n or

t∫
0

H2
sd〈M〉s ≥ n}

Then due to H ∈ L2
loc(M)

τ1 ≤ τ2 ≤ ... sup
n∈N

τn = +∞

According to the stopped process M τn we have

E〈M τn〉∞ = E〈M〉τn∞ = E〈M〉τn ≤ n <∞.

Hence, M τn ∈ H0
2,c.

Furthermore H1(0,τn] ∈ L2(µMτn ), due to∫
H21(0,τn]dµMτn = E

∞∫
0

H2
s1(0,τn](s)d〈M τn〉s

= E
∞∫

0

H2
s1(0,τn](s)d〈M〉τns

= E
τn∫

0

H2
sd〈M〉s

≤ n <∞

Definition 3.4.15. According to M ∈M0
c,loc and H ∈ L2

loc(M) we define the stochastic
integral process H ·M by

H ·M :=
∞∑
n=1

(H1(0,τn] ·M τn)1(τn−1,τn]

Remark 3.4.16. - The stochastic intervals ((τn−1, τn])n∈N build a disjoint decom-
position of (0,∞)× Ω).

- The integral process starts from the origin.

- On (0, τn] the integral process H ·M coincides with H1(0,τn] ·M τn , since for m < n
due to compatibility w.r.t stopping, see 3.3.14(

H1(0,τn] ·M τn
)τm

= H1(0,τn]1(0,τm] · (M τn)τm

= H1(0,τm] ·M τm
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- (H ·M)τn = H1(0,τn] ·M τn for all n ∈ N.

To compute the integral process in practise one has to find a localising sequence of
stopping times (τn)n∈N. Each sequence that fulfills

- H1(0,τn] ∈ L2(µMτn ),

- M τn is an L2-martingale,

- sup τn =∞,

can be chosen.
To verify properties of a stochastic properties, in particular for a stochastic integral
process, a localisation technique can be useful.

Proposition 3.4.17. Let M,N be two stochastic processes and (τn)n∈N a sequence of
increasing stopping times with supn∈N τn = ∞. If for each n ∈ N the stopped process
M τn is indistinguishable from N τn, then M is indistinguishable from N .

This means that one has only to ensure that M and N coincide on each stochastic
interval (0, τn].
An application of this techniques leads to the following properties of the generally defined
stochastic integral process.

Theorem 3.4.18. Let M ∈M0
c,loc, H ∈ L2

loc(M). Then

(i) H ·M ∈M0
c,loc

(ii) 〈H ·M〉t =
t∫

0

H2
sd〈M〉s for all t ≥ 0.

(iii) (H ·M)τ = H1(0,τ ] ·M τ = H1(0,τ ] ·M = H ·M τ

(iv) If K previsible and K ∈ L2
loc(H ·M), then

- KH ∈ L2
loc(M)

- K · (H ·M) = KH ·M

(v) (H +K) ·M = H ·M +K ·M for all H,K ∈ L2
loc(M)

(vi) For N ∈M0
c,loc and H ∈ L2

loc(M) ∩ L2
loc(N) it holds true

- H ∈ L2
loc(M +N)

- H · (M +N) = H ·M +H ·N

(vii) For all M,N ∈Mc,loc and H ∈ L2
loc(M)

〈H ·M,N〉 =

∫ ·
0

Hsd〈M,N〉s.
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In particular for K ∈ L2
loc(N)

〈H ·M,K ·N〉 =

∫ ·
0

HsKsd〈M,N〉s.

Proof. All these properties were verified for stochastic integral process that could be
defined by the Doléans-measure. By localisation these properties carry over to the
generally defined integral-process.

Finally we consider the behaviour of the integral process when the time goes to infinity.
For integral processes in H2,c this is clear, since a convergence takes place in L2 as well
as point-wise a.s.. If one integrates w.r.t. a local martingale, the situation is more
delicate. The behaviour of the quadratic variation process helps to ensure an almost
sure convergence.

Theorem 3.4.19. Let M be a continuous local martingale. Then M converges on
{〈M〉∞ <∞} point-wise P-a.s..

Proof. We may assume M0 = 0. It holds true

{〈M〉∞ <∞} =
⋃
C>0

{〈M〉∞ ≤ C}.

Define according to C > 0 the stopping time σC by

σC = inf{t ≥ 0 : 〈M〉t > C}.

Then
{σC = +∞} = {〈M〉∞ ≤ C}

and for the stopped process MσC we have

E〈MσC 〉∞ = E〈M〉σC∞ = E〈M〉σC ≤ C.

It follows, that MσC is a H2,c martingale, that P-almost sure converges. On the event
{σC = +∞} = {〈M〉∞ ≤ C} the processes M and MσC coincide Hence M converges on
each {〈M〉∞ ≤ C} and therefore also on {〈M〉∞ <∞}.

One may apply this to integral-processes and obtain

Theorem 3.4.20. Let M ∈Mc,loc and H ∈ L2
loc(M). On the event{∫ ∞

0

H2
sd〈M〉s <∞

}
the stochastic integral process H ·M converges point-wise P-almost sure.
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3.5 Ito Calculus

In calculus the chain rule, product rule and factor rule gives applicants tools at hand in
order to be able to calculate derivatives of more complex functions. Even without any
knowledge how a derivative is defined people can use calculus efficiently. Integration
can be seen as inverse mapping of taking derivatives. And therefore the rules for taking
derivatives find its counterpart in rules of integration, like substitution rule, integration
by parts etc. Stochastic calculus, also called Ito-calculus, can be seen as calculus for
stochastic processes.

3.5.1 Ito-Formula

The Ito-formula is a generalisation of the chain-rule.
Let x : [0,∞) −→ R be continuously differentiable and f : R −→ R a C1−function.
Chain Rule: Then

(f ◦ x)′(t) = f ′(x(t))x′(t) for all t ≥ 0

Alternative in integral-form:

f(x(t))− f(x(0)) =

t∫
0

(f ◦ x)′(s)ds =

t∫
0

f ′(x(s)) x′(s)ds︸ ︷︷ ︸
Radon-Niko-

dym deri-
vative

=

t∫
0

f ′(x(s))dx(s)

This means, the chain rule can be expressed alternatively by

f(x(t))− f(x(0)) =

t∫
0

f ′(x(s))dx(s)

or shortly
df(x(t)) = f ′(x(t))dx(t).

This differential notation is justified resp. motivated by the observation

f(x(t))− f(x(0)) =

t∫
0

1 df(x(s)) =

t∫
0

f ′(x(s))dx(s)

The first generalisation of the chain rule is therefore
Let x : [0,∞) −→ R be continuous and locally of bounded variation and f : R −→ R be
a C1−function, then

f(x(t))− f(x(0)) =

t∫
0

f ′(x(s))dx(s) for all t ≥ 0.
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But: Continuous martingales have no paths of locally bounded variations. This means
that the above formula must be modified. This leads to the second generalisation, the
Ito-formula.
Let X be a continuous semi-martingale and f : R −→ R some C2−function. Then:

f(Xt)− f(X0) =

t∫
0

f ′(Xs)dXs +
1

2

t∫
0

f ′′(Xs)d〈X〉s

In differential notation:

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)d〈X〉t

Objective: Rigorous derivation of the Ito-formula.
First we have to define the term semi-martingale.
We consider in this section a filtered probability space (Ω, (Ft)t≥0 ,F ,P), that satisfies
the usual conditions

Definition 3.5.1. A stochastic-process X is called continuous semi-martingale, if there
exists a decomposition of the form

X = X0 +M + A

such that
M ∈M0

c,loc, A ∈ FV 0
c and X0 is F0 −measurable.

This decomposition is unique, since continuous local martingales with paths that are
locally of bounded variation are constant, 3.3.17.
We call

(i) X0 the starting variable,

(ii) M the local martingale part,

(iii) A the locally bounded variation part

of X.

The integration w.r.t. a semi-martingale can be explained by separate integration ac-
cording to the martingale and bounded variation part.
We define the set Lloc(A) by

Lloc(A) := {H : H ist progressively measureable and

t∫
0

|Hs|d||A||s <∞ for all t ≥ 0}.

Then for
H ∈ Lloc(A) ∩ L2

loc(M) =: Lloc(X)
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the stochastic integral process
H ·X

can be defined by
H ·X := H ·M +H · A

whereat

(H ·X)t =

t∫
0

HsdAs

is path-wise defined.
Notation:

(H ·X)t =

t∫
0

HsdXs =

t∫
0

HsdMs +

t∫
0

HsdAs

The stochastic integral process H · X is again a semi-martingale with H ·M as local
martingale part and H · A as bounded variation part.
Note:

lbP ⊂ Lloc(X)

This means that processes from a large vector-space can be integrated. In particular
each cáglád process, left continuous with right-hand limits, can be integrated. Hence no
integrability condition has to be verified.

Definition 3.5.2. Let X be a continuous semi-martingale of the form

X = X0 +M + A.

The quadratic variation process of X is defined by

〈X〉 := 〈M〉.

Polarisation leads to the quadratic covariation by

〈X, Y 〉 =
1

4
(〈X + Y 〉 − 〈X − Y 〉)

for all semi-martingales X, Y .

Remark 3.5.3. Let X = X0 +M +A, Y = Y0 +N +B be two semi-martingales. Then

(i) 〈X, Y 〉 = 〈M,N〉

(ii) 〈H ·X〉 = 〈H ·M〉 =
·∫

0

H2
sd〈M〉s =

·∫
0

H2
sd〈X〉s for all H ∈ Lloc(X)

(iii) 〈H · X,K · Y 〉 = 〈H ·M,K · N〉 =
·∫

0

HsKsd〈M,N〉s =
·∫

0

HsKsd〈X, Y 〉s for all

H ∈ Lloc(X), K ∈ Lloc(Y )
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Remark 3.5.4. The quadratic covariation process of two semi-martingales can also be
seen as the covariation of their paths.
More precise: Let X, Y be semi-martingales. Let πn be a lattice

πn : 0 = t
(n)
0 < t

(n)
1 < ... sup

i
t
(n)
i = +∞

Then for all T ≥ 0
sup

0≤t≤T
|KVn(t)− 〈X, Y 〉t|

n→∞−→ 0

converges in probability.
Here

KVn(t) =
∑
i

(X
t
(n)
i ∧t
−X

t
(n)
i−1∧t

)(Y
t
(n)
i ∧t
− Y

t
(n)
i−1∧t

)

denotes the quadratic covariation of X and Y along the lattice π.

The way to the Ito-formula can be gone by first establishing the general integration by
parts formula and then approximating C2-functions by polynomials in a suitable way.
First we consider the case of real function that are locally of bounded variation.

Theorem 3.5.5. Let f, g : [0,∞) −→ R be right continuous functions, that are locally
of bounded variation.
Then

f(t)g(t)−f(0)g(0) =

t∫
0

f(s−)dg(s)+

t∫
0

g(s−)df(s)+
∑

0<s≤t

∆f(s)∆g(s) for all t ≥ 0

whereat
f(s−) := lim

u↑s
f(u)

and
∆f(s) := f(s)− f(s−)

∆f(s) measures the jump-size at s. This is relevant at points where f is discontinuous.

Proof. The proof mainly follows from an application of Fubini’s theorem.
The functions f and g can be seen as distribution functions of signed measures µf , µg.
The function fg corresponds to the product measure µf ⊗ µg, since

µf ⊗ µg((0, t]× (0, t]) = µf ((0, t])µg((0, t]) = f(t)g(t).

D

Du

Do

Do := {(s, r) : 0 < s ≤ t, s < r ≤ t}

Du := {(s, r) : 0 < s ≤ t, r < s}

D := {(s, s) : 0 < s ≤ t}
With Fubini the measure of the rectangle can be calculated which leads to the claimed
formula.
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Remark 3.5.6. If f, g are continuous, then the sum cancels out and it remains.

f(t)g(t)− f(0)g(0) =

t∫
0

f(s)dg(s) +

t∫
0

g(s)df(s).

If f, g are absolutely-continuos w.r.t. Lebesgue-measure then

df(t) = f ′(t)dt

and
dg(t) = g′(t)dt.

Therefore

f(t)g(t)− f(0)g(0) =

t∫
0

f(s)g′(s)ds+

t∫
0

g(s)f ′(s)ds.

This coincides with the usual integration by parts formula

Since by definition for a local martingale M

M2
t = M2

0 + 2

∫ t

0

MsdMs + 〈M〉s

again a polarisation argument leads to the integration by parts formula for local mar-
tingales.

Theorem 3.5.7 (Integration by parts for local martingales). Let M,N ∈Mc,loc. Then

MtNt −M0N0 =

t∫
0

MsdNs +

t∫
0

NsdMs + 〈M,N〉t for all t ≥ 0 P a.s.

A bit more difficult to prove is the mixed integration by parts formula

Theorem 3.5.8 (mixed integration by parts). Let M ∈Mc,loc, A ∈ FVc. Then

MtAt −M0A0 =

t∫
0

MsdAs︸ ︷︷ ︸
Lebesgue-
Stieltjes-
Integral

+

t∫
0

AsdMs︸ ︷︷ ︸
stochastic
integral

(+〈A,M〉t)︸ ︷︷ ︸
=0, due to A

bounded variation

for all t ≥ 0 P a.s.

All together we obtain the integration by parts formula for semi-martingales.
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Theorem 3.5.9. Let X, Y be continuous semi-martingales. Then

XtYt −X0Y0 =

t∫
0

XsdYs +

t∫
0

YsdXs + 〈X, Y 〉t for all t ≥ 0 P a.s.

Theorem 3.5.10. Let X be a continuous semi-martingale. Then

X2
t −X2

0 = 2

t∫
0

XsdXs + 〈X〉t for all t ≥ 0 P a.s.

This integration by parts formula can be exploited to derive the Ito-formula.

Theorem 3.5.11 (Itō-Formel). Let X be a continuous semi-martingale and f : R −→
R some C2-function. Then

f(Xt)− f(X0) =

t∫
0

f ′(Xs)dXs +
1

2

t∫
0

f ′′(Xs)d〈X〉s for all t ≥ 0 P a.s.

If X has the representation
X = X0 +M + A

then f ◦X is a semi-martingale with decomposition

f ◦X = f(X0) + f ′(X) ·M︸ ︷︷ ︸
local martingale-

part

+ f ′(X) · A+
1

2
f ′′(X) · 〈X〉︸ ︷︷ ︸

bounded
variation-

part

In differential notation the Ito-formula is

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)d〈X〉t

= f ′(Xt)dMt + f ′(X)tdAt +
1

2
f ′′(Xt)d〈X〉t

Proof. Let X = X0 +M +A be a semi-martingale. The integration by parts formula is
used to prove that the set

A :=
{
f ∈ C2(R) : Ito-formula is valid for (f(Xt))t≥0

}
is not only a vector-space but also aan algebra, hence closed under products. From
this it follows that all polynomials belong to A. Finally by localising and uniformly
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approximating C2-functions by polynomials on compact sets the validity of Ito’s formula
carries over to C2-functions.

A multidimensional counterpart is the following

Theorem 3.5.12 (Multidimensional Ito-formula). Let X be some d-dimensional pro-
cess.
X = (X(1), ..., X(d)) is called continuous semi-martingale, if each component is a con-
tinuous semi-martingale.
Let f be a C2(Rd)-function, then

f(Xt)− f(X0) =

t∫
0

5f(Xs)dXs +
1

2

t∫
0

Hf (Xs)d〈X〉s.

Thereby 5f(x) =

 ∂1f(x)
...

∂df(x)

 denotes the gradient of f in x ∈ Rd

and Hf (x) =

 ∂11f(x) · · · ∂1df(x)
...

. . . · · ·
∂d1f(x) · · · ∂ddf(x)

 the Hessian-matrix of f in x ∈ Rd.

We define further
t∫

0

5f(Xs)dXs :=
d∑
i=1

t∫
0

∂if(Xs)dX
(i)
s

and
t∫

0

Hf (Xs)d〈X〉s :=
d∑

i,j=1

t∫
0

∂i,jf(Xs)d〈X(i), X(j)〉s

The smootheness assumption can be weakened when the local martingale part vanishes.

Theorem 3.5.13. Let X be a continuous real-valued semi-martingale and B some
FVc-process. Let f be a C1,2−function. Then

f(Bt, Xt) = f(B0, X0) +

t∫
0

∂1f(Bs, Xs)dBs +

t∫
0

∂2f(Bs, Xs)dXs +
1

2

t∫
0

∂22f(Xs)d〈X〉s

Often in applications a local version of Ito’s formula is needed.
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Theorem 3.5.14. Let D be an open subset of Rd and X a continuous d−dimensional
semi-martingale with paths in D. Then for a C2-function f : D −→ R

f(Xt)− f(X0) =

t∫
0

5f(Xs)dXs +
1

2

t∫
0

Hf (Xs)d〈X〉s

3.5.2 First Applications

We will give some applications of Ito’s formula.

Example 3.5.15. Let W be a Wiener-process. Then

W 3
t = tWt + 3

t∫
0

W 2
s dWs −

t∫
0

sdWs + 2

t∫
0

Wsds

Proof. We apply the Ito-formula to f(x) = x3. Then

dW 3
t = 3W 2

t dWt +
1

2
6Wtdt

= 3W 2
t dWt + 3Wtdt

= 3W 2
t dWt + 2Wtdt+Wtdt

We obtain by using integration by parts

dtWt = tdWt +Wtdt⇔ Wtdt = dtWt − tdWt

Hence after plugging in

dW 3
t = 3W 2

t dWt + 2Wtdt+Wtdt = d tWt + 3W 2
t dWt − tdWs + 2Wtdt

Example 3.5.16. Let W be a Wiener-process. We are searching for a semi-martingale
representation of (W 2n

t )t≥0 in order to compute µ2n(t) := EW 2n
t .

We apply the Ito-formula to f(x) := x2n. Then

dW 2n
t = 2nW 2n−1

t dWt +
1

2
2n(2n− 1)W 2n−2

t dt

= 2nW 2n−1
t dWt︸ ︷︷ ︸
=:Mt

+ n(2n− 1)W 2n−2
t dt︸ ︷︷ ︸

locally of bounded variation

The process Mt is as stochastic integral process a local martingale. We show that M is
indeed a martingale by using 3.4.11.
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〈M〉t =

t∫
0

(2nW 2n−1
s )2d〈W 〉s =

t∫
0

4n2W 4n−2
s ds

and

E〈M〉t =

t∫
0

4n2EW

even
power︷ ︸︸ ︷

4n− 2
s ds =

t∫
0

4n2E(
Ws√
s

)4n−2sn−1ds <∞

Hence 3.4.11 implies that M is a martingale. Thus

EMt = EM0 = 0.

Therefore

EW 2n
t = E

t∫
0

2nW 2n−1
s dWs + n(2n− 1)E

t∫
0

W 2(n−1)
s ds

= n(2n− 1)

t∫
0

EW 2(n−1)
s ds

By induction we obtain

EW 2n
t = (2n− 1)(2n− 3) · ... · 1 · tn

Example 3.5.17 (Brownian bridge). Let W be some Wiener-process. According to
a terminal time-point T > 0 and a terminal point in space b ∈ R a stochastic-process
(Xt)0≤t<T has to be constructed that behaves on [0, T ) as a Wiener-process - conditioned
on WT = b. This process is called Brownian bridge with terminal point b at T .
We define therefore

Xt = b
t

T
+ (T − t)

t∫
0

1

T − s
dWt for all 0 ≤ t < T

Then Mt :=
t∫

0

1
T−sdWs, 0 ≤ t < T is an L2−martingale but no H2-martingale and

EM2
t =

∫ t

0

(
1

T − s

)2

ds =
1

T − t
− 1

t
<∞ for all 0 ≤ t < T.

But

sup
t<T

EM2
t = sup

t<T

1

T − t
− 1

t
= +∞
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With integration by parts we obtain the semi-martingale representation of X by

(T − t)Mt =

t∫
0

T − sdMs +

t∫
0

Msd(T − s)

=

t∫
0

T − s
T − s

dWs −
t∫

0

Msds

= (Wt −W0)−
t∫

0

Msds

= Wt −
t∫

0

Msds

Hence X can be written as

Xt = b
t

T
−

t∫
0

Msds︸ ︷︷ ︸
bounded var.

+ Wt︸︷︷︸
martingale

for all 0 ≤ t < T

It is valid

EXt = b
t

T

and

VarXt = (T − t)2

T∫
0

(
1

T − s

)2

1(0,t]ds = (T − t)2

(
1

T − t
− 1

t

)
and for s < t:

Cov(Xt, Xs) = E((Xt − EXt)(Xs − EXs))

= E((T − t)Mt(T − s)Ms)

= (T − t)(T − s)EMtMs

= (T − t)(T − s)EM2
s + (T − t)(T − s)E(Mt −Ms)Ms︸ ︷︷ ︸

=0

= (T − t)(T − s) s

T (T − s)

= s− s t
T

The process M has independent and normally distributed increments, i.e. Mt −Ms is
independent of Fs and normally distributed for all 0 ≤ s ≤ t < T .
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Mt −Ms =

t∫
s

1

T − u
dWu

Since f(u) := 1
T−u ∈ L2([s, t)) there exists a sequence

f (n) =

l(n)∑
i=1

y
(n)
t 1

(t
(n)
i−1,t

(n)
t ]

with
||f (n) − f ||L2([s,t)) −→ 0

whereat
t
(n)
0 , ..., t

(n)
l(n)

is a decomposition of the interval [s, t). Hence

t∫
s

f (n)(u)dWu =

l(n)∑
i=1

y
(n)
i (W

t
(n)
i
−W

t
(n)
i−1

)
L2(P)−→

t∫
s

f(u)dWu

with W
t
(n)
i
−W

t
(n)
i−1

independent of Fs and normally distributed. Since the independence

and distribution remains unchanged in the L2-limit, Wt −Ws is independent of Fs and
normally distributed
According to k time-points

0 < t1 < ts < ... < tk < T

the distribution of (Xt1 , ..., Xtk) is a k−dimensional normal distribution.
The random variable Xt is normally distributed as proven above with the parameters

EXt = b
t

T
and VarXt = (T − t) t

T

For t1 < t2 < ... < tk the random vector (Mt1 , ...,Mtk) has a k−dimensional normal
distribution , since

Mt1 ,Mt2 −Mt1 , ...,Mtk −Mtk−1

are stochastic independent and normally distributed. Then

Xti = b
ti
T

+ (T − ti)Mti

is a linear transformation of M , which leads to a k−dimensional normal distribution for
(Xt1 , ..., Xtn).
With help of the Ito-formula we show, that X is a solution of the following stochastic
differential equation.

dXt =
b−Xt

T − t
dt+ dWt
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with initial condition X0 = 0.
Exploit the semi-martingale representation of X:

dXt = dWt + b
1

T
dt−Mtdt

= dWt +

(
b

T
−Mt

)
dt

= dWt +

(
b

T
−

Xt − b tT
T − t︸ ︷︷ ︸

Xt expressed byMt

)
dt

3.5.3 Doléans Exponential

In this part we introduce a class of positive martingales that can be used to change
measures. This is of importance in finance to compute an equivalent martingale measure.
Let’s start with the easiest ordinary differential equation for real functions

z′(t) = z(t)

with some initial condition z0. This differential equation can be written as integral
equation in the form

z(t) = z0 +

∫ t

0

z(s)ds

resp. short
dz(t) = z(t)dt.

Surely the unique solution is given by

z(t) = z0e
t for all t ≥ 0.

In stochastic analysis the easiest stochastic differential equation is of the form

dZ(t) = Z(t)dX(t) with initial condition Z0 (3.3)

with a given semi-martingale X that starts from the origin. We say that a stochastic
process Z is a solution to the above stochastic differential equation, if the following
integral equation is valid

Z(t) = Z0 +

∫ t

0

Z(s)dX(s) for all t ≥ 0. (3.4)

This means that we give a stochastic differential equation sense by considering its cor-
respondent integral equation. With Ito’s formula we can solve the equation (3.3) by
considering the approach

Z(t) = f(X(t), 〈X〉t)
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for a suitable function f .
Ito’s formula implies

dZt = ∂1f(Xt, 〈X〉t)dXt + ∂2f(Xt, 〈X〉t)d〈X〉t +
1

2
∂11f(Xt, 〈X〉t)d〈X〉t

We have to find a function f such that

df(Xt, 〈X〉t) = f(Xt, 〈X〉t)dXt

Hence we guess:

I: ∂1f = f

II: ∂2f = −1
2
∂11f

The first equation provides
f(x, y) = exh(y)

the second equation

h′(y)ex = −1

2
exh(y)

⇒ h′(y) = −1

2
h(y)

⇒ h(y) = e−
1
2
y

Thus

f(x, y) = exe−
1
2
y = exp(x− 1

2
y)

satisfies the equations I and II.
This is the reason for the following definition

Definition 3.5.18.

E(X)t := exp(Xt −
1

2
〈X〉t) for all t ≥ 0

is called exponential semi-martingale of X.

The Ito-formula implies that E(X) solves the integral equation

E(X)t = 1 +

t∫
0

E(X)sdXs

resp.
dE(X)t = E(X)t dXt

with initial condition E(X)0 = 1. By multiplying with the initial random variable Z0 we
obtain a solution to (3.3)
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Theorem 3.5.19. Let X be a continuous semi-martingale with X(0) = 0. The process

Zt = Z0E(X)t = Z0 exp(Xt −
1

2
〈X〉t)

solves uniquely the integral equation

Zt = Z0 +

t∫
0

ZsdXs for all t ≥ 0

resp. the stochastic differential equation

dZt = ZtdXt for all t ≥ 0

with initial random variable Z0.

Proof. For all t ≥ 0

Zt = Z0E(X)t

= Z0(1 +

t∫
0

E(X)sdXs)

= Z0 + Z0

t∫
0

E(X)sdXs

Z0 F0−mb
= Z0 +

t∫
0

Z0E(X)sdXs

= Z0 +

t∫
0

ZsdXs

The uniqueness can be shown in the following way.
For a solution Y we consider

Nt := (E(X)t)
−1 = exp(−Xt +

1

2
〈X〉t)

Then

dNt = Ntd(−Xt +
1

2
〈X〉t) +

1

2
Ntd 〈−Xt +

1

2
〉〈X〉t)︸ ︷︷ ︸

=〈X〉t
= −NtdXt +Ntd〈X〉t
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Integration by parts implies

dYtNt = YtdNt +NtdYt + d〈Y,N〉t
= −YtNtdXt + YtNtd〈X〉t +Nt YtdXt︸ ︷︷ ︸

=dYt, since Yt
solution

−NtYtd〈X〉t︸ ︷︷ ︸
(?)= 0

Hence

YtNt − Y0N0 =

t∫
0

d(YsNs) = 0

which implies
Yt = Z0N

−1
t = Z0E(X)t

To prove (?): we use the theorem

〈
·∫

0

HsdXs,

·∫
0

KsdXs〉 =

·∫
0

HsKsd〈X〉s

resp. in differential notation:

d〈
·∫

0

HsdXs,

·∫
0

KsdXs〉 = H·K·d〈X〉·.

Due to
dYt = YtdXt

and
dNt = −NtdXt +Ntd〈X〉t

it follows
d〈Y,N〉t = −NtYtd〈X〉t

3.5.4 Linear Stochastic Differential Equations

The stochastic differential equation

dZt = ZtdXs

with initial value Z0 has applications in finance, since it provides a suitable model for
the price evolution of a stock.
Let (St)t≥0 denote the price process of a stock. The evolution depends mainly on two
ingredients

- µt denoting the random rate of return
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- σt denoting the volatility.

For small h we obtain

St+h − St ≈ Stµth+ Stσt(Wt+h −Wt)

with Wiener-process W .
This means

∆St ≈ Stµt∆t+ Stσt∆Wt

This leads in the limit to the stochastic differential equation

dSt = St(µtdt+ σtdWt)

with initial value S0.
The solution of this equation is a reasonable approach for modelling the stock price
behaviour. More formally we assume

- µ is some progressively measurable process with

t∫
0

|µs|ds <∞ for all t ≥ 0

and

- σ is somee previsible process with

t∫
0

σ2
sds <∞ for all t ≥ 0.

Then σ ∈ L2
loc(W ) and

Xt =

t∫
0

µsds+

t∫
0

σsdWs for all t ≥ 0

is a continuous semi-martingale that can be written as

dXt = µtdt+ σtdWt

in differential form.
Hence using 3.5.19

St = S0E(X)t = S0 exp(

t∫
0

µsds) exp(

t∫
0

σsdWs −
1

2

t∫
0

σ2
sds)

We obtain the classical Black-Scholes model when we assume that the coefficients µ and
σ are non-random constants don’t depending on time.
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Orenstein-Uhlenbeck Process

A further process of interest in finance is the Orenstein-Uhlenbeck process. It is defined
as a solution to the following linear stochastic differential equation.

dXt = −αXtdt+ σdWt (3.5)

with initial value X0 = ζ, an F0−measurable random variable. The coefficients of this
equation are constants α, σ > 0.
A solution of the above equation can be computed by a variation of constants technique
which is well known for ordinary differential equations. The above Orenstein-Uhlenbeck
equation decomposes into

- a homogeneous equation dYt = −αYtdt and

- a random inhomogeneity σdW (t)

The homogeneous equation
dYt = −αYtdt

is an ordinary differential equation and its solution is given by

Yt = e−αt

Then Y0 = 1 and

d
1

Yt
= α

1

Yt
dt

If X is a solution of 3.5 then

d
Xt

Yt
= Xtd

1

Yt
+

1

Yt
dXt + d〈X, 1

Y
〉t︸ ︷︷ ︸

=0, since 1
Yt

deter-

ministic, hence
of bounded var.

= α
Xt

Yt
dt+

1

Yt
( −αXtdt+ σdWt︸ ︷︷ ︸
=dXt, due to Xt solution

of 3.5

)

=
1

Yt
σdWt

= eαtσdWt

Hence

Xt

Yt
=
X0

Y0

+

t∫
0

d
Xs

Ys

=
X0

Y0

+

t∫
0

eαsσdWs

= ζ +

t∫
0

eαsσdWs

100



Thus we obtain

Xt = ζYt + Yt

t∫
0

eαsσdWs

= ζe−αt + e−αt
t∫

0

eαsσdWs

= ζe−αt +

t∫
0

eα(s−t)σdWs

From this explicit representation we can deduce some properties of the Orenstein-
Uhlenbeck process.

- Expectation
EXt = e−αtEζ =: m(t)

- Variance

VarXt = e−2αtVarζ +

t∫
0

e2α(s−t)σds = e−2αtVarζ +
σ2

2α
(1− e−2αt) =: v(t)

- Marginal distributions:

Note, that ζ and
t∫

0

eα(s−t)σdWs are independent. If ζ is normally distributed or

constant then
Xt ∼ N (m(t), v(t))

- Limiting distribution:

Due to lim
t→∞

m(t) = 0 and lim
t→∞

v(t) = σ2

2α
the process Xt converges in distribution

to a N (0, σ
2

2α
)-distributed random variable.

- Mean reversion:

The Ornstein-Uhlenbeck-process is a mean-reverting diffusion with return-level 0
and return-rate α. This means that the process X has the tendency to return to
0 wherever it is located. This tendency is perturbed by the noise σdW (t).

- Stationary distribution:

If ζ is a N (0, σ
2

2α
)−distributed random variable, then the distribution of Xt doesn’t

change. This means that the Orenstein-Uhlenbeck process is a Markov-process
with N (0, σ

2

2α
) as stationary distribution.
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Vasicek-Prozess

A slight modification of the Orenstein-Uhlenbeck equation leads to the Vasicek-process
which is of interest in modelling bond markets.

Definition 3.5.20. The solution of the stochastic differential equation

dXt = ϑ(µ−Xt)dt+ σdWt (3.6)

with initial value ζ, return-level µ ∈ R and return-rate ϑ > 0 is called Vasicek-process.

A solution can be calculated with the help of the Orenstein-Uhlenbeck equation.
Let X be a solution of 3.6. Then

Zt = Xt − µ

solves the equation

dZt = d(Xt − µ) = dXt = ϑ(µ−Xt)dt+ σdWt = −ϑZtdt+ σdWt

and is therefore an Orenstein-Uhlenbeck process. Hence

Xt − µ = e−ϑt(ζ − µ) +

t∫
0

eϑ(s−t)σdWs

⇔ Xt = e−ϑtζ + µ(1− e−ϑt) +

t∫
0

eϑ(s−t)σdWs

For the expectation and variance we obtain

EXt = e−ϑtEζ + µ(1− e−ϑt) =: m(t) −→ µ

and

VarXt = e2ϑtVarζ +
σ2

2ϑ
(1− e−2ϑt) =: v(t) −→ σ2

2ϑ
If ζ is normally distributed, then Xt ∼ N (m(t), v(t)) and Xt converges in distribution
to a N (µ, σ

2

2ϑ
)− distributed random variable.

General One-dimensional Linear Stochastic Differential Equation

Definition 3.5.21. The general linear stochastic differential equation reads as follows

dXt = (Xtµt + at)dt+ (Xtσt + ηt)dWt (3.7)

with initial value ζ, some F0-measurable random variable.
Requirements:

- µ is progressively measurable with
∫ t

0
|µs|ds <∞ for all t ≥ 0,
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- a is progressively measurable with
∫ t

0
|as|ds <∞ for all t ≥ 0,

- σ ∈ L2
loc(W ) and η ∈ L2

loc(W ).

The solution can be calculated with a variation of constants technique.

dXt = Xt(µtdt+ σtdWt)︸ ︷︷ ︸
Black-Scholes Equation

+ atdt+ ηtdWt︸ ︷︷ ︸
Inhomogenity

(3.8)

We first consider the homogeneous equation

dSt = St(µtdt+ σtdWt)

with S0 = 1 which is solved by

St = exp

 t∫
0

µsds

 exp

 t∫
0

σsdWs −
1

2

t∫
0

σ2
sds

 .

Then, according to a solution X of (3.7) the stochastic differential of
(
Xt
St

)
has to be

determined. Ito’s formula provide

d
1

St
= − 1

S2
t

dSt +
1

2
2

1

S3
t

d〈S〉t

= − 1

S2
t

St(µtdt+ σtdWt) +
1

S3
t

S2
t σ

2
t dt

= − 1

St
(µtdt+ σtdWt) +

1

St
σ2
t dt

Then, we continue with integration by parts

d
Xt

St
= Xtd

1

St
+

1

St
dXt + d〈X, 1

S
〉t

= −Xt
1

St
(µtdt+ σtdWt) +

Xt

St
σ2
t dt

+
1

St

(
(Xtµt + at)dt+ (Xtσt + ηt)dWt

)
− Xt

St
σ2
t dt−

1

St
σtηtdt

=
1

St
(at − σtηt)dt+

1

St
ηtdWt

The right-hand side does not depend on X. Hence we can determine the left-hand side
by integration.

Xt

St
=
X0

S0

+

t∫
0

d

(
X

S

)
s

= ζ +

t∫
0

1

Su
(au − σuηu)du+

t∫
0

1

Su
ηudWu
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and therefore a solution is given by

Xt = ζSt + St

t∫
0

1

Su
(au − σuηu)du+ St

t∫
0

1

Su
ηudWu

Why is the integral
t∫

0

ηu
Su
dWu

well-defined? Due to our assumptions ηu ∈ L2
loc(W ). We have to examine if ηu

Su
∈

L2
loc(W ):

t∫
0

(
ηu
Su

)2

d〈W 〉u =

t∫
0

(
ηu
Su

)2

du
Su
≤

stetig

(
sup
u∈[0,t]

1

Su

)2 t∫
0

η2
udu <∞

3.6 Three Main Theorems

In the following we will introduce three main theorems that are of high importance in
applications of stochastic analysis, in particular in finance.

3.6.1 Theorem of Lévy

The first gives a characterisation of the Wiener-process by its martingale properties. It
is the so called Lévy’s theorem.

Theorem 3.6.1. Let W = (W (1), ...,W (d)) be some d−dimensional continuous local
martingale with

W
(i)
0 = 0 for all i = 1, ..., d and 〈W (i),W (j)〉t = δijt with δij =

{
1 i = j

0 i 6= j
.

Then, W is a d−dimensional Wiener-process. This means, that the coordinates of W
are one-dimensional independent Wiener-processes.

Proof. The main ideas of the proof will be given without going into detail.
We have to show that W is a stochastic process with independent and stationary incre-
ments, i.e. for all s < t

- Wt −Ws is independent of Fs and

- Wt −Ws ∼ N (0, (t− s)Id︸ ︷︷ ︸
covariation-

matrix

)
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For each ϑ ∈ Rd

Xϑ(t) := (ϑ,Wt) =
d∑

k=1

ϑkW
(k)
t

is a local martingale with

〈Xϑ〉t =
d∑

k=1

ϑ2
k〈W (k)〉t +

d∑
k,l=1
k 6=l

ϑkϑl 〈W (k),W (l)〉t︸ ︷︷ ︸
=0

= |ϑ|2t

Hence

Mϑ(t) := exp(iXϑ(t) +
1

2
|ϑ|2t) t ≥ 0

is as solution to
dZ(t) = iZ(t)dXϑ(t)

a complex-valued, exponential local martingale. Indeed, it is a true martingale since

E (〈Re(Mϑ)〉t + 〈Im(Mϑ)〉t) = E
t∫

0

(
(Im(Mϑ(s))2 +Re(Mϑ(s))2

)
|ϑ|2ds︸ ︷︷ ︸
=d〈Xϑ〉s

= E
t∫

0

|Mϑ(s)|2|ϑ|2ds

= E
t∫

0

e|ϑ|
2s|ϑ|2ds

=

t∫
0

e|ϑ|
2s|ϑ|2ds <∞

Due to the martingale property of (Mϑ(t))t≥0 we obtain for s ≤ t

1 = E
(
Mϑ(t)

Mϑ(s)

∣∣∣∣Fs) = E exp(i(ϑ,Wt −Ws)|Fs) exp(
1

2
|ϑ|2(t− s))

Hence

E exp(i(ϑ,Wt −Ws)|Fs) = exp(−1

2
|ϑ|2(t− s)))

for all ϑ ∈ Rd. But this means that the Fourier-transform of the conditional distribution
of the increment W (t)−W (s) given Fs coincides with the Fourier-transform of a N(0, (t−
s)Id) distribution. This implies the independence and distribution properties (i) and (ii).
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Application of Lévy’s Theorem

We give an application that can be used in finance.
Let W be some 1-dimensional Wiener-process and σ ∈ L2

loc(W ). Thus we may define

Mt :=

t∫
0

σsdWs t ≥ 0

and

Nt :=

t∫
0

|σs|dWs t ≥ 0

We will apply Lévy’s theorem in order to show that the processes M and N have the
same distribution.
Note, that

sgn(σt)σt = |σt|.

Hence

Nt =

t∫
0

sgn(σs)σsdWs.

Define
A := {(t, ω) : σt(ω) = 0}.

Then A is a previsible set and

Nt =

t∫
0

1A(s)|σs|dWs︸ ︷︷ ︸
=0

+

t∫
0

1Ac(s)sgn(σs)σsdWs

=

t∫
0

1Ac(s)sgn(σs)σsdWs

We put

Bt :=

t∫
0

1A(s)dWs +

t∫
0

1Ac(s)sgn(σs)dWs
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Then (Bt)t≥0 is a local martingale with

〈B〉t = 〈
·∫

0

1A(s) + 1Ac(s)sgn(σs)dWs〉t

=

t∫
0

(1A(s) + 1Ac(s) sgn(σs)︸ ︷︷ ︸
sgn(σs)2=1

)2d〈W 〉s

=

t∫
0

1A(s) + 1Ac(s)ds

=

t∫
0

1ds

= t

Lévy’s theorem implies, that B is a Wiener-process. Hence

Nt =

t∫
0

1A(s) |σs|︸︷︷︸
=σs
on A

dWs +

t∫
0

1Ac(s)sgn(σs)σsdWs

=

t∫
0

σs (1A(s) + 1Ac(s)sgn(σs))dWs︸ ︷︷ ︸
=dBs

=

t∫
0

σsdBs

Hence, M and N are integral-processes of σ according to two different Wiener-processes.
This implies that their distribution coincide. The impact in finance relies in the fact
that volatility can be assumed to be positive. The distribution of a stock-price process
remains unchanged.

3.6.2 Martingale Representation Theorem

The next step is the so called martingale representation theorem. This will be used in
finance to compute replicating trading strategies. The main statement is that each local
martingale on a Wiener-filtration can be represented as stochastic integral-process.
First we introduce the Wiener-filtration.

Definition 3.6.2. Let (Wt)t≥0 be some Wiener-Prozess on a filtered probability space
(Ω, (Ft)t≥0 ,F ,P). We define a filtration (Gt)t≥0, that satisfies the usual conditions and
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is generated by W . Denote by

N := {A ⊂ Ω : ∃B ∈ F∞ : A ⊂ B und P(B) = 0}

the set of negligible sets and define for t ≥ 0:

• (generated by W ) F (0)
t := σ(Ws : s ≤ t) with F (0)

∞ := σ(Ws : s ≥ 0)

• (all null-sets in F (1)
0 ) F (1)

t := σ(F (0)
t ∪N)

• (right continuous) Gt := F (1)
t+ =

⋂
ε>0

F (1)
t+ε with G∞ := σ(Gt : t ≥ 0)

Then, (Gt)t≥0 is called Wiener-filtration and W is a Wiener-process according to G.

The filtration (Gt)t≥0 can be seen as the smallest filtration with the following properties:

- the filtration satisfies the usual conditions and

- the process W is a Wiener-process according to this filtration

We start by giving an L2-version of the martingale-representation theorem.

Theorem 3.6.3. Let W be some d-dimensional Wiener-process with Wiener-filtration
(Gt)t≥0. Then there exists according to Y ∈ L2(G∞) some (Gt)t≥0-previsible process

H = (H(1), ..., H(d)) such that

d∑
k=1

E
∞∫

0

(H(k)
s )2ds <∞

and

Y = EY +

∞∫
0

HsdWs

:= EY +
d∑

k=1

∞∫
0

H(k)
s dW (k)

s

This means, that the corresponding H2-martingale has an integral-process representa-
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tion of the form

E(Y |Gt) = EY + (H ·W )t

:= EY +
d∑

k=1

(H(k) ·W (k))t

= EY +
d∑

k=1

t∫
0

H(k)
s dW (k)

s

Proof. Again we give the main idea of the proof. We restrict ourselves to the case
d = 1. First we note, that Blumenthal’s 0− 1 law states, that G0 is a trivial σ-field, i.e.
P(A) ∈ {0, 1} for all A ∈ G0.
Then Y is independent of G0 and

E(Y |G0) = EY P a.s. .

Without loss of generality we put EY = 0 and consider the integral operator

I : L2(µW ) −→ L2,0(G∞);H →
∫
HdW

with
L2,0(G∞) = {X ∈ L2(Ω,G∞,P) : EX = 0}.

It remains to show that I is a surjective mapping. The space V = I(L2(µW )) is a closed
subspace of L2,0(G∞) and we can consider the orthogonal complement

V ⊥ := {Z ∈ L2,0(G∞) : EZX = 0 ∀X ∈ V }.

This means that Z is perpendicular to all X ∈ V .
Note, that each M∞ ∈ L2,0(G∞) corresponds to some unique H2-martingale defined by

Mt = E(M∞|Gt) t ≥ 0

and
M0 = E(M∞|G0) = E(M∞) = 0.

Furthermore for each M∞ ∈ V and Z∞ ∈ V ⊥ the process (MtZt)t≥0 is a uniformly
integrable martingale, since for each stopping time τ

E(MτZτ ) = E(MτE(Z∞|Gτ ))
= E(E(MτZ∞|Gτ ))
= EMτZ∞

= EM τ
∞︸︷︷︸
∈V

Z∞

= 0
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We have to prove
V ⊥ = {0}

and consider Z∞ ∈ V ⊥. We show Z∞ = 0 P a.s. .
As in the proof of Lévy’s theorem we may consider the complex-valued martingale

Mϑ(t) = exp(i(ϑ,Wt) +
1

2
|ϑ|2t) t ≥ 0.

Stopping at T provides that MT
ϑ ∈ H2 and therefore as an integral-process in V . Thus(

ZtM
T
ϑ (t)

)
t≥0

is a uniformly integrable martingale. Hence

E(Zt exp(i(ϑ,Wt −Ws))|Gs) = Zs exp(−1

2
|ϑ|2(t− s)) for all 0 ≤ s < t ≤ T, ϑ ∈ Rd

By iterated conditioning w.r.t. j = 1, ..., n and 0 ≤ t1 < ... < tn ≤ T we obtain

EZT exp(i(
n∑
j=1

(ϑj,Wtj −Wtj−1
)) = EZ0 exp(−1

2

n∑
k=1

(tj − tj−1)|ϑ|2)

= 0 for all ϑ1, ..., ϑn ∈ Rd

A further approximation argument shows that

EZTf(Wtn −Wtn−1 , ...,Wt1) = 0

for all 0 ≤ t1 < ... < tn ≤ T and all f : (Rd)n −→ C bounded and continuous.
This implies ZT = 0, due to

EZTf(Wtn −Wtn−1 , ...,Wt1) = 0 for all f ∈ Cb((Rd)n,C)

⇒ EZT1A = 0 for all A ∈ σ(Wt1 , ...,Wtn)

⇒ EZT1A = 0 for all A ∈ GT
⇒ ZT = 0

Since T > 0 is arbitrary, Z∞ := lim
T→∞

ZT = 0

Remark 3.6.4. The integrand in the integral representation is unique:
For H,K ∈ L2,d(µW ) with

I(H) = I(K)

we have
0 = I(H)− I(K) = I(H −K)

and
||H −K||L2,d(µW ) = ||I(H −K)||L2,0(G∞) = ||0||L2,0(G∞) = 0

Hence H = K

By localising we obtain a local version of the preceding martingale representation theo-
rem.
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Theorem 3.6.5. Let (Mt)t≥0 be a local martingale according to a Wiener-process fil-
tration (Gt)t≥0 generated by some Wiener-process W . Then, M has continuous paths

and there exists a previsible d-dimensional process H = (H(1), ..., H(d)) such that

d∑
k=1

t∫
0

(H(k)
s )2ds <∞ for all t ≥ 0 P a.s.

and

Mt = M0 +

t∫
0

HsdWs for all t ≥ 0

:= M0 +
d∑

k=1

t∫
0

H(k)
s dW (k)

s .

Remark 3.6.6. We don’t assume continuity of paths for M . This shows that this
theorem is more than only a local version of 3.6.3.

Proof. a) Continuity of paths M :

We may assume that M0 = 0 and can localise M into a uniformly integrable
martingale which has limiting variable M∞ ∈ L1(G∞). The point is that M
needs not to be L2-integrable such that 3.6.3 is not applicable. But M∞ can be
approximated in L1 by a sequence of bounded random-variables M

(n)
∞ that have all

integral-representations with continuous paths. By taking a suitable subsequence
and using Borel-Cantelli one can show that the paths of M are approximated
uniformly by the paths of the continuous martingale that belong to M

(n)
∞ . As

uniform limit the paths of M are therefore continuous themselves.

b) How to show the integral representation:

Due to a) M has continuous paths and can therefore be localised in bMc by

τn = inf{t ≥ 0 : |Mt| ≥ n}.

Each M τn has an integral representation due to 3.6.3

M τn = H(n) ·W

with a previsible process H(n) ∈ L2,d(µW ).

Note that M0 = 0 is assumed.

The sequence of previsible processes (H(n))n∈N is consistent in some way, i.e.

H(n)1(0,τk] = H(k)1(0,τk] for all 1 ≤ k ≤ n
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The sought-after process H can be built by the sequence H(n) by

H =
∞∑
n=1

H(n)1(τn−1,τn]

Then H ∈ L2
loc(W ) due to

E
∞∫

0

|Hs|21(0,τn]ds = E
∞∫

0

|H(n)|21(0,τn]ds

= E
∞∫

0

|H(n)
s |2ds <∞

which implies
t∫

0

|Hs|2ds <∞ for all t ≥ 0 P a.s. .

Hence we can integrate H w.r.t. W and it follows

M τn = H(n)1(0,τn] ·W
= H1(0,τn] ·W
= (H ·W )τn for all n ∈ N

This implies that M is indistinguishable from H ·M .

3.6.3 Theorem of Girsanov

As last main theorem we would give a very general version of Girsanov’s theorem. As
seen in the Black-Scholes model this is of great importance in finance since it allows to
compute equivalent martingale measures with the help of suitable exponential martin-
gales. The first version clarifies the structure of density processes of equivalent measures.

Theorem 3.6.7. Let P, Q be equivalent probability measures on (Ω,F∞) with density
process

dQ

dP

∣∣∣∣
Ft

=: Lt t ≥ 0

that has continuous paths P−almost sure.

(i) if we define the local martingale X by

Xt =

t∫
0

1

Ls
dLs
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for all t ≥ 0, then

Lt = L0 exp(Xt −
1

2
〈X〉t) for all t ≥ 0

and L is a solution to
dL(t) = L(t)dX(t).

(ii) If M is a continuous local martingale w.r.t. P, then

Nt = Mt − 〈M,X〉t for all t ≥ 0

defines a local Q−martingale, whose quadratic variation w.r.t. Q coincide with
that w.r.t. M .

Note:

Nt = Mt − 〈M,X〉t = Mt −
t∫

0

1

Ls
d〈M,L〉s

Proof. (i): Due to Q equivalent to P the density-process is strictly positive P− almost

sure.
(

1
Lt

)
t≥0

is assumed to have continuous paths and can therefore be integrated

according to Lt Hence, the local martingale

Xt =

t∫
0

1

Ls
dLs for all t ≥ 0

is well defined and we can apply Ito’s formula to

Yt = lnLt.

It follows

dYt =
1

Lt
dLt −

1

2

1

L2
t

d〈Lt〉

= dXt −
1

2
d〈X〉t

Thus

ln
Lt
L0

= Yt − Y0 = Xt − X0︸︷︷︸
=0

−1

2
〈X〉t

and therefore

Lt = L0 exp(Xt −
1

2
〈X〉t).

(ii): we have to show: (NtLt)t≥0 is a local P−martingale.
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By integration by parts we get

dMtLt = MtdLt + LtdMt + d〈L,M〉t

and

d〈M,X〉tLt = 〈M,X〉tdLt + Ltd〈M,X〉t = 〈M,X〉tdLt +
Lt
Lt
d〈M,L〉t

Hence the stochastic differential of NtLt is given by

dNtLt = dMtLt − d〈M,X〉tLt = NtdLt + LtdMt.

This implies thatNL is a local P−martingale and thereforeN a localQ−martingale.

M = N − 〈M,X〉 is a semi-martingale w.r.t. Q with local martingale part N .
Hence

〈M〉P︸ ︷︷ ︸
w.r.t. Q

= 〈N〉Q︸ ︷︷ ︸
w.r.t. P

This means, that by the transition from P to Q only a term of locally bounded
variation is added and this doesn’t change the quadratic variation.

The question that occurs is the following:
Which properties must a positive martingale L fulfil such that an equivalent martingale
measure can be defined with L as density process.

Theorem 3.6.8. There exists according to P an equivalent probability measure Q on
(Ω,F∞) with density process

dQ

dP

∣∣∣∣
Ft

= Lt for all t ≥ 0

if and only if (Lt)t≥0 is a uniformly integrable martingale with

L∞ = lim
t→∞

Lt > 0 P a.s.

and
EL∞ = 1

Proof. ”‘⇒”’ Due to P equivalent to Q on F∞ there exists some F∞−measurable random
variable D > 0 and

dQ

dP

∣∣∣∣
F∞

= D.

The density Lt on (Ω,Ft) fulfills

Lt =
dQ

dP

∣∣∣∣
Ft

= E(D|Ft) for all t ≥ 0
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Hence, (Lt)t≥0 is uniformly integrable with

L∞ = lim
t→∞

Lt = D > 0 P a.s.

and
EL∞ = ED = 1

”‘⇐”’ Define the probability measure Q by

dQ

dP

∣∣∣∣
F∞

= L∞

Due to L∞ > 0 P a.s. the measures Q and P are equivalent.
For each t > 0 we obtain

Lt = E(L∞|Ft) =
dQ

dP

∣∣∣∣
Ft
.

Hence (Lt)t≥0 defines a density process of Q according to P.

In the case of a Wiener-filtration the structure of the density-process can be given more
precisely.

Theorem 3.6.9. Let (Wt)t≥0 be some d−dimensional Wiener-process and (Gt)t≥0 the
corresponding Wiener-filtration. Then
(i) If Q is according to P an equivalent probability measure on (Ω,G∞),then there exists
a previsible process (Ht)t≥0 with

P

 t∫
0

|Hs|2ds <∞ for all t ≥ 0

 = 1

and

Lt =
dQ

dP

∣∣∣∣
Gt

= exp

 t∫
0

HsdWs −
1

2

t∫
0

|Hs|2ds


for all t ≥ 0. Furthermore according to Q

Wt = Wt −
t∫

0

Hsds t ≥ 0

defines a d−dimensional Wiener-process.
(ii) If according to some previsible Rd−valued process (Ht)t≥0

Lt = exp

 t∫
0

HsdWs −
1

2

t∫
0

|Hs|2ds

 t ≥ 0
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defines a uniformly integrable P−martingale with

L∞ = lim
t→∞

Lt > 0 P a.s.

then there exists a probability measure Q equivalent to P on (Ω,G∞), such that

dQ

dP

∣∣∣∣
Gt

= Lt t ≥ 0.

According to Q a d−dimensional Wiener-process is defined by

W = Wt −
t∫

0

Hsds.

Proof. (i) The assertion follows from Girsanov part I, the martingale representation
theorem part II and Lévy’s theorem.
(Lt)t≥0 is a strictly positive martingale w.r.t. a Wiener-filtration and has therefore
continuous paths.
For

Xt =

t∫
0

1

Ls
dLs

we obtain as in 3.6.7

Lt =
dQ

dP

∣∣∣∣
Gt

= L0 exp(Xt −
1

2
〈X〉t) for all t ≥ 0

Since G0 is trivial L0 ≡ 1.
Due to 3.6.5 the local martingale (Xt)t≥0 has a representation

Xt =

t∫
0

HsdWs

with

P

 t∫
0

|Hs|2ds <∞ for all t ≥ 0

 = 1

(Note: X0 = 0). Due to

Xt =
d∑

k=1

t∫
0

H(k)
s dW (k)

s
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we obtain

〈X〉t =
d∑

k=1

〈
·∫

0

H(k)
s dW (k)

s 〉t +
d∑

j,l=1
j 6=l

〈
·∫

0

H(j)
s dW (k)

s ,

·∫
0

H(l)
s dW

(l)
s 〉t︸ ︷︷ ︸

=0

=
d∑
i=1

t∫
0

(H(i)
s )2ds

=

t∫
0

|Hs|2ds

It remains to show: Wt = Wt −
t∫

0

HsdWs is a d−dimensional Wiener-process w.r.t. Q.

With Girsanov part I this follows for the i−th coordinate, since

W
(i)
t − 〈W (i), X〉t = W

(i)
t − 〈W (i),

d∑
j=1

·∫
0

H(i)
s dW

(i)
s 〉t

= W
(i)
t −

d∑
j=1

t∫
0

H(i)
s d 〈W (i),W (j)

s 〉s︸ ︷︷ ︸
=0 for i 6=j

= W
(i)
t −

t∫
0

H(i)
s ds

is a martingale w.r.t. Q for all 1 ≤ i ≤ d. Furthermore

〈W (i)〉 = 〈W (i)〉t = t

and
〈W (i)

,W
(j)〉t = 〈W (i),W (j)〉t = 0 for all i 6= j.

Therefore the assumption of Lévy’s theorem are satisfied and W defines a Wiener-process
w.r.t. Q.
(ii) follows from Girsanov part II. Note

ELt = 1 for all t ≥ 0

and
EL∞

u.i.m.
= E lim

t→∞
Lt = 1 > 0
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We give two applications in finance. Let (Wt)t≥0 be some Wiener-Process according to
(Ft)t≥0. The process

Lt = exp(ϑWt −
1

2
ϑ2t) with ϑ 6= 0

is a strictly positive martingale with ELt = 1, but Lt
t→∞−→ 0 P a.s. , which shows that

(Lt)t≥0 is not uniformly integrable. Therefore there exists no probability measure Q on
(Ω,F∞) equivalent to P with density-process

dQ

dP

∣∣∣∣
Ft

= Lt for all t ≥ 0.

According to a finite time-interval [0, T ] this can be done, since by stopping in T the
process L is transformed into a uniformly integrable martingale.
More precise:
LTt := Lt∧T defines a uniformly integrable martingale with

LT∞ = lim
t→∞

Lt∧T = LT > 0.

Girsanov implies that there exists a probability measure QT on (Ω,F∞) equivalent to P
with density process

dQT

dP

∣∣∣∣
Ft

= LTt =

{
Lt t < T

LT t ≥ T

A slight generalisation is the following
Let ϑ : [0,∞) −→ R be measurable with

∞∫
0

ϑ(s)2 <∞.

We define

Lt = exp(

t∫
0

ϑsdWs −
1

2

t∫
0

ϑ2
sds) t ≥ 0.

Then
∫∞

0
ϑsdWs is a N (0,

∫∞
0
ϑ2
sds)− distributed random variable and

L∞ = lim
t→∞

Lt = exp(

∞∫
0

ϑsdWs −
1

2

∞∫
0

ϑ2
sds) > 0
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Furthermore for p > 1:

ELpt = E
(
exp(

t∫
0

ϑsdWs −
1

2

t∫
0

ϑ2
sds)

)p
= E exp(p

t∫
0

ϑsdWs −
1

2
p

t∫
0

ϑ2
sds)

= e−
1
2
p
∫ t
0 ϑ

2
sdsE exp(p

t∫
0

ϑsdWs)

Ist Y ∼ N (0, σ2)⇒ E exp(λY ) = exp( 1
2
λ2σ2) = e−

1
2
p
∫ t
0 ϑ

2
sds exp(

1

2
p2

t∫
0

ϑ2
sds)

= exp(
1

2
p(p− 1)︸ ︷︷ ︸

>0

t∫
0

ϑ2
sds)

≤ exp(
1

2
p(p− 1)

∞∫
0

ϑ2
sds)

Hence supt≥0 EL
p
t <∞, which shows the uniform integrability of (Lt)t≥0.

Girsanov implies that according to P there exists an equivalent probability measure Q
on (Ω,F∞) with density process

dQ

dP

∣∣∣∣
Ft

= Lt for all t ≥ 0.
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4 Ito-Process Models of Finance

The aim of this chapter is

- general modelling of financial markets without jumps,

- Characterisation of arbitrage-free markets,

- arbitrage-free pricing of financial derivatives.

4.1 Basic Concepts

4.1.1 Motivation

We have introduced the Black-Scholes model in chapter 2 and seen that even with such a
simple model a market-price valuation of financial derivatives is possible. But one cannot
ignore the fact that from a pricing perspective only one parameter, the stock-volatility
σ determines the prices of derivatives. From that point of view the model is too simple
and should be extended to cover real financial markets better. With the framework of
stochastic analysis the mathematicians have the tools at hand to fulfill this demand.
The pitfalls of the Black-Scholes model are observable by the so called smile-effect. To
explain this we consider a stock with an initial price x > 0 and fix a maturity T for
those calls with different strikes

K1 < K2 < K3 < · · · < Kn

that are quoted in the market. Thus we observe the call’s market prices

c(K1) > c(K2) > · · · > c(Kn).

For each call we look at that volatility that explains the market price best. This means
that we have to solve the equation

c(x, T,K, σ) = cmarket(K)

in σ. This solution
σimpl(K)

denotes the so called implied volatility of the call option with strike K. If the BS-modell
is correct all implied volatilities must coincide. But in real markets we observe the
following dependence on the strike
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strikexerT
at the money

( )
in the money out of the money

σ(K)
implied volatility

calibrated BS-volatility

A Black-Scholes model with a calibrated BS-volatility would under estimate the implied
volatility for options that are deep out of the money and deep in the money and would
over estimate the implied volatility for options that are at the money.
From this smile-effect we get a first idea how the model can be improved to fully explain
observable market prices of calls by their prices evaluated in the model. The idea is that
the volatility of the stock should depend on stock-price and time to cover also different
maturities of calls. As we will see later this idea leads to a complete diffusion model
that is able to fully explain market-prices of calls and puts of different maturities and
strikes. The formula that stands behind this is the so called formula of Dupire.

4.1.2 Technical Remarks

In a continuous time market-model we consider the price-process of risky assets over
a finite-time interval [0, T ) and assume that these are semi-martingales. To be more
precise we assume that we have fixed a filtered probability space

(Ω, (Ft)0≤t<T ,FT ,P)

that satisfies the usual conditions. The sigma field FT can be seen as collection of all
information up to time T ,

FT = σ({Ft : t < T}).
The term semi-martingale can be defined in this setting as in stochastic analysis if we
replace ∞ by T .

Definition 4.1.1. A stochastic-process M = (Mt)0≤t<T with M0 = 0 is called local-
martingale with time-horizon T if there exists an increasing sequence of stopping times
(τn)n∈N such that

(i) supn∈N τn = T ,

(ii) M τn is a martingale for each n ∈ N.

We say M ∈M0
c,loc.

A stochastic-process M with F0-measurable starting variable M0 is called a local-martingale
with time horizon T if M −M0 ∈M0

c,loc and we denote by Mc,loc the space of all local-
martingales with time-horizon T .
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Since the time-horizon is fixed in our financial modelling it will be omitted in the nota-
tion. In finance it is reasonable to know if local-martingales can be extended at T .

Definition 4.1.2. A local-martingale M ∈Mc,loc can be extended at T if

lim
t↑T

Mt = MT

exists a.s..

By the quadratic variation process we can decide if a local-martingale can be extended.

Proposition 4.1.3. Let M ∈Mc,loc with

lim
t↑T
〈M〉t = 〈M〉T <∞ P a.s. .

Then M can be extended at T .

A semi-martingale with time horizon T can be defined in the following way.

Definition 4.1.4. An adapted stochastic process (At)0≤t<T is called continuous FV-
process with horizon T , if A has continuous paths, that have finite variation on each
interval [0, t], t < T almost surely. With FVc resp. FV 0

c we denote the space of all con-
tinuous FV -processes resp. the subspace of continuous FV−processes that are starting
from the origin.
A process X is called continuous semi-martingale with time-horizon T , if there exists a
decomposition

X = X0 +M + A

with M ∈M0
c,loc, A ∈ FV 0

c and F0 measurable X0.

By localising in T instead of ∞ the stochastic integral-process can be defined.

Definition 4.1.5. For M ∈ Mc,loc we define the space L2
loc(M) by all those previsible

(H(t))0≤t<T such that
t∫

0

H(s)2d〈M〉s <∞ P− almost sure for all 0 ≤ t < T .

For each H ∈ L2
loc(M) we can define the integral-process t∫

0

HsdMs


0≤t<T

which is a continuous local martingale. If this local-martingale can be extended at T , i.e.

lim
t↗T

t∫
0

HsdMs P a.s.
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then we may define
T∫

0

HsdMs = lim
t↗T

t∫
0

HsdMs.

For A ∈ FVc the space Lloc(A) can be defined by all those progressively measurable process
K such that

t∫
0

|Ks|dFV[0,s](A) <∞ P− a.s. for all 0 ≤ t < T.

Then path-wise

(
t∫

0

KsdAs

)
0≤t<T

can be defined.

4.1.3 Model Specification

In the following we establish a model of a financial market that consists of the following
ingredients.

- trading period [0, T )

- d risky assets (stocks)

- numeraire asset (often a money market account) serves as clearing asset. This
means that prices will be quoted not in money but in shares of the numeraire
asset.

We stipulate the following assumptions on the market
1. Assumption
The source of randomness is given by an n-dimensional Wiener-process

W = (W1, ...,Wn).

There exists some filtered probability space (Ω, (Ft)0≤t<T ,P) and a n-dimensional Wiener-
process W such that (Ft)0≤t<T coincides with that Wiener-filtration that is generated
from W . In particular the filtration satisfies the usual conditions.
Shortly: The Wiener-process W determines the randomness in the market.
2. Assumption For each 1 ≤ i ≤ d let (Si(t))0≤t<T denote the price-process of the
i−th risky asset. Then (Si(t))t≥0 is assumed to be a strictly positive continuous semi-
martingale. In particular

P(Si(t) > 0 for all 0 ≤ t < T ) = 1 i = 1, ..., d.

3. Assumption
The price process (N(t))0≤t<T of the numeraire asset is a strictly positive continuous
semi-martingale.
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Remark 4.1.6. - The first assumption is the actual restrictive requirement on the
market. It determines which latent randomness drives the prices of the risky assets.

- The second assumption is necessary and therefore natural in order to obtain mar-
kets that are free of arbitrage.

Shortly: All reasonable markets must fulfill the second assumption.

- The third assumption can be seen similar to the second.

- The existence of a numeraire asset is important in order to ensure a sufficient flex-
ibility of trading. That often enables an opportunity to replicate the derivative’s
payoff by a trading strategy which leads to a unique price settlement. In most of
the models the numeraire asset is given by a money market account and this will
be denoted by (β(t))0≤t<T .

Definition 4.1.7. A numeraire asset is called money-market account, if (N(t))0≤t<T is
a strictly positive FVc− process.

Remark 4.1.8. Often the money-market account is seen as risk-free asset. This is so
far justified as its fluctuations are considerably less than those of the risky assets.

Conclusions:
1. Price process of the i-th risky asset:
Ito’s formula will be applied to

Xi(t) = lnSi(t) for all 0 ≤ t < T.

This provides

dXi(t) =
1

Si(t)
dSi(t)−

1

2

1

Si(t)2
d〈Si〉t.

The semi-martingale

Yi(t) =

t∫
0

1

Si(u)
dSi(u), for all 0 ≤ t < T

has a quadratic variation process

〈Yi〉t =

t∫
0

1

Si(u)2
d〈Si〉u.

Hence

dXi(t) = dYi(t)−
1

2
d〈Yi〉t

and therefore

Xi(t) = Xi(0) + Yi(t)−
1

2
〈Yi〉t.
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Thus we obtain

Si(t) = Si(0) exp (lnSi(t)− lnSi(0))

= Si(0) exp

(
Yi(t)−

1

2
〈Yi〉t

)
.

This means that Si satisfies the stochastic differential equation

dSi(t) = Si(t)dYi(t), for all 0 ≤ t < T

with initial value Si(0) ∈ (0,∞).
The semi-martingale Yi haa a decomposition of the form

Yi(t) = Mi(t) + Ci(t), for all 0 ≤ t < T

with M ∈M0
c,loc, C ∈ FV 0

c .
Due to 〈Yi〉 = 〈Mi〉 we obtain

Si(t) = Si(0) exp

(
Mi(t)−

1

2
〈Mi〉t

)
exp(Ci(t)), for all 0 ≤ t < T.

Hence Si fulfills the SDE

dSi(t) = Si(t)(dMi(t) + dCi(t)).

4. Assumption
For each 1 ≤ i ≤ d the process Ci has P−almost sure absolutely continuous paths w.r.t.
Lebesgue-measure, i.e. there exist progressively measurable processes (µi(t))0≤t<T with

t∫
0

|µi(s)|ds <∞ for all 0 ≤ t < T

such that

Ci(t) =

t∫
0

µi(s)ds.

Hence

Si(t) = Si(0) exp

(
Mi(t)−

1

2
〈Mi〉t

)
exp

 t∫
0

µi(s)ds


resp.

dSi(t) = Si(t)(dMi(t) + µi(t)dt)

with initial value Si(0).
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Due to the fact that the filtration is a Wiener-filtration the local martingale Mi can br
represented by

Mi(t) =

t∫
0

σi(s)dW (s)

=
n∑
j=1

t∫
0

σij(s)dWj(s)

with previsible processes σi1, ..., σin, such that

t∫
0

|σi(s)|2ds <∞ for all 0 ≤ t < T.

The price-process of the i−th risky assets therefore satisfies

Si(t) = Si(0) exp

 t∫
0

σi(s)dW (s)− 1

2

t∫
0

|σi(s)|2ds

 exp

 t∫
0

µi(s)ds


for all 0 ≤ t < T and thus

dSi(t) = Si(t)(µi(t)dt+ σi(t)dW (t))

= Si(t)(µi(t)dt+
n∑
j=1

σij(t)dWj(t)).

2. Numeraire Asset:
An analogous argumentation yields the existence of an
Rd−valued previsible process (σN(t))0≤t<T and some progressively measurable process
(µN(t))0≤t<T such that

t∫
0

|σN(s)|2ds <∞ for all 0 ≤ t < T

and
t∫

0

|µN(s)|ds <∞ for all 0 ≤ t < T.

Hence

N(t) = N(0) exp

 t∫
0

σN(s)dW (s)− 1

2

t∫
0

|σN(s)|2ds

 exp

 t∫
0

µN(s)ds


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for all 0 ≤ t < T .
Therefore

dN(t) = N(t)(µN(t)dt+ σN(t)dW (t))

= N(t)(µN(t)dt+
n∑
j=1

σNj(t)dWj(t).

If σN(t) ≡ 0, then the numeraire asset is a money-market account with random interest
rate r(t) = µN(t). Hence

N(t)

N(0)
= exp

 t∫
0

r(s)ds

 = β(t) for all 0 ≤ t < T.

and
dβ(t) = β(t)r(t)dt, β(0) = 1.

Some examples are given in the following.

Example 4.1.9. Examples are

a) The classic one-dimensional Black-Scholes model

- constant volatility σ > 0

- constant rate of return µ ∈ R
- constant interest rate r ∈ R
- one-dimensional Wiener-process, that drives the stock prices.

This means:
dS(t) = S(t)(µdt+ σdW (t))

with initial value S0 ∈ (0,∞).

S(t) = S(0)eµt exp

(
σW (t)− 1

2
σ2t

)
and

dN(t) = N(t)rdt, N(0) = 1

hence
N(t) = ert = β(t), for all 0 ≤ t < T.

b) The classic multi-dimensional Black-Scholes Modell

- d stocks

- n independently driving Wiener-processes

- constant volatility matrix σ ∈ Rd×n

- d konstant rate of returns µ1, ..., µd.
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This means

dSi(t) = Si(t)(µidt+
n∑
j=1

σijdWj(t))

with Si(0) ∈ (0,∞) for all 1 ≤ i ≤ d respectively

Si(t) = Si(0)eµit exp

(
n∑
j=1

σijWj(t)−
1

2

n∑
j=1

σ2
ijt

)
for all 1 ≤ i ≤ d.

The money-market account behaves as in a).

c) The multi-dimensional Black-Scholes model with deterministic coefficients as in
b), but replace µ1, ..., µd and σ by functions µ1, ..., µd : [0, T ) −→ R and σ :
[0, T ) −→ Rd×n such that

t∫
0

|µ(s)|ds <∞ 0 ≤ t < T

and
t∫

0

‖σ(s)‖2ds <∞ 0 ≤ t < T.

Then

dSi(t) = Si(t)(µi(t)dt+
n∑
j=1

σij(t)dWj(t)), for all 1 ≤ i ≤ d.

d) The multi-dimensional diffusion model

- volatility matrix σ : [0, T )× (0,∞)d −→ Rd×n

- rate of returns function µ : [0, T )× (0,∞)d −→ Rd

Then, the d−dimensional price-process of the risky assets are a strong solution of

dSi(t) = Si(t)(µi(t, S(t))dt+
n∑
j=1

σij(t, S(t))dWj(t)), for all 1 ≤ i ≤ d.

The money-market account satisfies

dβ(t) = β(t)r(t, S(t))dt

i.e.

β(t) = exp

 t∫
0

r(u, S(u))du

 .

Important: in a diffusion-model S is a d−dimensional Markov-process as strong
solution of some SDE.
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4.1.4 Trading

In the following trading will be mathematically specified. We consider a financial market
with d risky assets and a numeraire asset as stated in the preceding section.

- maximal trading period [0, T )

- trading is modelled by a previsible process (K,H) such that K = (K(t))0≤t<T is
real-valued and integrable w.r.t. (N(t))0≤t<T .

The process H = (H(t))0≤t<T is d−dimensional and integrable according to S.
This means ∫ t

0

Hi(u)dSi(u)

is well defined for each 0 ≤ t < T and i = 1, · · · , d.

- K(t) corresponds to the number of shares of the numeraire asset at t.

- Hi(t) corresponds to the number of shares of the i-th risky asset at t.

- A trading strategy (K,H) leads to an evolution of wealth by

V (t) = K(t)N(t) +
d∑
i=1

Hi(t)Si(t)

= K(t)N(t) +H(t) · S(t) 0 ≤ t < T

- The gains-process is defined by

G(t) =

∫
(0,t]

K(u)dN(u) +
d∑
i=1

∫
(0,t]

Hi(u)dSi(u)

=

∫
(0.t]

K(u)dN(u) +

∫
(0,t]

H(u)dS(u) for all 0 ≤ t < T

Definition 4.1.10. A trading-strategy (K,H) is called self-financing, if the increment
of wealth is only caused by the gain of trading, i.e.

V (t)− V (0) =

∫
(0,t]

K(u)dN(u) +

∫
(0,t]

H(u)dS(u) for all 0 ≤ t < T
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or in differential notation:

dV (t) = K(t)dN(t) +H(t)dS(t)

= K(t)dN(t) +
d∑
i=1

Hi(t)dSi(t).

The wealth process can also be quoted in shares of the numeraire asset.
Let

S?i (t) :=
Si(t)

N(t)
for all 1 ≤ i ≤ d, 0 ≤ t < T

and

V ?(t) :=
V (t)

N(t)
for all 0 ≤ t < T.

An important fact is that self-financing strategies are uniquely determined by the initial
capital V (0) and the trading H in the risky assets.

Proposition 4.1.11. A trading strategy (K,H) is self-financing if and only if

V ?(t) =
V (0)

N(0)
+

t∫
0

H(u)dS?(u) 0 ≤ t < T

holds.

Proof. This follows with integration by parts for semi-martingales.
We consider only the case d = 1 = n.
’⇐’ It holds

V ?(t) = V ?(0) +

t∫
0

H(u)dS?(u) for all 0 ≤ t < T.

and we have to show

V (t) = V (0) +

t∫
0

K(u)dN(u) +

t∫
0

H(u)dS(u) for all 0 ≤ t < T.

With integration by parts we obtain

dV (t) = d(V ?(t)N(t)) = V ?(t)dN(t) +N(t)dV ?(t) + d〈V ?, N〉t.

Due to our prerequisite we have

dV ?(t) = H(t)dS?(t)
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Therefore we have to compute dS?(t). It holds:

dS?(t) = d
S(t)

N(t)
= S(t)d

1

N(t)
+

1

N(t)
dS(t) + d〈S, 1

N
〉t

and

d
1

N(t)
= − 1

N(t)2
dN(t) +

1

N(t)3
d〈N〉t

= − 1

N(t)2
dN(t) +

1

N(t)
σ2
N(t)dt

since dN(t) = N(t)(µN(t)dt+ σ2
N(t)dW (t)).

Hence

dS?(t) =
1

N(t)
dS(t)− S(t)

N(t)2
dN(t) +

S(t)

N(t)
σ2
N(t)dt− S(t)

N(t)
σ(t)σN(t)dt.

One may notice

d〈V ?, N〉t = H(t)d〈S?, N〉t

= H(t)
S(t)

N(t)
σ(t)N(t)σN(t)dt−H(t)

S(t)

N(t)2
N(t)σN(t)N(t)σN(t)dt

= H(t)S(t)(σ(t)σN(t)− σN(t)2)dt.

All together we obtain

dV (t) = V ?(t)dN(t) +N(t)H(t)dS?(t) +H(t)S(t)(σ(t)σN(t)− σN(t)2)dt

= V ?(t)dN(t) +H(t)dS(t)−H(t)S?(t)dN(t)

+H(t)S(t)σ2
N(t)dt−H(t)S(t)σN(t)σ(t)dt

+H(t)S(t)(σ(t)σN(t)− σN(t)2)dt

= H(t)dS(t) + (V ?(t)−H(t)S?(t))dN(t)

= H(t)dS(t) +K(t)dN(t)

due to V ?(t) = V (t)
N(t)

= K(t)N(t)+H(t)S(t)
N(t)

= K(t) +H(t)S?(t).
’⇒’
This follows more or less with the same lines.

Remark 4.1.12. The wealth process of a self-financing trading strategy (K,H) quoted

in shares of N is uniquely determined by its initial quote V ?(0) = V (0)
N(0)

and the trading
in the risky assets by H, since

V ?(t) = V ?(0) +

t∫
0

H(u)dS?(u) for all 0 ≤ t < T.
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Contrary, according to an initial quote V ?(0) and a trading H in the risky assets there
exists a unique previsible process (K(t))0≤t<T such that (K,H) is self-financing with
wealth-process

V ?(t) = V ?(0) +

t∫
0

H(u)dS?(u) for all 0 ≤ t < T.

Computation of (K(t))0≤t<T :
On one hand we have

V ?(t) = K(t) +H(t)S?(t)

and on the other hand

V ?(t) = V ?(0) +

t∫
0

H(u)dS?(u).

Hence

K(t) = V ?(0) +

t∫
0

H(u)dS?(u)−H(t)S?(t).

4.2 The Fundamental Theorem of Asset Pricing

4.2.1 No Admissible Arbitrage Opportunities

We consider a financial market with

1. d risky assets S1, · · · , Sd

2. a numeraire asset N

and assume that all price-processes are driven by some n-dimensional Wiener-process W .
In the following we would like to give a precise analogon of the fundamental theorem in
continuous time. As it turns out this question is by far more difficult than in discrete time
and the right mathematical formulation of an arbitrage opportunity not that obvious
in order to give a meaningful probabilistic characterisation of arbitrage-free markets.
The main difficulty comes from the fact that due to continuous trading several artificial
strategies which have no use in reality have to be excluded. We start with a first try, a
one to one correspondent formulation of arbitrage opportunities.

Definition 4.2.1. A self-financing trading strategy (φ,H) is called an arbitrage oppor-
tunity iff its value process V fulfills

1. V (0) ≤ 0

2. V (T ) ≥ 0

3. P(V (T )− V (0) > 0) > 0
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Note that the existence of a limit lim
t↗T

V (t) is assumed.

An equivalent formulation by only considering trading in the risky assets can be done
in the following way.

Proposition 4.2.2. Assume N(T ) := lim
t↗T

N(t) > 0 P a.s. .

Then there exists an arbitrage opportunity if and only if there exists some previsible
process (H(t))0≤t<T such that

T∫
0

H(u)dS?(u) ≥ 0 and P

 T∫
0

H(u)dS?(u) > 0

 > 0.

Proof. The assumption ensures, that lim
t↗T

V (t) exists if and only if lim
t↗T

V ?(t) exists.

Due to

V ?(T ) = V ?(0)︸ ︷︷ ︸
=0

+

T∫
0

H(u)dS?(u)

the claim follows.

This notion of a risk-free profit opportunity is too simple. Even in the Black-Scholes
model arbitrage opportunities exist and therefore further restrictions have to be intro-
duced that exclude strategies which have no practical use.

Proposition 4.2.3. In the Black-Scholes model there are arbitrage opportunities.

Proof. We consider a Black-Scholes model with µ = r. Then

- β(t) = ert

- dS(t) = S(t)(rdt+ σdW (t)), σ > 0

- S?(t) = e−rtS(t) is a martingale,

- dS?(t) = S?(t)σdW (t)

We are looking for a previsible process (H(t))0≤t<T with

lim
t↗T

t∫
0

H(u)dS?(u) = 1.

Then, with the help of H an arbitrage-opportunity can be constructed.
We consider the following approach

V ∗(t) =

t∫
0

H(u)dS?(u) =

t∫
0

H(u)σS?(u)︸ ︷︷ ︸
f(u)

dW (u).
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and choose H(u) such that

f(u) = H(u)σS?(u), 0 ≤ u < T

is some deterministic function with
t∫

0

f(u)2du <∞ for all 0 ≤ t < T

but
T∫

0

f(u)2du =∞.

One may take

f(t) =
1√
T − t

.

Then

M(t) :=

t∫
0

f(u)dW (u)

is an L2 martingale with

〈M〉t =

t∫
0

f(u)2du for all 0 ≤ t < T

and
〈M〉T = lim

t↗T
〈M〉t =∞.

We consider the stopping time τ by

τ := inf{0 ≤ t < T : M(t) = 1}.

Then
P(τ < T ) = 1.

Define H by

H(u) =

{
f(u)
σS?(u)

if u ≤ τ

0 if u > τ
.

Then
t∫

0

H(u)dS?(u) =

t∫
0

f(u)1(0,τ ](u)dW (u)

=

t∧τ∫
0

f(u)dW (u)

= M(t ∧ τ)
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hence

lim
t↗T

t∫
0

H(u)dS?(u) = M(τ) = 1.

Conclusion: The set of possible trading strategies is too rich and must be reasonably
reduced.
Request: While trading you must not get into debt up to an arbitrary amount.

Definition 4.2.4. A self-financing trading strategy (K,H) is called admissible, if there
exists some c > 0 such that

V ?(t) ≥ −c for all 0 ≤ t < T.

By applying (K,H) a debt of the trader quoted w.r.t. to the numeraire does not exceed
c.

Definition 4.2.5. A financial market is called free of arbitrage if there exists no ad-
missible arbitrage-opportunities. We say that the market fulfills the (NA)-property.

Excluding non-admissible trading strategies leads to the property that the Black-Scholes
model is free of arbitrage, since an equivalent martingale measure exists. In general we
would like to define the term equivalent local martingale measure.

Definition 4.2.6. We consider a financial market as defined in 4.1.3. A probability
measure P? on (Ω,FT ) is called equivalent local martingale measure, if:

(i) P? ∼ P on (Ω,FT ),

(ii) (S?i (t))0≤t<T is a local martingale according to P? for all 1 ≤ i ≤ d.

Note that local martingales that are bounded below by a constant form a super-martingale.
This can be exploited to show that financial markets with an equivalent local martingale
measure are free of arbitrage.

Theorem 4.2.7. If there exists an equivalent local martingale measure, then there are
no admissible arbitrage opportunities.

Proof. Let (K,H) be some self-financing admissible trading strategy. Then

V ?(t) = V ?(0) +

t∫
0

H(u)dS?(u) for all 0 ≤ t < T.
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Hence V ? is a local martingale w.r.t. P? with

V ?(t) ≥ −c for all 0 ≤ t < T.

Therefore V ? is a super-martingale, that converges due to the martingale-convergence
theorem P? a.s. for t↗ T . Fatou’s lemma implies for all s:

E?(V ?(T )|Fs) = E?(lim inf
t↗T

V ?(t)|Fs)

Fatou

≤ lim inf
t↗T

E?(V ?(t)|Fs)

≤ V ?(s).

In particular
E?V ?(T ) ≤ V ?(0).

In the case of financial markets that are driven by a Wiener-process the existence of an
equivalent local martingale measure can be deduced from the parameters

- the rate of returns (µ(t))0≤t<T ,

- the volatility matrix (σ(t))0≤t<T ,

- the interest-rate (r(t))0≤t<T .

by an application of Girsanov’s theorem.
This implies that one can examine from the parameters of the model if the market fulfills
the (NA)-condition.

Theorem 4.2.8. We consider a financial market as specified in 4.1.3 and assume that
there exists N(T ) := lim

t↗T
N(t) with N(T ) > 0 P a.s. .

Then there exists an equivalent local martingale measure P? if and only if there exists
an n−dimensional previsible process (ϑ(t))0≤t<T such that

(i)
T∫
0

|ϑ(s)|2ds <∞ P a.s. ,

(ii) µ(t)+σ(t)(ϑ(t)−σN(t)) = (µN(t)−|σN(t)|2+σN(t)ϑ(t))1 for all 0 ≤ t < T ,

(iii) E exp

(
T∫
0

ϑ(s)dW (s)− 1
2

T∫
0

|ϑ(s)|2ds
)

= 1.

Note, 1 = (1, ..., 1︸ ︷︷ ︸
d

)T
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Proof. ’⇒’ Let P? be some equivalent local martingale measure. Then the density process

Lt =
dP?

dP

∣∣∣∣
Ft

for all 0 ≤ t < T

is a uniformly integrable martingale with

LT = lim
t↗T

Lt > 0 P a.s. .

Furthermore L has a representation as exponential martingale of the from

Lt = exp

(
M(t)− 1

2
〈M〉t

)
for all 0 ≤ t < T

with local martingale M .
Define

〈M〉(T ) := lim
t↗T
〈M〉t.

Since
M(t)

〈M〉t
−→ 0 für t↗ T

on {〈M(T )〉 =∞} we obtain

lnLt = M(t)− 1

2
〈M〉t = 〈M〉t

(
M(t)

〈M〉t
− 1

2

)
−→ −∞

on {〈M〉T =∞}.
But LT > 0 P a.s. and therefore

P({〈M〉T =∞}) = 0.

This implies
〈M〉T <∞ P a.s. .

Due to the martingale representation theorem there exists some previsible process (ϑ(t))0≤t<T
such that

t∫
0

|ϑ(s)|2ds <∞ for all 0 ≤ t < T

and

M(t) =

t∫
0

ϑ(s)dW (s) for all 0 ≤ t < T.

Due to 〈M〉T <∞ P a.s.

T∫
0

|ϑ(s)|2ds <∞ P a.s.
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and

M(T ) = lim
t↗T

M(t) =

T∫
0

ν(s)dW (s).

This implies

LT = exp

 T∫
0

ν(s)dW (s)− 1

2

T∫
0

|ν(s)|2ds


and therefore

1 = ELT = E exp

 T∫
0

ν(s)dW (s)− 1

2

T∫
0

|ν(s)|2ds

 .

Therefore (i) and (iii) hold.
ad (ii): For 1 ≤ i ≤ d:

dSi(t) = Si(t)(µi(t)dt+
n∑
j=1

σij(t)dWj(t)

dN(t) = N(t)(µN(t)dt+
n∑
j=1

σNj(t)dWj(t)

Due to Ito’s formula

d
1

N(t)
= − 1

N(t)2
dN(t) +

1

N(t)3
d〈N〉t

= − 1

N(t)
(µN(t)dt+ σN(t)dW (t)) +

1

N(t)
|σN(t)|2dt

=
1

N(t)
((|σN(t)|2 − µN(t))dt− σN(t)dW (t)).

Integration by parts implies

d
Si(t)

N(t)
= Si(t)d

1

N(t)
+

1

N(t)
dSi(t) + d〈Si,

1

N
〉t

=
Si(t)

N(t)
((|σN(t)|2 − µN(t))dt− σN(t)dW (t))

+
Si(t)

N(t)
(µi(t)dt+ σi(t)dW (t))

− Si(t)

N(t)
σN(t)σi(t)dt.

Hence, we obtain

dS?i (t) = S?i (t)((|σN(t)|2 + µi(t) + σN(t)σi(t)− µN(t))dt+ (σi(t)− σN(t))dW (t)). (4.1)
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Due to Girsanov’s theorem

W ?
j (t) = Wj(t)−

t∫
0

ϑ(s)ds 1 ≤ j ≤ n, 0 ≤ t < T

are n independent Wiener-processes w.r.t. P?.
Plugged into 4.1 we get

dS?i (t) = S?i (t)(|σN(t)|2 + µi(t)− σN(t)σi(t)− µN(t) + (σi(t)− σN(t))ϑ(t))dt

+ S?i (t)(σi(t)− σN(t))dW ?(t).

Hence S?i is a local martingale if and only if the dt-term vanishes, i.e.

|σN(t)|2 + µi(t) + (σi(t)− σN(t))ϑ(t) = µN(t) + σN(t)σi(t)

⇔µi(t) + σi(t)ϑ(t)− σi(t)σN(t) = µN(t)− |σN(t)|2 + σN(t)ϑ(t).

Hence (ii) follows.
’⇐’ Due to (i) and (ii) Girsanov implies that there exists an equivalent probability
measure P? with

dP?

dP

∣∣∣∣
Ft

= exp

 t∫
0

ϑ(s)dW (s)− 1

2

t∫
0

|ϑ(s)|2ds

 .

(ii) implies, that

S?i (t) =
Si(t)

N(t)
, 0 ≤ t < T

is a local P?− martingale for all 1 ≤ i ≤ d.

Remark 4.2.9. If N denotes a money market account, then the condition (ii) in 4.2.8
is given by

µ(t) + σ(t)ϑ(t) = r(t)1 for all 0 ≤ t < T.

Example 4.2.10. a) one-dimensional Black-Scholes model

dS(t) = S(t)(µdt+ σdW (t))

dβ(t) = β(t)rdt

Put ϑ = −µ−r
σ

and
dP?

dP

∣∣∣∣
Ft

= exp

(
ϑW (t)− 1

2
ϑ2t

)
.

Then P? is an equivalent local martingale measure.
According to P? it holds

dS(t) = S(t)(rdt+ σdW ?(t)
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with W ?(t) = W (t)− ϑt or equivalent

dS?(t) = S?(t)σdW ?(t).

b) multi-dimensional Black-Scholes model

dSi(t) = Si(t)(µidt+
n∑
j=1

σijdWj(t)) for all 1 ≤ i ≤ d, 0 ≤ t < T

dβ(t) = β(t)rdt

If the equation
µ+ σϑ = r1

can be solved by ϑ ∈ Rn, then there exists an equivalent local martingale measure P?
with

dP?

dP

∣∣∣∣
Ft

= exp

(
n∑
j=1

ϑjWj(t)−
1

2
|ϑ|2t

)
and

W ?(t) = W (t)− ϑt

is a n−dimensional Wiener-process w.r.t. P?.
In addition

dSi(t) = Si(t)(rdt+
n∑
j=1

σijdW
?
j (t)).

In the case n = d and invertible σ

ϑ = σ−1(−(µ− r1)).

c) Black-Scholes with deterministic coefficients

dSi(t) = Si(t)(µi(t)dt+
n∑
j=1

σij(t)dWj(t))

dβ(t) = β(t)rdt

If the equation
µ(t) + σ(t)ϑ(t) = r(t)1 for all 0 ≤ t < T

can be solved by ϑ(t) ∈ Rn and is

T∫
0

|ϑ(s)|2ds <∞
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then an equivalent local martingale measure can be defined by

dP?

dP

∣∣∣∣
Ft

= exp

 t∫
0

ϑ(s)dW (s)− 1

2

t∫
0

|ϑ(s)|2ds

 0 ≤ t < T

and

W ?(t) = W (t)−
t∫

0

ϑ(s)dt

defines a Wiener-process w.r.t P? such that

dSi(t) = Si(t)(r(t)dt+
n∑
j=1

σij(t)dW
?
j (t))

according to P? for all 1 ≤ i ≤ d.

4.2.2 No Free Lunch with Vanishing Risk

Note, that the statements in theorem 4.2.7 are not equivalent. The prerequisite of
no admissible arbitrage opportunities is not sufficient to deduce the existence of an
equivalent local martingale measure. A slight stronger condition has to be assumed.
Delbaen and Schachermeyer introduced the so called No Free Lunch with Vanishing
Risk condition and proved the First Fundamental Theorem. In the book of Eberlein
and Kallsen a very readable definition of NFLVR is given, see Definition 11.48 there.

Definition 4.2.11. A non-negative random FT -measurable variable C with P(C > 0) >
0 is called a free lunch with vanishing risk if, for any ε > 0 there exists some admissible
strategy (φ,H) such that its wealth-process V fulfills

(i) V (0) < ε,

(ii) V (T ) ≥ C.

A financial market fulfills the NFLVR condition if no free lunch with vanishing risk
exists.

Delbaen and Schachermayer proved in Theorem 1.1 the famous most general First Fun-
damental Theorem of Asset Pricing.

Theorem 4.2.12. In a financial market with locally bounded price processes the follow-
ing statements are equivalent.

(i) The NFLVR condition holds

(ii) There exists an equivalent local martingale measure P∗, i.e. some probability mea-
sure P∗ ≈ P such that the discounted price process S∗ is a local-martingale relative
to P∗.
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Proof. If there exists an equivalent local martingale measure P∗, then as in 4.2.7 one can
show that there is no free lunch with vanishing risk. That from the NFLVR condition an
equivalent local martingale measure can be constructed is difficult to show and follows
with a careful application of tools from functional analysis. We refer to the original
paper of Delbaen and Schachermayer.

Note that price-processes with continuous paths in particular those driven by some
Wiener-process are locally bounded and therefore NFLVR implies the existence of an
equivalent local martingale measure.
The question arises when an equivalent martingale measure exists. To reply this one
should be aware that the NFLVR condition strongly depends on the choice of the nu-
meraire asset since in the definition of admissible trading strategies it is important how
the discounted value process is achieved. One outstanding numeraire asset is the so
called market portfolio

M = N + S1 + · · ·+ Sd.

Definition 4.2.13. A self-financing strategy is called allowable or market-admissible if
it is admissible w.r.t. the market portfolio M . Hence there exists some c > 0 such that

V̂ (t) =
V (t)

M(t)
≥ −c

for each 0 ≤ t ≤ T . We say that a financial market fulfills the NFLVR(M) condition if
no free lunch with vanishing risk can be financed by market-admissible trading strategies.

Note that each admissible trading strategy is also an allowable trading strategy but
not vice versa. Thus the NFLVR(M)-condition is stronger than the NFLVR-condition
and it can be shown that from the stronger requirement the existence of an equivalent
martingale measure can be deduced.

Theorem 4.2.14. In a financial market the following statements are equivalent.

(i) The NFLVR(M)-condition holds.

(ii) There exists an equivalent martingale measure P∗, i.e. P∗ is equivalent to P and
S∗ is a martingale w.r.t. P∗.

Proof. =⇒ : First one has to verify that there exists an equivalent martingale measure P∗
w.r.t. the numeraire N if and only if there exists an equivalent martingale measure
P̂ w.r.t. the numeraire M . If P∗ is such an equivalent martingale measure, then

M

N
= 1 + S∗1 · · ·+ S∗d

is a positive martingale w.r.t. P∗ After normalisation an equivalent probability
measure P̂ can be defined by

dP̂
dP∗
|Ft = L(t) =

M(t)

N(t)

N(0)

M(0)
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for all 0 ≤ t ≤ T . Due to Bayes-formula the martingale property of S∗ w.r.t. P∗
implies the martingale property of

S∗

L
=

S

M

M(0)

N(0)

w.r.t. P̂. Hence Ŝ = S
M

is a martingale w.r.t. P̂.

To show the other direction we assume that P̂ is a martingale measure w.r.t. M
as numeraire. But then N

M
defines a positive martingale w.r.t. P̂ and an equivalent

probability measure P∗ can be defined by

dP∗

dP̂
|Ft =

1

L
(t) =

N(t)

M(t)

M(0)

N(0)

for all 0 ≤ t ≤ T and

S∗ =
Ŝ

L
defines a martingale w.r.t. P∗.
In the next step from the NFLVR(M)-condition the existence of an equivalent local
martingale measure P̂ can be deduced. But Ŝ = S

M
is bounded and a bounded local

martingale is a martingale. Thus P̂ is a martingale measure w.r.t. the numeraire
M . But this implies that there exists also a martingale measure P∗ w.r.t. N as
numeraire.

⇐=: This is obviously true.

One main question is the following. in which markets and for which strategies hold the
law of one price? An answer can be given by so called maximal allowable strategies.

Definition 4.2.15. A self-financing trading strategy with wealth process V is called
maximal allowable, maximal market-admissible or regular if its terminal value V (T ) can
not be dominated by another terminal value of an allowable self-financing trading strategy
with the same initial value, i.e. for each allowable self-financing trading strategy with
wealth-process U and U(0) = V (0) holds U(T ) ≤ V (T ).

For maximal allowable strategies and markets that fulfill the NFLVR(M)-condition a
version of the law of one price holds.

Theorem 4.2.16. Suppose that the market satisfies NFLVR(M). If H,K are maximal
allowable strategies with the same final value VH(T ) = VK(T ), then VH(t) = VK(t) for
all t ≤ T . Accordingly we have VH ≤ VK if we only assume VH(T ) ≤ VK(T ) for the final
values.

Proof. We consider the market-portfolio M as numeraire asset. Then the discounted
price processes Ŝ = S

M
is a bounded process. Due to the NFLVR(M)-condition the set

of equivalent martingale measures is non-empty. Since H is maximal allowable Delbaen
and Schachermayer showed that there exists an equivalent martingale measure P̂ such
that V̂H and V̂K are martingales w.r.t. P̂. This shows the assertion.
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4.3 Pricing of European Derivatives

European derivatives are contracts that ensure its holder a pay-off C at a pre-described
fixed time point T . Such a payoff C is usually called a claim with maturity T . In this
section we would like to show how such a claim can be priced in an arbitrage-free market.
In principle one has to distinguish between two types of markets, the so called complete
and incomplete markets.

4.3.1 Pricing in a Complete Market

We consider a financial market as in 4.1.3 specified. This means that there are d risky
assets and one numeraire asset in the market with price-processes of the form

dSi(t) = Si(t)(µi(t)dt+
n∑
j=1

σij(t)dWj(t)) 1 ≤ i ≤ d

dN(t) = N(t)(µN(t)dt+
n∑
j=1

σNj(t)dWj(t)).

We assume that there exists some equivalent local martingale measure P?. Then the
market has no admissible arbitrage opportunities.
With Girsanov there exists some Wiener-process W ? according to P? such that

dS?i (t) = S?i (t)σi(t)dW
?(t)

= S?i (t)
n∑
j=1

σij(t)dW
?
j (t) for all 1 ≤ i ≤ d, 0 ≤ t < T.

Hereby
σij(t) := σij(t)− σNj(t)

and

S?i (t) =
Si(t)

N(t)
.

Shortly:
dS?(t) = S?(t)σ(t)dW ?(t)

A derivative can be seen as a contract that ensures at a fixed date T a random payment
C. This will be now formalised by the term contingent claim.

Definition 4.3.1. A contingent T -claim C is some FT -measurable random variable.
C is called attainable w.r.t. the initial capital x ∈ R, if there exists some previsible
process H such that

(i) x
N(0)

+
T∫
0

H(u)dS?(u) = C
N(T )

=: C?
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(ii)

(
t∫

0

H(u)dS?(u)

)
0≤t<T

is a uniformly integrable P?-martingale.

Then H is called hedge for C according to the initial capital x ∈ R.
x is that amount of money in Euro, that a seller needs to completely eliminate the risk
from his short position.

Remark 4.3.2. Let H be some hedge according to an initial capital x for a T -Claim C,
then a self-financing trading strategy (K(t), H(t))0≤t<T can be uniquely defined by

K(t) =
x

N(0)
+

t∫
0

H(u)dS?(u)−H(t)S?(t) for all 0 ≤ t < T.

Its wealth-process (V (t))0≤t<T fulfills

V ?(t) =
x

N(0)
+

t∫
0

H(u)dS?(u) for all 0 ≤ t < T

= E?(C?|Ft)

respectively
V (t) = N(t)V ?(t) = N(t)E?(C?|Ft) 0 ≤ t < T.

In particular C? is integrable w.r.t. P? and

x

N(0)
= E?C? = E?

C

N(T )

and
V (T ) = C.

If C? ≥ −a for some a ∈ R>0, then (K,H) is admissible.

Proof.

(
t∫

0

H(u)dS?(u)

)
0≤t<T

is a uniformly integrable P?−martingale with

C? =
x

N(0)
+

T∫
0

H(u)dS?(u).

Hence

E?(C?|Ft) = E?(
x

N(0)
+

T∫
0

H(u)dS?(u)|Ft)

=
x

N(0)
+

t∫
0

H(u)dS?(u)

= V ?(t) 0 ≤ t < T.
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In particular

E?C? = V ?(0) =
x

N(0)
.

Corollary 4.3.3. Let H1 and H2 be hedges for C according to the initial capital x1

respectively x2. Then

x1 = x2 and

t∫
0

H1(u)dS?(u) =

t∫
0

H2(u)dS?(u)

for all 0 ≤ t < T .

Proof. Due to Theorem 4.3.2

x1

N(0)
= E?C? =

x2

N(0)
⇒ x1 = x2

and

x1

N(0)
+

t∫
0

H1(u)dS?(u) = E?(C?|Ft)

=
x2

N(0)
+

t∫
0

H2(u)dS?(u).

Due to x1 = x2 it holds
t∫

0

H1(u)dS?(u) =
t∫

0

H2(u)dS?(u) for all 0 ≤ t < T .

Note that the value-process of a contingent claim C is uniquely given by

(E?(C?|Ft))0≤t<T .

Theorem 4.3.4. Let C be a contingent T -claim according to an initial capital x and
hedge (H(t))0≤t<T . Let C? ≥ −a for some a > 0.
Then for each equivalent local martingale measure P?1

E?1(C?|Ft) =
x

N(0)
+

t∫
0

H(u)dS?(u)

= E?(C?|Ft) 0 ≤ t < T.
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Proof. 1. step: show the assertion for bounded C?.
Due to Theorem 4.3.2

x

N(0)
+

t∫
0

H(u)dS?(u) = E?(C?|Ft) for all 0 ≤ t < T.

Since −a ≤ C? ≤ b it holds

−a ≤ x

N(0)
+

t∫
0

H(u)dS?(u) ≤ b for all 0 ≤ t < T.

Hence the local P?1-martingale

(
t∫

0

H(u)dS?(u)

)
0≤t<T

is bounded and therefore uniformly

integrable w.r.t. P?1.
Hence

x

N(0)
+

t∫
0

H(u)dS?(u) = E?1(x+

T∫
0

H(u)dS?(u)|Ft)

= E?1(C?|Ft) for all 0 ≤ t < T.

In particular

E?1C? =
x

N(0)
= E?C?.

2. step: C? ≥ −a
This can be shown by reduction to the first step. But the argumentation is a bit complex
and omitted here.

We may conclude
If C is an attainable contingent claim then the value-process of each replicating trading
strategy coincide with

(E∗(C∗|Ft))0≤t≤T

and therefore this process can be seen as arbitrage-free value process for the claim C.

Definition 4.3.5. Let C ≥ 0 be an attainable contingent Claim. Then the value

E?C?

is called initial arbitrage-free price for C, quoted in shares of the numeraire asset.
N(0)E?C? denotes then the initial arbitrage-free price in Euro.
(E?(C?|Ft))0≤t<T is called arbitrage-free price-process for C, quoted in shares of the
numeraire asset and (N(t)E?(C?|Ft))0≤t<T denotes the arbitrage-free price process in
Euro.
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Remark 4.3.6. This definition is reasonable, since in an extended market where C
is traded with price-process (N(t)E?(C?|Ft))0≤t<T the probability measure P? remains
to be an equivalent local martingale measure. Therefore the extended market has no
admissible arbitrage-opportunities.

The question arises, how to examine if claims are attainable. A simple answer can be
given in so called complete markets.

Definition 4.3.7. A financial market is called complete if and only if there exists a
unique local equivalent martingale measure.

By the coefficients of the market, the drift processes and volatilities, one can decide if a
market is complete.

dSi(t) = Si(t)(µi(t)dt+
n∑
j=1

σij(t)dWj(t)) for all 1 ≤ i ≤ d

dN(t) = N(t)(µN(t)dt+
n∑
j=1

σNj(t)dWj(t)

The condition (ii) from 4.2.8 can be transformed to

µ(t) + σ(t)ϑ(t) = µN(t)1 + σ(t)σN(t)

whereat
σij(t) := σij(t)− σNj(t) for all 1 ≤ i ≤ d, 1 ≤ j ≤ n.

If the dimension of the source of uncertainty is larger then the numer of risky assets.
the market is not complete.

Theorem 4.3.8. If n > d, then the market is not complete.

Proof. If there exists no local equivalent martingale measure then the market is not
complete either due to the definition of completeness.
Hence we can assume that there exists an equivalent local martingale measure P? with
previsible Rn-valued density process (ϑ(t))0≤t<T such that

dP?

dP

∣∣∣∣
Ft

= exp

 t∫
0

ϑ(s)dW (s)− 1

2

t∫
0

|ϑ(s)|2ds

 for all 0 ≤ t < T

and
σ(t)ϑ(t) = µN(t)1 − µ(t) + σ(t)σN(t)

for λ⊗ P−a.s. (t, ω) is satisfied.
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Due to d < n Kernel(σ(t)) 6= {0} for all 0 ≤ t < T . Choose η(t) ∈ Kernel(σ(t)) with
|η(t)| = 1 for all 0 ≤ t < T . We use this η to define a further equivalent local martingale
measure.
We know:

W ?(t) = W (t)−
t∫

0

ϑ(s)ds for all 0 ≤ t < T

is a Wiener-process w.r.t. P? and

dS?(t) = S?(t)σ(t)dW ?(t).

Let

L(t) := exp

 t∫
0

η(s)dW ?(s)− 1

2

∫ t

0

|η(s)|2ds

 for all 0 ≤ t < T.

Due to the Novikov condition (L(t))0≤t<T is a uniformly integrable martingale.
(Alternatively we can also apply Lévy’s theorem: Put

B(t) =

t∫
0

η(s)dW ?(s), 0 ≤ t < T.

Then B is a local martingale with 〈B〉t =
t∫

0

|η(s)|2︸ ︷︷ ︸
=1

ds = t. Hence B is a Wiener-process

and

L(t) = exp(B(t)− 1

2
t)

is a P?- martingale.)
We define a further probability measure P?? by

dP??

dP?

∣∣∣∣
Ft

= L(t) for all 0 ≤ t < T.

Then

W ??(t) = W ?(t)−
t∫

0

η(s)ds 0 ≤ t < T

is a Wiener-process according to P?? and

dS?(t) = S?(t)σ(t)dW ?(t)

= S?(t)σ(t)(dW ??(t) + η(t)dt)

= S?(t)( σ(t)η(t)︸ ︷︷ ︸
=0, due to

η∈Kernel σ(t)

dt+ σ(t)dW ??(t))

= S?(t)σ(t)dW ??(t).

Hence P?? is a further equivalent local martingale measure.
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If there are more risky assets then dimension of uncertainty the market is complete if
there exists a local martingale measure.

Theorem 4.3.9. Let n < d and Kernel(σ(t)) = {0} a.s., then the market is complete,
if

µN(t)1 − µ(t) + σ(t)σN(t) = σ(t)ϑ(t)

can be solved a.s. by ϑ and

E exp

 T∫
0

ϑ(s)dW (s)− 1

2

T∫
0

|ϑ(s)|2ds

 = 1.

Proof. Due to Kernel(σ(t) = {0}) the above ϑ(t) is uniquely determined. Since

E exp

 T∫
0

ϑ(s)dW (s)− 1

2

T∫
0

|ϑ(s)|2ds

 = 1

there exists an equivalent local martingale measure P? which is unique. Therefore the
market is complete.

If the number of risky assets coincide with the dimension of uncertainty then the market
is complete.

Theorem 4.3.10. We suppose that there exists an equivalent local martingale measure.
If n = d and σ(t) is invertible for λ⊗P-almost sure (t, ω), then the market is complete.

Proof.
µ(t) + σ(t)ϑ(t) = µN(t)1 + σ(t)σN(t)

can be uniquely solved if and only if σ(t) is invertible.

Theorem 4.3.11. We suppose that there exists an equivalent local martingale measure.
If n = d and

λ⊗ P ({(t, ω) : σ(t) ist nicht invertierbar}) > 0,

then the market is not complete.

Proof. Due to
λ⊗ P ({(t, ω) : σ(t) is not invertable}) > 0

Kernel(σ(t)) 6= {0} and a further equivalent local martingale measure can be defined.
Therefore the market is not complete.

In a complete market each integrable claim is attainable.
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Theorem 4.3.12. We consider a complete market with a unique equivalent local mar-
tingale measure P?. Let C denote a T -claim with E?|C?| <∞.
Then there exists according to the initial capital x := N(0)E?C? a replicating trading
strategy for C.

Proof. Due to the martingale representation theorem there exists a representation of the
uniformly integrable P?-martingale

E?(C?|Ft) = E?C? +

t∫
0

α(u)dW ?(u)

as stochastic integral process w.r.t. a Wiener-process according to P?.
Due to completeness n ≤ d and σ(t) is invertible for all t.
We have to determine a d-dimensional previsible process H such that

t∫
0

α(u)dW ?(u) =

t∫
0

H(u)dS?(u).

n∑
j=1

t∫
0

αj(s)dW
?
j (s) =

d∑
i=1

t∫
0

Hi(u)dS?i (u)

=
d∑
i=1

n∑
j=1

t∫
0

Hi(u)S?i (u)σij(u)dW ?
j (u)

=
n∑
j=1

t∫
0

d∑
i=1

Hi(u)S?i (u)σij(u)dW ?
j (u)

Hence we have to solve

αj(u) =
d∑
i=1

Hi(u)S?i (u)σij(u) for all 1 ≤ j ≤ n

respectively

α(u) = σT (u)

 H1(u)S?1(u)
...

Hd(u)S?d(u)

 .

Since Kernel(σ(t)) = {0}, this equation can uniquely be solved by (H(u))0≤u<T .

The preceding theorem is not of real usage in practise since only the existence of α
can be guaranteed. It makes no statement how such an α can be determined. Often a
PDE-approach leads to a concrete hedge.
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4.3.2 PDE Approach

We consider a complete diffusion-model with n = d, i.e.

dSi(t) = Si(t)

(
r(t, S(t))dt+

n∑
j=1

σij(t, S(t))dW ?
j (t)

)
for all 1 ≤ i ≤ d

dβ(t) = β(t)r(t, S(t))dt

w.r.t. the unique equivalent local martingale measure P? withW ? denoting some Wiener-
process according to P?.
Let C? be a T -claim of the form

C = h(S(T ))

with

E?
|h(S(T ))|
β(T )

<∞.

Then there exists a replicating trading strategy with value-process (V (t))0≤t<T , such
that

V (t) = β(t)E?
(
h(S(T ))

β(T )
|Ft
)

= E?
h(S(T )) exp

− T∫
t

r(u, S(u))du

 |Ft
 .

In the diffusion-model S is a d−dimensional Markov-process. Hence

V (t) = E?
h(S(T )) exp

− T∫
t

r(u, S(u))du

 |S(t)


= v(t, S(t))

with

v(t, x) = E?
h(S(T )) exp

− T∫
t

r(u, S(u))du

 |S(t) = x

 for all 0 ≤ t < T, x ∈ (0,∞)d

=

∫
h(yT ) exp

− T∫
t

r(u, yu)du

Kt(x, dy).

and
Kt(x, ·) = P?(S(u))u≥t ∈ ·|St = x)

as well as (yu)u≥t the realisation of a path of S after time t.
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In many diffusion-models from the integrability condition E?|C?| < ∞ the smoothness
of v can be deduced. Then Ito’s formula can be applied and it follows:

dv(t, S(t)) = ∂tv(t, S(t))dt+
d∑
i=1

∂xiv(t, S(t))dSi(t) +
1

2

d∑
i,j=1

∂xi∂xjv(t, S(t))d〈Si, Sj〉t

= ∂tv(t, S(t))dt+
d∑
i=1

∂xiv(t, S(t))Si(t)
(
r(t, S(t))dt+

d∑
j=1

σij(t, S(t))dW ?
j (t)

)
+

1

2

d∑
i,j=1

(
∂xi∂xjv(t, S(t))Si(t)Sj(t)(σσ

T )ij(t, S(t))
)
dt

due to

d〈Si, Sj〉t = d〈
d∑

k=1

·∫
0

Si(u)σik(u, S(u))dW ?
k (u),

d∑
l=1

·∫
0

Sj(u)σjk(u, S(u))dW ?
l (u)〉t

=
d∑

k=1

d∑
l=1

d〈
·∫

0

Si(u)σik(u, S(u))dW ?
k (u),

·∫
0

Sj(u)σjl(u, S(u))dW ?
l (u)〉t

=
d∑

k,l=1

Si(u)σik(u, S(u))Sj(u)σjk(u, S(u))d〈W ?
k ,W

?
l 〉u

= Si(u)Sj(u)(σσT )ij(u, S(u))du

Hence we obtain

dv(t, S(t)) =
(
∂tv(t, S(t)) +

d∑
i=1

∂xiv(t, S(t))Si(t)r(t, S(t))

+
1

2

d∑
i,j=1

∂xi∂xjv(t, S(t))Si(t)Sj(t)(σσ
T )ij(t, S(t))

)
dt

+
d∑
i=1

∂xiv(t, S(t))Si(t)
d∑
j=1

σij(t, S(t))dW ?
j (t).

Since (β−1(t)v(t, S(t)))0≤t<T is a P?-martingale, we get

∂tv(t, x) +
d∑
i=1

∂xiv(t, x)xir(t, x) +
1

2

d∑
i,j=1

∂xi∂xjv(t, x)xixj(σσ
T )ij(t, x) = r(t, x)v(t, x)

for all 0 ≤ t < T, x ∈ (0,∞)d.
Thus the function

v : (0, T )× (0,∞)d −→ R
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is a solution to the so called Cauchy-problem

∂tv(t, x) +
d∑
i=1

∂xiv(t, x)xir(t, x) +
1

2

d∑
i,j=1

∂xi∂xjv(t, x)xixj(σσ
T )ij(t, x) = r(t, x)v(t, x)

with final condition
lim
t↗T

v(t, x) = h(x).

This solution can usually not explicitly be determined, but numerical procedures can be
applied to compute approximately the value function.
A side-effect of this approach is that a hedge can be determined either.

dV (t) = dv(t, S(t)) = v(t, S(t))r(t)dt+
d∑
i=1

∂xiv(t, S(t))Si(t)
d∑

k=1

σij(t, S(t))dW ?
j (t)

implies with integration by parts

dV ?(t) = d
v(t, S(t))

β(t)
=

d∑
i=1

∂xiv(t, S(t))S?i (t)
d∑
j=1

σij(t, S(t))dW ?
j (t)

=
d∑
i=1

∂xiv(t, S(t))dS?i (t).

Hence it follows

V ?(t) = V ?(0) +
d∑
i=1

t∫
0

∂xiv(u, S(u))︸ ︷︷ ︸
Hi(u)

dS?i (u)

with V ?(0) = V (0) = E?C? = v(0, S(0)).
We obtain the so called δ-Hedge by

Hi(t) = ∂xiv(t, S(t)) for all 1 ≤ i ≤ d, 0 ≤ t < T

K(t) = V ?(t)−
d∑
i=1

Hi(t)S
?
i (t).

4.3.3 Examples

Black-Scholes Model

Here under the equivalent martingale measure we have the dynamics

dS(t) = S(t)(rdt+ σdW ∗(t))

with money-market account
dβ(t) = β(t)rdt.
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For a call option with strike K and maturity T we get the price function

v(t, x) = e−r(T−t)E∗(S(T )−K)+|S(t) = x).

Due to the fact that S(t+s)
S(t)

is independent of Ft and also S(t) the value v(t, x) coincides
with the initial price of a call-option in a BS-model with running time T − t, volatility
σ and interest rate r. Hence

v(t, x) = xΦ(h1(x, T − t))−Ke−r(T−t)Φ(h2(x, T − t)).

The ∆-hedge we get by taking the partial derivative of v w.r.t. x, i.e.

H(t) = ∂xv(t, S(t)) = Φ(h1(S(t), T − t)) 0 ≤ t ≤ T

with

h1(x, T ) =
log
(
x
K

)
+ (r + 1

2
σ2)T

σ
√
T

h2(x, T ) =
log
(
x
K

)
+ (r − 1

2
σ2)T

σ
√
T

.

The price-function solves the Cauchy-problem

∂tv(t, x) + xr∂xv(t, x) +
1

2
σ2x2∂2

xv(t, x) = rv(t, x)

for all 0 < t < T, x > 0 with terminal condition

lim
t→T

v(t, x) = (K − x)+.

Black-Scholes Model with deterministic coefficients

Here under the equivalent martingale measure we have the dynamics

dS(t) = S(t)(r(t)dt+ σ(t)dW ∗(t))

with money-market account
dβ(t) = β(t)r(t)dt.

The volatility and interest-rate are deterministic functions of time.
For a call option with strike K and maturity T we get the price function

v(t, x) = e−R(t,T )E∗(S(T )−K)+|S(t) = x)

with

R(t, T ) =

∫ T

t

r(s)ds.

155



Due to the fact that S(t+s)
S(t)

is independent of Ft the above conditional expected value
can be calculated as in a Black-Scholes model with running-time T − t and dynamics
given by

dZ(u) = Z(u)(r(t+ u)du+ σ(t+ u)dW ∗(u))

with initial price x. We obtain

v(t, x) = xΦ(g1(x, t))−Ke−r(T−t)Φ(g2(x, t))

with

g1(x, t) =
log
(
x
K

)
+ (R(t, T ) + 1

2
η(t, T )√

η(t, T )

g2(x, t) =
log
(
x
K

)
+ (R(t, T )− 1

2
η(t, T )√

η(t, T
.

and

η(t, T ) =

∫ T

t

σ2(s)ds.

The price-function solves the Cauchy-problem

∂tv(t, x) + xr(t)∂xv(t, x) +
1

2
σ(t)2x2∂2

xv(t, x) = r(t)v(t, x)

for all 0 < t < T, x > 0 with terminal condition

lim
t→T

v(t, x) = (K − x)+.

The ∆-hedge is obtained by

H(t) = ∂xv(t, S(t)) = Φ(g1(x, t)).

The two-dimensional Black-Scholes Model

We consider a BS-model with two stocks, i.e.

dS1(t) = S1(t)(rdt+ σ1dW
∗
1 (t))

dS2(t) = S2(t)(rdt+ σ2dW
∗
2 (t))

with 〈W ∗
1 ,W

∗
2 〉t = ρt for some −1 < ρ < 1. As numeraire we consider a money market

account with constant interest rate r.
The exchange option gives its holder the right to exchange stock 1 with stock 2 at T .
This corresponds to the T -claim

C = (S2(T )− S1(T ))+.

The price function depends on time and the observed stock prices x1, x2 and is given by

v(t, x1, x2) = E∗(e−r(T−t)(S2(T )− S1(T ))+|S1(t) = x1, S2(t) = x2)
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= x2Φ

(
log x2

x1
+ 1

2
(σ2

1 + σ2
2)T − σ1σ2%(T − t)√

(T − t)(σ2
2 − 2%σ1σ2 + σ2

1)

)

−x1Φ

(
log x2

x1
− 1

2
(σ2

1 + σ2
2)T + σ1σ2%T√

T (σ2
2 − 2%σ1σ2 + σ2

1)

)
. (4.2)

It solves the PDE

∂tv(t, x1, x2) + rx1∂x1v(t, x1, x2) + rx2∂x2v(t, x1, x2)

+
1

2
σ2

1x
2
1∂

2
x1
v(t, x1, x2) +

1

2
σ2

2x
2
2∂

2
x2
v(t, x1, x2) + ρσ1σ2x1x2∂

2
x1,x2

v(t, x1, x2)

= rv(t, x1, x2). (4.3)

The ∆-hedge is obtained by

Hi(t) = ∂xiv(t, S(t)) 0 ≤ t ≤ T, i = 1, 2.

4.3.4 PDE Approach for Barrier Options

The PDE approach works in a diffusion-model for path-independent claims. Only for
special cases an analogous analysis for path-dependent claims can be done. As such an
example we consider a barrier option in a complete one-dimensional diffusion-model of
the form

dS(t) = S(t)
(
r(t, S(t))dt+ σ(t, S(t))dW ?(t)

)
dβ(t) = β(t)r(t, S(t))dt

w.r.t.the equivalent local martingale measure P?.
According to

h : (0,∞) −→ R

with

E?
|h(S(T ))|
β(T )

<∞

we would like to determine the price-function of a barrier-option.
Hereby a barrier-option with barrier 0 ≤ K < L ≤ ∞ becomes worthless if the price-
process of the underlying falls below a barrier K or exceeds the barrier L during the
running-time. This is a so called knock-out option and is defined by the T -claim

C = h(S(T ))1{τ0>T}

with
τt := inf{u ≥ t : S(u) ≤ K oder S(u) ≥ L}

for all 0 ≤ t < T .
It is an example of a path dependent option.
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The price of C at t fulfills

pt(C) = β(t)E?(C?|Ft)

= E?
h(S(T )) exp

− T∫
t

r(u, S(u))du

1{τ0>T}|Ft


= E?

h(S(T )) exp

− T∫
t

r(u, S(u))du

1{τ0>t}1{τt>T}|Ft


= 1{τ0>t}E?

h(S(T )) exp

− T∫
t

r(u, S(u))du

1{τt>T}|Ft


= 1{τ0>t}v(t, S(t))

with

v(t, x) = E?
h(S(T )) exp

− T∫
t

r(u, S(u))du

1{τt>T}|S(t) = x

 for all K < x < L.

The function v fulfills a PDE with boundary- and terminal condition.
Derivation of the PDE:
Due to β−1(t)pt(C) = E?(C?|Ft) is a P?-martingale, the process

β−1(t ∧ τ0)pt∧τ0(C) = β−1(t ∧ τ0)v(t ∧ τ0, S(t ∧ τ0)) 0 ≤ t < T

is a P?-martingale either.
The Ito-formula applied to v(t ∧ τ0, S(t ∧ τ0)) leads to the PDE

∂tv(t, x) +
1

2
x2σ2(t, x)∂2

xv(t, x) + r(t, x)x∂xv(t, x) = r(t, x)v(t, x)

for all 0 ≤ t < T,K < x < L.
Due to lim

t↗τ0
v(t, S(t)) = 0 P?−a.s. the boundary conditions follow

lim
x↗L

v(t, x) = 0 for all 0 ≤ t < T

lim
x↘K

v(t, x) = 0 for all 0 ≤ t < T

and the final condition

lim
t↗T

v(t, x) = h(x) for all K < x < L.
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4.3.5 Sharpe Ratio

We consider a one-dimensional complete market

dS(t) = S(t)
(
µ(t)dt+ σ(t)dW (t)

)
dβ(t) = β(t)r(t)dt.

The subjective probability measure P can be seen as the belief of an investor how the
risky asset evolves. The return-rate µ(t) represents the investor’s opinion on the chances
whereas the volatility σ(t) expresses the market-risk.

- µ(t)− r(t) is the so called excess return of the stock.

- µ(t)−r(t)
σ(t)

is the Sharpe Ratio of the stock, i.e. the proportion of excess return to
risk.

Meaning: Valuation of the return in units of risk (volatility), also called Market
Price of Risk.

- ϑ(t) = −µ(t)−r(t)
σ(t)

0 ≤ t < T defines the density to the equivalent local martingale
measure P?:

dP?

dP

∣∣∣∣
Ft

= exp

 t∫
0

ϑ(s)dW (s)− 1

2

t∫
0

ϑ2(s)ds

 for all 0 ≤ t < T.

Let C > 0 be a T -claim with E?|C?| <∞ and E?(C?|Ft) > 0 P-almost sure. Then C can
be seen as additional traded risky asset in the market with arbitrage-free price process

C(t) = β(t)E?(C?|Ft) 0 ≤ t < T.

Since C is a positive semi-martingale w.r.t. P, there exists a representation of the form

dC(t) = C(t)
(
µC(t)dt+ σC(t)dW (t)

)
with previsible processes µC and σC . Hereby

- µC is the return of C and

- σC its volatility.

According to P? we obtain

dC(t) = C(t)
(
r(t)dt+ σC(t)dW ?(t)

)
,

since
(

1
β(t)

C(t)
)

0≤t<T
is a P?-martingale.
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Due to
dW ?(t) = dW (t)− ϑ(t)dt

it follows
dC(t) = C(t)

(
(r(t)− σC(t)ϑ(t))dt+ σC(t)dW (t)

)
.

Hence
µC(t) = r(t)− σC(t)ϑ(t).

Therefore
µC(t)− r(t)

is the excess-return of C.
It holds true:

µC(t)− r(t)
σC(t)

= −ϑ(t) =
µ(t)− r(t)

σ(t)
.

Conclusion:

- The Sharpe-ratio is invariant under all reasonable traded assets in the market and
is determined by the Girsanov-transformation.

- An investor can invest money in an arbitrary asset. The proportion of chance to
risk is always the same and given by the Sharpe-ratio.

4.3.6 Construction of a Money Market Account in a
Multi-Dimensional Complete Market

We consider a complete market in the form

dSi(t) = Si(t)
(
µS,i(t) +

d∑
j=1

σSij(t)dWj(t)
)

for all 1 ≤ i ≤ d

dN(t) = N(t)
(
µN(t) +

d∑
j=1

σNj(t)dWj(t)
)

with some d−dimensional Wiener-process W determining the uncertainty.
The completeness means

σij(t) := σSij(t)− σNj(t) for all 1 ≤ i, j ≤ d, 0 ≤ t < T

is invertible and by

dP?

dP

∣∣∣∣
Ft

= exp

 t∫
0

ϑ(s)dW (s)− 1

2

t∫
0

|ϑ(s)|2ds

 0 ≤ t < T
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a unique equivalent local martingale measure is defined, whereat

ϑ(t) = σ−1(t)
(

(µN(t)− |σN(t)|2)1 + σS(t)σN(t)− µS(t)
)

W ?(t) = W (t)−
t∫

0

ϑ(s)ds d− dimensional Wiener-process w.r.t. P?.

According to P? we have the dynamics

dS?(t) = S?(t)σ(t)dW ?(t)

and

d
1

N(t)
=

1

N(t)

(
(|σN(t)|2 − µN(t)− σN(t)ϑ(t))dt− σN(t)dW ?(t)

)
.

Put
r?(t) = −

(
|σN(t)|2 − µN(t)− σN(t)ϑ(t)

)
for all 0 ≤ t < T.

Then we obtain

d
1

N(t)
=

1

N(t)
(−r?(t)dt− σN(t)dW ?(t)).

This means, that the arbitrage-free interest-rate process (r(t))0≤t<T of a money market
account is uniquely determined by the above expression.
We define

β(t) = exp

 t∫
0

r?(s)ds

 for all 0 ≤ t < T.

Then β is the price-process of a money market account with interest-rate process r?, i.e.

dβ(t) = β(t)r?(t)dt, β(0) = 1

and

d
β(t)

N(t)
= β(t)d

1

N(t)
+

1

N(t)
dβ(t)

= − β(t)

N(t)
(r?(t)dt+ σN(t)dW ?(t)) +

β(t)

N(t)
r?(t)dt

= − β(t)

N(t)
σN(t)dW ?(t).

Therefore P? is an equivalent local martingale measure w.r.t. the d + 1 risky assets
S1, ..., Sd, β and the numeraire asset N . A market with these d + 2 assets admits no
admissible arbitrage opportunities.
Question: How can the money market account be replicated?
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Therefore we seek for a previsible process H, such that

β(t)

N(t)
=

1

N(0)
+

t∫
0

H(u)dS?(u) for all 0 ≤ t < T.

Then there is a self-financing trading strategy with value-process

V (t) = β(t) for all 0 ≤ t < T.

It holds

d
β(t)

N(t)
= − β(t)

N(t)
σN(t)dW ?(t)

= −
d∑
j=1

β(t)

N(t)
σNj(t)dW

?
j (t)

and

dβ?(t) = H(t)dS?(t)

=
d∑
i=1

Hi(t)dS
?
i (t)

=
d∑
i=1

Hi(t)S
?
i (t)

d∑
j=1

σij(t)dW
?
j (t)

=
d∑
j=1

(
d∑
i=1

Hi(t)S
?
i (t)σij(t)

)
dW ?

j (t).

This leads to the equation

d∑
i=1

Hi(t)S
?
i (t)σij(t) = − β(t)

N(t)
σNj(t) for all 1 ≤ j ≤ d

resp.

σT (t)

 H1(t)S?1(t)
...

Hd(t)S
?
d(t)

 = − β(t)

N(t)
σN(t)

and  H1(t)S?1(t)
...

Hd(t)S
?
d(t)

 = (σT (t))−1

(
− β(t)

N(t)
σN(t)

)
= − β(t)

N(t)
(σT )−1σN(t).

For the fraction of money invested in each stock

πi(t) :=
Hi(t)Si(t)

V (t)
=
Hi(t)S

?
i (t)

V ?(t)
=
Hi(t)S

?
i (t)

β(t)
N(t)

1 ≤ i ≤ d, 0 ≤ t < T
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this means
π(t) = −(σT (t))−1σN(t) for all 0 ≤ t < T.

If

exp

− t∫
0

σN(s)dW ?(s)− 1

2

t∫
0

|σN(s)|2ds

 0 ≤ t < T

is a uniformly integrable P?-martingale, then the money market account is replicable by
the self-financing trading strategy that belongs to H.

Corollary 4.3.13. Are the coefficients σS, σN , µS, µN constant, then r? is constant.
Therefore the market coincides with a multi-dimensional Black-Scholes model with in-
terest rate

r? = µN − |σN |2 + σNϑ.

Prices of derivatives coincide with their Black-Scholes prices.

4.3.7 Pricing in Incomplete Markets

We consider a market with d risky assets S = (S1, · · · , Sd) and a numeraire asset N
as in 4.1.3 specified. It is assumed that the NFLVR condition holds true which implies
that the set of equivalent local martingale measures Pis non-empty. Contrary to the
complete case we assume that M has more than one element which implies that M is
a convex set with infinite elements. For a pricing purpose the following problems arise:

1. For each Q ∈ M there exists some non-negative T -claim C ∈ L1(Q) that is not
attainable.

2. For such a T -claim C the risk of a short position in the claim cannot be totally
eliminated.

3. There is no unique initial arbitrage-free price, resp. price-process for such a T -claim
C.

In general one can only construct lower- and upper bounds on arbitrage-free prices by
considering super- and sub replicating strategies.
Two main theorems come into play for an analysis.

Theorem 4.3.14. Let C ≥ 0 be a non-negative T -claim. Then the process

X(t) = ess supQ∈M EQ(C∗|Ft) 0 ≤ t ≤ T

defines a Q-super-martingale for any Q ∈M.

Proof. A proof of this non-trivial statement can be found in the book of Pham [5] p.
174.
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Theorem 4.3.15. Let X be a super-martingale w.r.t any Q ∈M. Then there exists a
previsible process H and a non-decreasing adapted cadlag process A such that A0 = 0
and

X(t) = X0 +

∫ t

0

H(u)dS∗(u)− A(t) 0 ≤ t ≤ T.

Proof. This so called optional decomposition theorem can be found in [6]

We first take the view of a seller of a contingent T -claim C. Its pay-off quoted in shares
of the numeraire asset is given by

C∗ =
C

N(T )
.

The seller can eliminate his short position risk totally if there exists an initial value x
and a previsible process H such that

x+

∫ T

0

H(u)dS∗(u) ≥ C∗.

The initial value x and the previsible process H uniquely determines a self-financing
trading strategy (φ,H) with discounted value-process V ∗ such that

V ∗(t) = x+

∫ t

0

H(u)dS∗(u) 0 ≤ t ≤ T.

In particular
V ∗(T ) ≥ C∗.

Note that φ is uniquely defined by

φ(t) +H(t)S∗(t) = V ∗(t) = x+

∫ t

0

H(u)dS∗(u) 0 ≤ t ≤ T.

By taking the infimum we get the super-replication cost of the seller.

Definition 4.3.16. Let C ≥ 0 be a T -claim. Then the super-replication cost p+(C) is
defined by

p+(C) = inf{x ∈ R : there exists some admissible H with x+

∫ T

0

H(u)dS∗(u) ≥ C∗}.

At time t the super-replication cost is an Ft-measurable random variable p+
t (C) that

fulfills

p+
t (C) = ess inf{X ∈ L0(Ft) : there ex. an admissible H with X+

∫ T

t

H(u)dS∗(u) ≥ C∗}.
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This super-replication cost resp. price can be expressed by the set of equivalent local
martingale measures.

Theorem 4.3.17. Let C ≥ 0 be a T -claim with C ∈ L1(Q) for all Q ∈M. Then

p+(C) = sup
Q∈M

EQC
∗

and
p+
t (C) = ess supQ∈M EQ(C∗|Ft)

for all 0 ≤ t ≤ T .

Proof. If we find an initial capital x and a previsible H such that

x+

∫ T

0

H(u)dS∗(u) ≥ C∗,

then ,due to the fact that
∫ t

0
H(u)dS∗(u) is a Q-super-martingale for any Q ∈M,

x ≥ EQ(x+

∫ T

0

H(u)dS∗(u)) ≥ EQC
∗

for all Q ∈M. Hence
p+(C) ≥ sup

Q∈M
EQC

∗.

More difficult is to prove the reverse inequality. Here the dominating super-martingale

X(t) = ess supQ∈M EQ(C∗|Ft) 0 ≤ t ≤ T

comes into play. Due to the optional decomposition theorem 4.3.15 there exists some
previsible process H and a non-decreasing cadlag process A with A0 = 0 such that

X(t) = X(0) +

∫ t

0

H(u)dS∗(u)− A(t) 0 ≤ t ≤ T.

In particular

X(0) +

∫ T

0

H(u)dS∗(u) = X(T ) + A(T ) ≥ C∗

and therefore
p+(C) ≤ sup

Q∈M
EQC

∗

since X(0) = supQ∈M EQC
∗.

The second assertion follows in the same way.
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With the help of the minimal dominating super-martingale X a super-replicating trading
strategy can be defined. Due to the decomposition

X(t) = X(0) +

∫ t

0

H(u)dS∗(u)− A(t) 0 ≤ t ≤ T

a self-financing trading strategy according to the initial capital

X(0) = sup
Q∈M

EQC
∗ and previsible H

can be defined with discounted value-process V ∗ satisfying

V ∗(t) = X(0) +

∫ t

0

H(u)dS∗(u) = X(t) + A(t) 0 ≤ t ≤ T.

- X(t) can be seen as that value in t quoted in shares of the numeraire asset such
that the risk of the short position in the T -claim C can be fully eliminated.

- A(t) can be seen as that amount of money that can be withdrawn until t without
jeopardising the risk-elimination.

- A super-replication strategy not only finances the expenses X of eliminating risk
but also the consumption w.r.t. A.

- Since only a minimal capital for super-replication will be supplied X and A are
minimal. This means that A is the minimal consumption that can be allowed in
order to hedge fully the risk.

Now we change our point of view and think as a buyer of a T -claim. Then one has to
borrow money in order to finance the long position at the beginning. The pay-off at
the end can be used to neutralise the trading’s short position. A buyer could eliminate
his risk from the long-position if according to an initial capital x and an admissible
previsible H

x+

∫ T

0

H(u)dS∗(u) ≤ C∗.

He would accept this price x since the trading w.r.t. H does not exceed the pay-off C∗.
This leads to the sub-replication cost

Definition 4.3.18. Let C ≥ 0 be a T -claim. Then the sub-replication cost p−(C) is
defined by

p−(C) = sup{x ∈ R : there exists some admissible H with x+

∫ T

0

H(u)dS∗(u) ≤ C∗}.

At time t the sub-replication cost is an Ft-measurable random variable p−t (C) that fulfills

p−t (C) = ess sup{X ∈ L0(Ft) : there ex. an admissible H with X+

∫ T

t

H(u)dS∗(u) ≤ C∗}.
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The sub replication cost can be seen as the maximum amount of money one can borrow
to buy the T -claim C without any risk. Also the sub-replication cost can be expressed
by the set of equivalent local martingale measures.

Theorem 4.3.19. Let C ≥ 0 be a T -claim such that C∗ is bounded above. Then

p−(C) = inf
Q∈M

EQC
∗

and
p−t (C) = ess infQ∈M EQ(C∗|Ft)

for all 0 ≤ t ≤ T .

Proof. Let x be an initial capital and H an admissible trading strategy w.r.t. x such
that

x+

∫ T

0

H(u)dS∗(u) ≤ C∗.

Then

−x+

∫ T

0

−H(u)dS∗(u) ≥ −C∗

. Due to the boundedness of C∗ the process (
∫ t

0
−H(u)dS∗(u))0≤t≤T is a Q-super-

martingale for all Q ∈M. But this implies

−x ≥ EQ(−x+

∫ T

0

−H(u)dS∗(u)) ≥ −EQC
∗

for all Q ∈M. Hence
p−(C) ≤ inf

Q∈M
EQC

∗.

More difficult is to prove the reverse inequality. Here the dominating super-martingale

X(t) = ess supQ∈M EQ(−C∗|Ft) 0 ≤ t ≤ T

comes into play. Due to the optional decomposition theorem 4.3.15 there exists some
previsible process H and a non-decreasing cadlag process A with A0 = 0 such that

X(t) = X(0) +

∫ t

0

H(u)dS∗(u)− A(t) 0 ≤ t ≤ T.

In particular

−X(0) +

∫ T

0

−H(u)dS∗(u) = −X(T )− A(T ) ≤ −X(T ) = C∗.

Hence
p−(C) ≥ −X(0) = − sup

Q∈M
EQ(−C∗) = inf

Q∈M
EQC

∗.

The second assertion follows in the same way.
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The minimal dominating super-martingale X can be used to define the sub-replicating
strategy. Due to the optional-decomposition theorem 4.3.15 there exists an admissible
H and a non-increasing cadlag process A such that

X(0) +

∫ t

0

H(u)dS∗(u)− A(t) = X(t).

According to the initial capital

X(0) = sup
Q∈M

E(−C∗) and admissible H

there exists a self-financing strategy (φ,H) with value process V ∗ such that

V ∗(t) = X(0) +

∫ t

0

H(u)dS∗(u) = X(t) + A(t) 0 ≤ t ≤ T.

- −X(0) = infQ∈M EQC
∗ is that amount of money a buyer can borrow to cover his

risk.

- −X(t) = ess infQ∈M EQ(C∗|Ft) can be seen as that amount of money the buyer
needs at time t to cover his risk.

- A(t) can be seen as that amount of money the buyer may consume up to t in order
to still match his risk.

Note that the boundedness assumption for C∗ is necessary for the proof.
With the help of the super-and sub-replication strategy one can determine an interval of
arbitrage-free initial prices for a T -claim C. To give a precise formulation an arbitrage-
free price for a T -claim C has to be defined.

Definition 4.3.20. Let C ≥ 0 be a T -claim. We say that an initial price x leads to an
arbitrage opportunity for the seller if there exists some admissible H such that

x+

∫ T

0

H(u)dS∗(u) ≥ C∗ and P(x+

∫ T

0

H(u)dS∗(u) > C∗) > 0.

We say that an initial price x leads to an arbitrage opportunity for the buyer if there
exists some admissible H such that

−x+

∫ T

0

H(u)dS∗(u) ≥ −C∗ and P(−x+

∫ T

0

H(u)dS∗(u) > −C∗) > 0).

The set of arbitrage-free prices will be denoted by π(C).

Theorem 4.3.21. Let C ≥ 0 be a T -claim such that C∗ is bounded. Then

1. C is attainable if and only if p−(C) = p+(C).

2. If C is not attainable the set of arbitrage-free prices for C coincides with the open
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interval (p−(C), p+(C)), i.e.

π(C) = (p−(C), p+(C)).

Proof. If C is attainable, then their exists some x, admissible H and Q ∈M such that

x+

∫ T

0

H(u)dS∗(u) = C∗

and
∫ t

0
H(u)dS∗(u) is a uniformly Q-martingale. This means that

x+

∫ t

0

H(u)dS∗(u) = EQ(C∗|Ft) 0 ≤ t ≤ T.

Due to the boundedness of C∗ for any P∗ ∈M

x+

∫ t

0

H(u)dS∗(u) = EP∗(C
∗|Ft) 0 ≤ t ≤ T

since the left-hand side is as bounded local P∗-martingale a uniformly integrable mar-
tingale. Hence

x = E∗C∗ for all P∗ ∈M.

For the only if part let p−(C) = x = p+(C). Then

E∗C∗ = x for all P∗ ∈M.

There exists some admissible H such that

x+

∫ T

0

H(u)dS∗(u) ≥ C∗.

If the inequality is strict we would obtain

E∗C∗ < E∗(x+

∫ T

0

H(u)dS∗(u)) ≤ x

which would provide a contradiction. Thus

x+

∫ T

0

H(u)dS∗(u) = C∗

Due to the fact that
E∗C∗ = x for all P∗ ∈M

we obtain that

x+

∫ t

0

H(u)dS∗(u) 0 ≤ t ≤ T

is a P∗-martingale for any P∗ ∈M. Thus C is attainable.
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4.4 Pricing of American Derivatives

In the case of an American derivative the pay-off time is not initially determined. The
holder of the derivative can choose a random time-date for expiration that is non-
anticipating, hence a stopping time. Let’s first recall the financial market as in 4.1.3.

dSi(t) = Si(t)

(
µi(t)dt+

d∑
j=1

σ̄ij(t)dWj(t)

)
i = 1, · · · d

dN(t) = N(t)(r(t)dt+
d∑
j=1

σNj(t)dWj(t) (4.4)

We assume a complete market. This means that there exists a unique equivalent local
martingale measure P∗ and a Wiener-process w.r.t. P∗ such that

dS∗i (t) = S∗i (t)
d∑
j=1

σij(t)dW
∗
j (t) i = 1, · · · d (4.5)

with
σij(t) = σ̄ij(t)− σNj(t) 1 ≤ i, j ≤ d.

4.4.1 American Claim

Definition 4.4.1. An American claim is an adapted process Y with non-negative con-
tinuous paths. We assume

E∗ sup
0≤t≤T

Y ∗(t) <∞

with Y ∗(t) = Y (t)
N(t)

for all 0 ≤ t ≤ T .

The buyer of an American claim has the right to choose a stopping time τ that determines
his pay-off Y (τ). He is faced with optimizing

sup
τ∈S

E∗Y ∗(τ).

Here S denotes the set of all stopping times with values in [0, T ].
The seller of a claim would like to eliminate his risk by running a trading strategy with
value-process V ∗ given by

x+

∫ t

0

H(u)dS∗(u) ≥ Y ∗(t) for all t ≤ T.

Then the initial capital x quoted in number of shares of the numeraire asset would be
sufficient to cover his risk from the short position. At each time t he would be able to
settle the pay-off Y ∗(t).
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How can the buyer cover his risk. He has to borrow money x > 0 to finance the selling-
price and tries to find a trading strategy H such that at some time he can use the pay-off
from the claim to settle his loan obligation. This means he seeks for an initial capital
x > 0, a previsible, admissible process H and a stopping time τ such that

Y ∗(τ) + (−x+

∫ τ

0

H(u)dS∗(u)) ≥ 0

The larger x can be chosen, the larger could be the price a buyer is willing to pay.
This leads to the definition of the super- and sub-replication price

Definition 4.4.2. Let Y be an American claim. The super-replication price p+(Y ) is
defined by

p+(Y )

= inf{x > 0 : th. ex. an admissible Hwith x+

∫ t

0

H(u)dS∗(u) ≥ Y ∗(t)for all 0 ≤ t ≤ T}.

The sub-replication price p−(Y ) is defined by

p−(Y )

= sup{x : th ex. an admissible H, a stopping time τwith Y ∗(τ) + (−x+

∫ τ

0

H(u)dS∗(u)) ≥ 0}.

The super-replication price can be seen as the lowest price a seller could demand in order
to cover his risk and the sub-replication price as the highest price a buyer would accept
in order to cover his risk.
We will see in the following that in a complete market both prices coincide and are given
by the value of an optimal stopping problem.

Proposition 4.4.3. Let
v := sup

τ∈S
E∗Y ∗(τ)

Then
0 ≤ Y ∗(0) ≤ p−(Y ) ≤ v ≤ p+(Y ).

Proof. According to x = Y ∗(0) choose τ = 0 and H = 0. Then

Y ∗(τ) + (−x+

∫ τ

0

H(u)dS∗(u)) = Y ∗(0)− x = 0.

Hence
Y ∗(0) ≤ p−(Y ).

Let 0 < x < p−(Y ) be arbitrary. Then there exist an admissible H, a stopping time τ
such that

Y ∗(τ) + (−x+

∫ τ

0

H(u)dS∗(u)) ≥ 0,
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hence

x−
∫ τ

0

H(u)dS∗(u) ≤ Y ∗(τ).

Since H is admissible, the process (x−
∫ t

0
H(u)dS∗(u)) is a P∗-submartingale. Optional-

sampling implies

x ≤ E∗(x−
∫ τ

0

H(u)dS∗(u)) ≤ E∗Y ∗(τ).

Therefore x ≤ v and this implies
p−(Y ) ≤ v.

If x > p+(Y ) arbitrary chosen, then there exists some admissible H such that

x+

∫ t

0

H(u)dS∗(u) ≥ Y ∗(t) for all 0 ≤ t ≤ T.

Thus for each stopping time τ

x+

∫ τ

0

H(u)dS∗(u) ≥ Y ∗(τ)

and therefore

x ≥ E∗(x+

∫ τ

0

H(u)dS∗(u)) ≥ EY ∗(τ)

since (x+
∫ t

0
H(u)dS∗(u)) is a P∗-supermartingale. Hence we obtain

p+(C) ≥ sup
τ∈S

E∗Y ∗(τ) = v.

That all these three values coincide in the case of a complete market can be shown by
exploiting some techniques from optimal stopping.

4.4.2 Snell-Envelope

Definition 4.4.4. Let Y be an American claim. The Snell-envelope Z is defined by

Z(t) = ess supτ∈St E
∗(Y ∗(τ)|Ft) for all 0 ≤ t ≤ T.

Hereby St denotes the set of all stopping times with values larger than t.

At time t the best a buyer can expect based on the observation up to t is the Snell-
envelope Z(t). If this coincides with the actual pay-off Y ∗(t) the buyer should stop at t
and accept the pay-off. One might guess that

τ ∗ = inf
t:Z(t)=Y ∗(t)

is the optimal stopping time for the buyer.
This is indeed often true and will be clarified in the following.
But first some properties of the sup resp. ess sup of a set of random variables has to be
established.
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Definition 4.4.5. A family (Xi)i∈I of non-negative real-valued random variables is called
a lattice if for each i, j ∈ I there exists some k ∈ I such that

Xi ∨Xj ≤ Xk.

Proposition 4.4.6. If (Xi)i∈I is a lattice then for each sub-σ-field G

1. E
(

ess supi∈I Xi

)
= supi∈I EXi

2. E
(

ess supi∈I Xi|G
)

= ess supi∈I E(Xi|G)

Proof. The assertion follows by a tricky application of the monotone convergence theo-
rem. First there is a sequence (jn)n∈N ∈ I such that

ess supi∈I Xi = sup
n∈N

Xj(n).

Due to the lattice property we may find a sequence (i(n))n∈N such that

Xi(1) ≤ Xi(2) ≤ · · · , sup
n∈N

Xi(n) = ess supi∈I Xi

in the following way. We set i(1) = j(1). Then there exists some k such that

Xi(1) ∨Xj(2) ≤ Xk.

Set i(2) = k. Then there exists some k such that

Xi(2) ∨Xj(3) ≤ Xk.

Set i(3) = k and continue this procedure until infinity. Then

Xi(1) ≤ Xi(2) ≤ Xi(3) · · ·

and
ess supi∈I Xi ≥ sup

n∈N
Xi(n) ≥ sup

n∈N
Xj(n) = ess supi∈I Xi,

hence
sup
n∈N

Xi(n) = sup
n∈N

Xj(n) = ess supi∈I Xi.

With the monotone convergence theorem we obtain

E
(

ess supi∈I Xi

)
= E

(
sup
n∈N

Xi(n)

)
= sup

n∈N
EXi(n) = sup

i∈I
EXi

and also for the conditional expectation

E
(

ess supi∈I Xi|G
)

= E
(

sup
n∈N

Xi(n)|G
)

= sup
n∈N

E(Xi(n)|G) = ess supi∈I E(Xi|G)
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Theorem 4.4.7. Let Y be an American claim and

Z(t) = ess supτ∈St E
∗(Y ∗(τ)|Ft) for all 0 ≤ t ≤ T

its Snell-envelope. Then the following assertions hold true.

1. The process Z is a P∗ supermartingale.

2. For any 0 ≤ t ≤ T
E∗Z(t) = sup

τ∈St
E∗Y ∗(τ)

3. The process Z has a right-continuous modification.

Proof. That the Snell-envelope Z is a P∗-supermartingale is not that obvious. Fix a
time-point t < T and define for any stopping time τ ∈ St

Xτ = E∗(Y ∗(τ)|Ftau).

Then the family of random variables (Xτ )τ∈St forms a lattice. To show this we define
for stopping times τ1, τ2 ∈ St the stopping time

τ = τ11{Xτ1≥Xτ2} + τ21{Xτ2≥Xτ1}.

Since Xτ1 and Xτ2 are measurable w.r.t. Ft we get

Xτ = E∗(Y ∗(τ)|Ft) = E∗(Y ∗(τ1)1{Xτ1≥Xτ2}|Ft) + E∗(Y ∗(τ2)1{Xτ2≥Xτ1}|Ft)
= 1{Xτ1≥Xτ2}Xτ1 + 1{Xτ2≥Xτ1}Xτ2 ≥ Xτ1 ∨Xτ2 ,

from which the lattice property can be deduced. This now can be used to show the
supermartingale property of Z. For s < t

E∗(Z(t)|Fs) = E∗
(

ess supτ∈St E
∗(Y ∗(τ)|Ft)|Fs

)
= ess supτ∈St E

∗
(
E∗(Y ∗(τ)|Ft)|Fs

)
= ess supτ∈St E

∗(Y ∗(τ)|Fs)
≥ ess supτ∈Ss E

∗(Y ∗(τ)|Fs)
= Z(s) (4.6)

The lattice property can also be used to show the second assertion.

E∗Z(t) = E∗
(

ess supτ∈St Xτ

)
= sup

τ∈St
E∗Xτ

= sup
τ∈St

E∗Y ∗(τ), (4.7)

since
E∗Xτ = E∗E∗(Y ∗(τ)|Ft) = E∗Y ∗(τ).

The third assertion follows from the fact that supermartingales have a right continuous
modification.
The process Z is called Snell-envelope of Y ∗ since it is the smallest right continuous
supermartingale that dominates Y ∗.
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Corollary 4.4.8. If V is a right continuous supermartingale with V (t) ≥ Y ∗(t) for all
0 ≤ t ≤ T then Z(t) ≤ V (t) for all 0 ≤ t ≤ T .

Proof. Let’s fix some t ≤ T . Then for any τ ∈ St

E(Y ∗(τ)|Ft) ≤ E∗(V (τ)|Ft) ≤ V (t).

Hence
Z(t) = ess supτ∈St E

∗(Y ∗(τ)|Ft) ≤ V (t).

Proposition 4.4.9. Let Y be an American claim with Snell-envelope Z. Then

lim sup
t↑T

Y ∗(t) = lim
t↑
Z(t).

Proof. The non-negative supermartingale Z converges for t ↑ T . Hence

lim sup
t↑T

Y ∗(t) ≤ lim sup
t↑T

Z(t) = lim
t↑
Z(t).

For any t ≥ T1 we have

E∗(Y ∗(τ)|Ft) ≤ E∗(sup
s≥T1

Y ∗(s)|Ft)

Hence
Z(t) ≤ E∗(sup

s≥T1

Y ∗(s)|Ft).

Due to
E∗ sup

s≥T1

Y ∗(s) ≤ E∗ sup
0≤s≤T

Y ∗(s) <∞

we obtain
E∗(sup

s≥T1

Y ∗(s)|Ft) −→
t→T

sup
s≥T1

Y ∗(s).

Therefore
lim sup

t↑T
Z(t) = lim

t↑T
Z(t) ≤ sup

s≥T1

Y ∗(s)

for all T1 < T . Hence the reverse inequality

lim
t↑
Z(t) ≤ lim sup

t↑T
Y ∗(t)

is true.
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4.4.3 Optimal Stopping

With the Snell-envelope the optimal stopping problem can be solved and an optimal
stopping time determined.

Definition 4.4.10. Let Y be an American claim. Then a stopping time σ ∈ S is called
optimal, if

E∗Y ∗(σ) = sup
τ∈S

E∗Y ∗(τ).

First we can give a characterisation of an optimal stopping time via the Snell-envelope.

Proposition 4.4.11. Let Y be an American claim with Snell-envelope Z. Then a stop-
ping time σ is optimal if and only if the following two conditions are satisfied

(i) Z(σ) = Y ∗(σ)

(ii) The stopped process Zσ is a P∗-martingale.

Proof. To show the if part we consider an optimal stopping time σ. Then

E∗Z(σ) ≤ E∗Z(0) = sup
τ∈S

Y ∗(τ) = E∗Y ∗(σ) ≤ E∗Z(σ). (4.8)

Hence
E∗Y ∗(σ) = E∗Z(σ)

and (i) follows due to Z(σ) ≥ Y ∗(σ). The condition (ii) follows from

E∗(Zσ)τ = E∗(Zτ )σ = E∗Z(σ ∧ τ)
≥ E∗Z(σ) = E∗Y ∗(σ) = E∗Z(0) ≥ E∗(Zσ)τ (4.9)

for each stopping time τ , since

E∗(Zσ)τ = E∗Z(0) = E∗(Zσ)0.

For the only if part we consider a stopping time σ that fulfills the conditions (i) and (ii).
Then for any stopping time we have due to (ii)

E∗Z(0) = E∗(Zσ)τ .

In particular for τ ≡ T we obtain

E∗Z(0) = E∗(Zσ)T = E∗Z(σ) = EY ∗(σ)

from which the optimality of σ follows.

A tool for computing a super-replication strategy is based on the Doob-Meyer decom-
position for supermartingales.
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Theorem 4.4.12. Let (Z(t))0≤t≤T be a right continuous non-negative supermartingale
with

E sup
0≤t≤T

Z(t) <∞.

Then there exist a right continuous uniformly integrable martingale M and a non-
decreasing previsible right continuous process A with A(0) = 0 such that

Z = M − A.

This decomposition is unique up to indistinguishability.
If the process Z is regular then A has a.s. continuous paths.

The process Z is called regular if two conditions are fulfilled.

1. For any stopping time τ the random variable Z(τ is integrable.

2. For any increasing sequence of stopping times

τ1 ≤ τ2 ≤ τ3 · · · with sup
τn

= τ

lim
n→∞

EZ(τn) = EZ(τ).

The Doob-Meyer decomposition can be used to prove properties of ε-optimal stopping
times.

Definition 4.4.13. Let Y be an American claim with Snell-envelope Z. For any ε > 0
and 0 ≤ t < T we define the so called ε-optimal stopping time Dε

t by

Dε
t = inf{s ≥ t : Y ∗(s) ≥ Z(s)− ε}.

The following lemma is very useful in tha analysis of the optimal stopping problem.

Lemma 4.4.14. Let Y be an American claim with Snell-envelope Z that has a Doob-
Meyer decomposition

Z = M − A
. Then for any 0 ≤ t < T and ε > 0

A(Dε
t ) = A(t) almost sure.

In particular the process A and (A(Dε
t ))0≤t<T are indistinguishable.

Proof. Let 0 ≤ t < T be arbitrary. Due to

E∗Z(t) = sup
τ∈St

E∗Y ∗(τ)

we can choose a sequence of stopping times (τj)j∈N with τj ∈ St and

lim
j→∞

EY ∗(τj) = E∗Z(t).
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It follows

E∗Y ∗(τj) ≤ E∗Z(τj) = E∗(M(τj)− A(τj))
= E∗M(t)− E∗A(τj) = EZ(t)− E∗(A(τj)− A(t)). (4.10)

Therefore

0 ≤ E∗(Z(τj)− Y ∗(τj)) ≤ E∗(Z(t)− Y ∗(τj)) = Er∗(A(τj)− A(t)) −→ 0.

From the L1-convergence we may deduce the a.s. convergence of a subsequence. Hence
we can assume

Z(τj)− Y ∗(τj)) −→ 0 a.s..

Hence we have
Dε
t ≤ τj for lagre j,

and thus
A(Dε

t ) ≤ A(τj) for lagre j.

Due to limj→∞A(τj) = A(t) we obtain

A(Dε
t ) ≤ A(t).

The reverse inequality follows immediately since A has non-decreasing paths and Dε
t ≥ t.

To show that A and (A(Dε
t ))0≤t<T are indistinguishable we use the right-continuity of

the processes A,Z, Y ∗. On all rational t the random variables A(Dε
t ) and A(t) coincide.

For t arbitrary consider a sequence of rational tn ≥ t such that tn ↓ t. Then

At ≤ A(Dε
t ) ≤ A(Dε

tn) = A(tn) −→ At.

Hence
At = A(Dε

t ) for all 0 ≤ t < TP∗ − a.s.

As corollary we obtain

Corollary 4.4.15. Let Z be the Snell-envelope of the American claim Y . Then for all
0 ≤ t < T

E∗Z(Dε
t ) = E∗Z(t)

E∗Z(Dε
t ) ≥ E∗Z(t)− ε (4.11)

Proof. Let 0 ≤ t < T be arbitrary. Then

Z(Dε
t ) = M(Dε

t )− A(Dε
t ) = M(Dε

t )− A(t),

hence
E∗Z(Dε

t ) = E∗M(t)− E∗A(t) = E∗Z(t).
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Furthermore
Y ∗(Dε

t ) ≥ Z(Dε
t )− ε = M(Dε

t )− A(Dε
t )− ε,

hence
E∗Y ∗(Dε

t ) ≥ E∗M(t)− E∗A(t)− ε = E∗Z(t)− ε.

Together with the regularity of Z this can be used to construct an optimal stopping
time.

Theorem 4.4.16. Let Y be an American claim. Then the Snell-envelope is regular and

σ = inf{t ≥ 0 : Z(t) = Y ∗(t)}

is an optimal stopping time.

Proof. Due to
E∗ sup

0≤t≤T
Y ∗(t) <∞

the regularity of Y ∗ follows, since Y ∗ has continuous paths and dominated convergence
can be applied. Note, that the Snell-envelope Z need not to be a continuous process.
To show the regularity of Z we consider a sequence of stopping times τn such that

τ1 ≤ τ2 ≤ τ3 ≤ · · · −→ τ.

Since Z is a P∗-supermartingale, we obtain

E∗Z(τ1) ≥ Er∗Z(τ2) ≥ · · · ≥ EZ(τ).

For the reverse inequality we consider

Dε
τn = inf{s ≥ τn : Y ∗(s) ≥ Z(s)− ε}.

Then due to 4.4.14
A(Dε

τn) = A(τn)

and due to 4.4.15
E∗Z(τn) = E∗Z(Dε

τn)

and therefore
E∗Y ∗(Dε

τn) ≥ E∗Z(Dε
τn)− ε.

The sequence (Dε
τn) is non-decreasing and dominated by Dε

τ . Hence

σ̄ = lim
n→∞

Dε
τn

satisfies
τ ≤ σ̄ ≤ Dε

τ .
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The regularity of Y ∗ implies

E∗Y ∗(σ̄) = lim
n→∞

E∗Y ∗(Dε
τn).

Thus it follows

E∗Z(τ) ≥ E∗Z(σ̄) ≥ E∗Y ∗(σ̄) = lim
n→∞

E∗Y ∗(Dε
τn)

≥ lim
n→∞

Z(Dε
τn)− ε = lim

n→∞
E∗Z(τn)− ε. (4.12)

Hence
E∗Z(τ) ≥ lim

n→∞
E∗Z(τn.

To show the optimality of σ we consider a non-increasing sequence εn ↓ 0. It is Dεn
0

non-decreasing in n with
Dεn

0 ≤ σ for all n ∈ N.

Hence
E∗Z(0) = E∗Z(Dεn

0 ) ≤ E∗Y ∗(Dεn
0 ) + εn.

For
D+

0 := lim
n→∞

Dεn
0

we obtain due to the regularity of Z

E∗Z(D+
0 ) = lim

n→∞
E∗Z(Dεn

0 ) = E∗Z(0)

and
E∗Z(D+

0 ) ≤ lim
n→∞

E∗Y ∗(Dεn
0 ) + εn = E∗Y ∗(D+

0 ).

This implies that D+
0 is an optimal stopping time. Due to 4.4.16 it follows

Y ∗(D+
0 ) = Z(D+

0 ) and σ ≤ D+
0

. All together yields
σ = D+

0

and the assertion.

In the case of a complete financial market the super-and sub-replication price coincide.

Theorem 4.4.17. Let Y be an American claim in a complete financial market with
unique equivalent local martingale measure P∗. Then

p−(Y ) = v = p+(Y ),

whereat
v = sup

τ∈S
E∗Y ∗(τ)

denotes the optimal stopping problem for the buyer.
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Proof. Let Z denote the Snell-envelope of Y ∗ with Doob-Meyer decomposition

Z = M − A

. Then due to 4.4.14
v = E∗Z(0) = Z(0) = M(0).

The martingale representation theorem ?? provides a previsible process α = (α1, · · · , αd)
such that

M(t) = M(0)0

∫ t

0

α(s)dW (s) for all 0 ≤ t ≤ t.

As in the case of a European claim we may find a previsible H such that∫ t

0

α(s)dW (s) =

∫ t

0

H8u)dS∗(u) =

∫ t

0

H(u)S∗(u)σ(u)dW (u)

. With v and H a super replication strategy can be established with discounted value-
process

V ∗(t) = v +

∫ t

0

H(u)dS∗(u) = M(0) +

∫ t

0

α(s)dW ∗(s)

= = M(t) ≥ Z(t) ≥ Y ∗(t) for all 0 ≤ t ≤ T.(4.13)

Hence v ≥ p+(Y ) and therefore v = p+(Y ).
Due to v we choose the optimal stopping time

σ = inf{t ≥ 0 : Z(t) ≤ Y ∗(t)}

for the buyer. With the help of −H he can run a self-financing trading strategy with
discounted value-process

V ∗(t) = −v +

∫ t

0

(−H(u))dS∗(u) for all 0 ≤ t ≤ T

and therefore

V ∗(σ) + Y ∗(σ) = −M(σ) + Y ∗(σ) = −Z(σ) + Y ∗(σ) = 0

Thus the optimal expired claim amount can cover the value of the shorted trading
strategy. Therefore p−(Y ) ≥ v which p−(Y ) = v implies.

Note that according to the optimal stopping time σ there exists some previsible H such
that

v +

∫ σ

0

H(u)dS∗(u) = M(σ) = Z(σ) = Y ∗(σ).

The discounted value process

v +

∫ t

0

H(u)dS∗(u) = M(t) for all 0 ≤ t ≤ T

is a P∗-martingale.
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4.4.4 Computing

Although a replicating strategy exists in principle it can in general not explicitly deter-
mined. As in the case of European derivatives further assumptions are necessary. For
example considering

- a diffusion model

- with an American claim Y (t) = h(S(t))

leads to an optimal stopping problem that can be handled with a PDE-approach. In the
following this will be explained. We consider a complete diffusion model with d risky
assets that perform under the unique equivalent martingale measure P∗ by

dSi(t) = Si(t)(r(t, S(t))dt+
d∑
j=1

σij(t, S(t))dWj(t) for all 1 ≤ i ≤ d. (4.14)

As numeraire asset we consider a money market account β with random interest rate r
that depends on time and state of the risky assets, i.e.

dβ(t) = r(t, S(t))dt.

Furthermore we consider an American claim of the form

Y (t) = h(S(t)) for all 0 ≤ t ≤ T.

that fulfills

E∗ sup
0≤t≤T

Y (t)

β(t)
<∞.

The most important example is an American put with strike K and running time T
which can be seen as American claim of the form

Y (t) = (K − S(t))+.

Due to the Markov-property the Snell-envelope Z of Y ∗ can be written as function of
time t and state S(t) due to

β(t)Z(t) =
(

ess supτ∈St E
∗(Y ∗(τ)|Ft)

)
β(t)

= ess supτ∈St E
∗(exp(−

∫ τ

t

(r(u, S(u))du)h(S(τ))|Ft)

= ess supτ∈St E
∗(exp(−

∫ τ

t

(r(u, S(u))du)h(S(τ))|S(t)),

hence
β(t)Z(t) = v(t, S(t)) for all 0 ≤ t ≤ T
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with

v(t, x) = ess supτ∈St E
∗(exp(−

∫ τ

t

(r(u, S(u))du)h(S(τ))|S(t) = x)

for all 0 ≤ t ≤ T and x ∈ (0,∞)d. The value v(t, x) can be seen as price in Euro, when
in t the state x of the risky assets are seen. The state-space (0,∞)d decomposes in a
continuation and stopping region. We define the early exercise region and continuation
region by

E = {(t, x) : 0 ≤ t ≤ T, v(t, x) = h(x)}
C = {(t, x) : 0 ≤ t ≤ T, v(t, x) > h(x)} (4.15)

Applied the general result 4.4.16 to this specific situation leads to the following theorem

Theorem 4.4.18. We consider a complete diffusion model as described above and an
American claim Y = h(S(·)) that fulfills

E∗ sup
0≤t≤T

Y (t)

β(t)
<∞.

Then an optimal stopping time σ is given by the first exit-time from the continuation
region, i.e.

σ = inf{0 ≤ t ≤ T : v(t, S(t)) = h(S(t))}
= inf{0 ≤ t ≤ T : (t, S(t)) /∈ C} (4.16)

Furthermore on suitable conditions on the volatility and h the continuation region C is
an open set and the price function v satisfies the following PDE on C.

∂tv(t, x) +
1

2

d∑
i,j=1

xixj(σσ
T )ij(t, x)∂i∂jv(t, x) +

d∑
i=1

xir(t, x)∂iv(t, x) = r(t, x)v(t, x)

for all (t, x) ∈ C.

Proof. We would like to give a sketch of the proof. From 4.4.16 we know that the optimal
stopping time is given by

σ = inf{t ≥ 0 : Z(t) = Y ∗(t)}
= inf{t ≥ 0 : v(t, S(t)) = Y (t) = h(S(t))}
= inf{t ≥ 0 : (t, S(t) /∈ C} (4.17)

From the general theory on optimal stopping it is well known that the price function
v is continuous as function of t and x. This implies that the continuation region is an
open set and that v is an harmonic function on C, in particular it is a C1,2 function on
C. That v satisfies the PDE follows from an application of Ito’s formula and the fact
that (v(t∧σ,S(t∧σ)

β(t∧σ)
)0≤t≤T is a P∗-martingale.

Note, that the above PDE is a so called free-boundary value problem, since the boundary
is not initially fixed. Simultaneously a function v and the boundary of C has ro be found
to give a solution. This provides an extra difficulty in solving these PDE-problems. This
can be illustrated in the Black-Scholes model when analysing the American-put.
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American Put in the Black-Scholes Model

We consider a BS-model with volatility σ > 0 and interest rate r, i.e.

dS(t) = S(t)(rdt+ σdW (t))
dβ(t) = rβ(t)dt (4.18)

according to the equivalent martingale measure P∗. As American claim the put is anal-
ysed that has a pay-off process

Y (t) = (K − S(t))+ 0 ≤ t ≤ T.

The put price
v(t, x) = sup

τ∈St
E∗(e−r(T−t)(K − S(τ))+|S(t) = x)

is a solution to the following free-boundary value problem due to 4.4.18.

∂tv(t, x) +
1

2
σ2x2∂2

xv(t, x) + rxv(t, x) = rv(t, x) (4.19)

for all 0 < t < T and x > b(t) with boundary conditions

v(t, x) = K − x for all 0 < t < T, x ≤ b(t)

∂xv(t, b(t)) = −1 for all 0 < t < T.

The function v and the unknown boundary function b have to be determined. The early
exercise and continuation region can be written as

E = {(t, x) : 0 ≤ t ≤ T : x ≤ b(t)}
C = {(t, x) : 0 ≤ t ≤ T : x > b(t)}. (4.20)

The boundary function b is a continuous, increasing convex function with limt↑T b(t) =
K. The function b is the so called free boundary of v. Even in this simple case an explicit
representation for b and v is unknown. Only with numerical methods a valuation can
be done.

4.5 Volatility Models

Objective: Specification of a practically relevant model.

4.5.1 Calibration of a Black-Scholes Model

Model-equation:

dS(t) = S(t)(rdt+ σdW ?(t))

dβ(t) = β(t)rdt
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for all 0 ≤ t < T with volatility σ and constant interest rate r.
The Black-Scholes model is mainly used for short running-times of T = 3, 6 or 9 months.
The interest rate can then be taken from the over-night rate or the rate of a bond with
short maturity. These parameters are endogenously fixed.
Problem: How to determine the volatility σ?
Solution: The volatility determines the price of a derivative. Initial prices of traded
securities (market-prices) are further informations from the market that can be used for
a calibration of the model, here a fixing of the unknown volatility. In the Black-Scholes
model usually market-prices of calls or puts with different maturities and strikes are
taken.
More precise:

C(x, T, σ,K) := E?e−rT (S(T )−K)+

denotes the model-price of a call with maturity T , strike K and volatility σ. If we de-
note by CM(T,K) the corresponding observable market-price then there exists a unique
volatility

σ = σimpl.(T,K)

such that
C(x, T, σ,K) = CM(T,K).

σimpl. is called the implied volatility die of this call. If the Black-Scholes model were a
perfect fit then the implied volatility σimpl.(t, k) would remain constant. In real markets
effectively an implied volatility-surface is visible.

(t,K) 7→ σimpl.(t,K) 0 < t < T,K > 0.

The observed curvature of the volatility-surface is denoted as smile-effect. For fixed t
the intersection line K 7→ σimpl.(t,K) is of the form

σimpl.

k] [ ] [
Xe−rt

at the money

deep in the money deep out of the money

σkalib. -¿ kalibriertes σ

To calibrate a Black-Scholes model calls with different strikes are used and that volatility
taken that minimises the error between market-prices and model-prices.
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4.5.2 Calibration of a Black-Scholes model with deterministic
volatility

Model-equation:

dS(t) = S(t)(rdt+ σ(t)dW ?(t))

dβ(t) = β(t)rdt

The function σ : [0, T ] −→ R>0 is non-random with
∫ T

0
σ2(s)ds < ∞. The parameters

T and r are again exogenously fixed.
To determine the volatility function σ the market-prices (CM(t,K))0≤t<T,K>0 resp. their
implied volatility surface (σimpl.(t,K))0≤t<T,K>0 are needed
If the model were a perfect fit then the unknown volatility-function σ would be fixed by
the market-prices (CM(t,K))0≤t<T according to a specific K.
Explanation:

With CM(t,K) the integral
t∫

0

σ2(s)ds is fixed by the implied volatility σimpl.(t,K) for

every t. Taking the derivative determines σ2 and therefore σ(t) for all 0 ≤ t < T .
With this procedure we obtain for every K > 0 a function (σK(t))0≤t<T .
A curvature in the implied volatility surface w.r.t. K means, that a Black-Scholes model
with deterministic volatility is not reasonable too.
To calibrate such a model one would use the collection of functions (σ(K))K>0 in order
to determine some function that explains the market-prices best.

4.5.3 Calibration of a Local Volatility Model

Model-equation:

dS(t) = S(t)(rdt+ σ(t, S(t))dW ?(t))

dβ(t) = β(t)rdt

The function σ(t, x) denotes for every 0 ≤ t < T and x > 0 the local volatility and is
fixed by the market-prices

(CM(t,K))0≤t<T,K>0 .

This is the formula of Dupire:

1

2
K2σ2(t,K) =

∂tC(t,K) +K∂KC(t,K)

∂2
KC(t,K)

for all 0 ≤ t < T,K > 0.

Proof. Let f(t, ·) denote the density of S(t), i.e.

f(t, x)dx = P?(S(t) ∈ dx).
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Then

C(t,K) = e−rt
∞∫

0

(x−K)+f(t, x)dx

= e−rt
∞∫
K

(x−K)f(t, x)dx

= e−rt
∞∫
K

x∫
K

dyf(t, x)dx

Fubini
= e−rt

∞∫
K

∞∫
y

f(t, x)dxdy.

Hence

∂KC(t,K) = −e−rt
∞∫
K

f(t, x)dx

and therefore
∂2
KC(t,K) = e−rtf(t,K). (4.21)

The second partial derivative w.r.t. K of the call-price determines this density.
In the diffusion model the density f satisfies a forward Kolmogorov equation

∂tf(t, x) =
1

2
∂2
x(x

2σ2(t, x)f(t, x))− ∂x(rxf(t, x))

=
1

2
∂2
x(x

2σ2(t, x)f(t, x))− rf(t, x)− rx∂xf(t, x).

Due to Equation 4.21 it also holds true:

∂tf(t, x) = ∂t(e
rt∂2

xC(t, x)) = rert∂2
xC(t, x) + ert∂t∂

2
xC(t, x).

Hence it follows with f(t, x) = ert∂2
xC(t, x):

rert∂2
xC(t, x)+ert∂2

x∂tC(t, x) = ert
1

2
∂2
x(x

2σ2(t, x)∂2
xC(t, x))−rert∂2

xC(t, x)−rert∂x∂2
xC(t, x)

and therefore

∂2
x∂tC(t, x) =

1

2
∂2
x(x

2σ2(t, x)∂2
xC(t, x))− r∂2

x(x∂xC(t, x))

= ∂2
x

(1

2
x2σ2(t, x)∂2

xC(t, x)− rx∂xC(t, x)
)
.

Twice integration provides functions α(t), β(t) such that

1

2
x2σ2(t, x)∂2

xC(t, x) = rx∂xC(t, x) + ∂tC(t, x) + α(t)x+ β(t)

187



Due to the boundary condition

x2σ2(t, x)∂2
xC(t, x) = e−rtxσ2(t, x)f(t, x)

x→∞−→ 0

x∂xC(t, x) = −e−rtx
∞∫
x

f(t, y)dy
x→∞−→ 0

∂tC(t, x)
x→∞−→ 0

we obtain α(t) = β(t) = 0 for every 0 ≤ t < T and this implies the formula of Dupire.

4.5.4 Stochastic Volatility Models in General

The previous models all describe a complete financial market that vary in their volatility
assumptions. This means that the whole uncertainty in the market can be explained
by the randomness of the asset prices. In real world markets this assumption is not
reasonable. One should distinguish between external and internal factors that drive the
asset’s prices. Examples for external uncertainty are

- Political decisions,

- Catastrophic events like Hurricanes, floods, pandemics,

- Other catastrophic events like 9/11

These risks can in principal not be hedged by trading in the market.
A class of models that are reasonable for describing these effects are so called stochastic
volatility models where an external factor affects the volatility of the risky asset. The
price-process of a stock in such a model is given by

dS(t) = S(t)(µdt+ f(Y (t)) dW (t))

and we assume that the volatility depends on a stochastic process Y via the function f
with dynamics given by

dY (t) = b(Y (t))dt+ σ(Y (t))dZ(t).

The driving one-dimensional Wiener-processes are denoted by W and Z. The process W
stands for the internal uncertainty whereas Z describes the external one. It is assumed
that these Wiener-process are correlated with factor % ∈ (−1, 1). This means that

〈W,Z〉t = %t for all t ≥ 0.

The correlation % is usually assumed to be negative since stock-prices and volatilities
behave in opposite directions. An increasing stock-price tends to reduce the volatility
while a decreasing price leads to an increase in volatility. This is the so called Leverage-
effect. Above a very general approach is formulated and the question arises.
Question: When can the above stochastic differential equation be solved?
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The path to be gone is the following.
First the equation for the volatility Y has to be solved. Since the equation for the stock
S is linear a solution can be expressed by an exponential semi-martingale. A first result
can be found in many textbooks.

Theorem 4.5.1. Let the functions b and σ fulfill a linear growth- and Lipschitz con-
dition, i.e.

|b(x)| ≤ c1 + c2|x| for all x ∈ R
|b(x)− b(y)| ≤ c|x− y| for all x, y ∈ R

,analogous for σ, then there exists to every y ∈ R a unique strong solution of the SDE

dY (t) = b(Y (t))dt+ σ(Y (t))dW (t), Y0 = y.

However, the Lipschitz condition for σ fails in interesting cases. A weaker assumption
is the Yamada-Watanabe condition.

Definition 4.5.2. A function g : R −→ R satisfies the Yamada-Watanabe condition,
if there exists a strictly increasing function

ρ : [0,∞) −→ [0,∞)

such that
ε∫

0

1

(ρ(x))2
ds = +∞

for some ε > 0 and
|g(x)− g(y)| ≤ ρ(|x− y|)

for all x, y ∈ R.

Example 4.5.3. Consider g(x) =
√
|x|. Then g is not Lipschitz-continuous but satisfies

the Yamada Watanabe condition with ρ(x) =
√
x due to

lim
x↘0

g′(x) = lim
x↘0

1

2

1√
x

= +∞.

Theorem 4.5.4. Let the function b fulfill the linear growth- and Lipschitz condition.
Let the function σ be continuous satisfying the linear growth- and Yamada-Watanabe
condition.
Then the equation

dY (t) = b(Y (t))dt+ σ(Y (t))dZ(t), Y (0) = y
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has a unique strong solution.

Proof. The continuity of b and σ provides, that the equation can be weakly solved. The
Yamada-Watanabe condition implies a path-wise uniqueness of the solution.
Both together implies the existence of a unique strong solution.

Remark 4.5.5. The above solution fulfills

E
t∫

0

Y 2(s)ds =

t∫
0

EY 2(s)ds <∞ for all t > 0.

This can be used to solve the equations of the stochastic volatility equations.

Solving the Stochastic Volatility Equation

Model equations:

dS(t) = S(t)(µdt+ f(Y (t))dW (t))

dY (t) = b(Y (t))dt+ σ(Y (t))dZ(t)

d〈W,Z〉t = %dt

Let b and σ fulfill the assumptions of 4.5.1 or 4.5.4 and let f be a continuous function.
Then there exists for any starting point y ∈ R and S(0) ∈ R a unique strong solution
for the above system of stochastic differential equations.

Proof. The assumptions apply that the equation for Y has a strong solution. Since the
equation for S is linear we obtain

S(t) = S(0) exp

 t∫
0

f(Y (s))dW (s)− 1

2

t∫
0

f(Y (s))2ds

 eµt for all t ≥ 0.

Alternatively the model-equations can also be expressed by uncorrelated Wiener-processes.
Approach: Let

W̃ =
1√

1− %2
W − %√

1− %2
Z

Then W̃ and Z are independent Wiener-prozesses with

W =
√

1− %2W̃ + %Z.

This follows from Lévy’s theorem:
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W̃ is a local martingale with

〈W̃ 〉t = 〈 1√
1− %2

W − %√
1− %2

Z〉t

=
1

1− %2
t+

%2

1− %2
t− 2

%

1− %2
〈W,Z〉t︸ ︷︷ ︸

%t

=
1

1− %2
t+

%2

1− %2
t− 2%2

1− %2
t

= t.

Furthermore

〈W̃ , Z〉t =
1√

1− %2
〈W,Z〉t −

%√
1− %2

〈Z,Z〉t =
%√

1− %2
t− %√

1− %2
t = 0

Then the model-equations are given by:

dS(t) = S(t)
(

(µdt+ f(Y (t))(
√

1− %2dW̃ (t) + %dZ(t))
)

dY (t) = b(Y (t))dt+ σ(Y (t))dZ(t)

with W̃ and Z independent Wiener-processes.

Examples

(i) Hull-White Model:

dS(t) = S(t)(µdt+ Y (t)dW (t))

dY (t) = Y (t)(θdt+ ξdZ(t))

〈W,Z〉t = %t

with µ, θ ∈ R, ξ > 0 and % ∈ (−1, 1).
(ii) Stein-Stein Model:

dS(t) = S(t)(µdt+ Y (t)dW (t))

dY (t) = q(m− Y (t))dt+ σdZ(t)

〈W,Z〉t = %t

with µ ∈ R, q, σ > 0,m ≥ 0 and % ∈ (−1, 1).
The volatility is determined by a Vasicek-process which is mean reverting.
(iii) Heston Model:

dS(t) = S(t)(µdt+
√
Y (t)dW (t))

dY (t) = (a− bY (t))dt+ c
√
Y (t)dZ(t)

〈W,Z〉t = %t
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with µ ∈ R, c > 0, a, b ≥ 0 and % ∈ (−1, 1).
The process Y is a CIR (Cox-Ingersoll-Ross) process.
It is mean reverting and remains in [0,∞) for all times. If b > 0, then

dY (t) = qL(m− Y (t))dt+ c
√
Y (t)dZ(t)

qL = b,m = a
b
,m return level and qL mean rate of return.

Call Price in the Heston model

The Heston model is of significance importance and a very popular stochastic volatility
model. In the following we will show how an explicit call-price can be computed. To
be more precise we consider the following Heston-model under a subjective probability
measure P.

dS(t) = S(t)(µdt+
√
Y (t)dW (t)

dY (t) = q(m− Y (t))dt+ σ
√
Y (t)dZ(t).〈W,Z〉t = ρt

with parameters q,m, σ > 0 and ρ ∈ (−1, 1).
The question of existence of equivalent local martingale measures is in general difficult
to answer for stochastic volatility models. In the Heston-model it is usually assumed
that the so called market-price of volatility risk is proportional to the volatility. Then
a unique local equivalent martingale measure can be constructed. But first we express
the model by independent Wiener-processes. Let us introduce

W̃ =
1√

1− %2
W − %√

1− %2
Z

Then W̃ and Z are independent Wiener-processes with

W =
√

1− %2W̃ + %Z

and the Heston equations are given by

dS(t) = S(t)(µdt+
√
Y (t)

(√
1− %2dW̃ (t) + %dZ(t)

)
dY (t) = q(m− Y (t))dt+ σ

√
Y (t)dZ(t)

with independent Wiener-process W̃ , Z. We define

γ(t) = α
√
Y (t)

ξ(t) =
µ− r√

1− %2
√
Y (t)

− % γ(t)√
1− %2

L(t) = exp

− t∫
0

γ(s)dZ(s)−
t∫

0

ξ(s)dW̃ (s)− 1

2

t∫
0

γ2(s) + ξ2(s)ds

 (4.22)
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for every 0 ≤ t ≤ T . Then there exists an equivalent probability measure P∗ with density
process L w.r.t. P, i.e.

dP?

dP

∣∣∣∣
Ft

= L(t) for all 0 ≤ t ≤ T.

Girsanov’s theorem implies that W ?(t) = W̃ (t) +
t∫

0

ξ(s)ds and Z?(t) = Z(t) +
t∫

0

γ(s)ds

are independent Wiener-processes w.r.t. P?. The dynamics w.r.t. P? transforms to

dS(t) = S(t)(rdt+
√
Y (t)(

√
1− %2dW ?(t) + %dZ?(t)))

dY (t) = q(m− Y (t))dt+ σ
√
Y (t)dZ?(t)− σ

√
Y (t)γ(t)︸ ︷︷ ︸
σαY (t)

dt

= (qm− (q + σα)Y (t))dt+ σ
√
Y (t)dZ?(t)

= (q + σα)(
qm

q + σα
− Y (t))dt+ σ

√
Y (t)dZ?(t).

We recognize that the change to an equivalent local martingale measure varies the pa-
rameters of the Heston-model. But the principal structure remains unchanged. The new
parameters are given by

b = q + σα

a =
qm

q + σα
(4.23)

and according to P∗ the Heston-equation becomes

dS(t) = S(t)(rdt+
√
Y (t)(

√
1− %2dW ?(t) + %dZ?(t)))

dY (t) = b(a− Y (t)dt) + σ
√
Y (t)dZ∗(t) (4.24)

For a further analysis it is more convenient to express the Heston equation by correlated
Wiener-processes. Hence we introduce the Wiener-process

B(t) =
√

1− %2W ?(t) + %Z?(t)), t ≥ 0.

Then B,Z∗ are Wiener-processes with 〈B,Z∗〉t = ρt and

dS(t) = S(t)(rdt+
√
Y (t)dB(t))

dY (t) = b(a− Y (t)dt) + σ
√
Y (t)dZ∗(t) (4.25)

To compute the call price we note that as usual

E?e−rT (S(T )−K)+ = E?e−rTS(T )1{S(T )>K} − e−rTKP?(S(T ) > K)

= S(0)P?1(S(T ) > K)− e−rTKP?(S(T ) > K)
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with
dP?1
dP?

∣∣∣∣
Ft

:=
1

S(0)
e−rtS(t) for all 0 ≤ t < T.

Thus we have to determine P?1(S(T ) > K) and P?(S(T ) > K). This will be done by
computing the Fourier-transform of

X(T ) := lnS(T )

according to P?1 and P?.
Ito’s formula provides

dX(t) =
1

S(t)
dS(t)− 1

2

1

S2(t)
d〈S〉t

=
1

S(t)
S(t)(rdt+

√
Y (t)dB(t))− 1

2

1

S2(t)
S2(t)Y (T )dt

= (r − 1

2
Y (t))dt+

√
Y (t)dB(t).

We have to consider
E?eiλX(T ) = E?h(X(T ), Y (T ))

with h(x, y) = eiλx. Note that the bivariate process (X, Y ) is a Markov-process and
therefore the expectation on the right-hand side can be evaluated with a PDE approach.
We define

u(t, x, y) := E?(h(X(T ), Y (T )|X(t) = x, Y (t) = y).

Then, due to the Markov-property

E?(h(X(T ), Y (T )|Ft) = E?(h(X(T ), Y (T ))|X(t), Y (t))

= u(t,X(t), Y (t)).

Since u(t,X(t), Y (t)), t ≥ 0, is as conditional expectation a P?-martingale an application
of Ito’s formula leads to the desired PDE.
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du(t,X(t), Y (t)) = ∂tu(t,X(t), Y (t))dt+ ∂xu(t,X(t), Y (t))dX(t)

+ ∂yu(t,X(t), Y (t))dY (t) +
1

2
∂2
xu(t,X(t), Y (t))d〈X〉t

+
1

2
∂2
yu(t,X(t), Y (t))d〈Y 〉t + ∂x∂yu(t,X(t), Y (t))d〈X, Y 〉t

= ∂tu(t,X(t), Y (t))dt+ ∂xu(t,X(t), Y (t))(r − 1

2
Y (t))dt

+ ∂xu(t,X(t), Y (t))
√
Y (t)dB(t) + ∂yu(t,X(t), Y (t))b(a− Y (t))dt

+ ∂yu(t,X(t), Y (t))σ
√
Y (t)dZ?(t) +

1

2
∂2
xu(t,X(t), Y (t))Y (t)dt

+
1

2
∂2
yu(t,X(t), Y (t))σ2Y (t)dt+ ∂x∂yu(t,X(t), Y (t))σY (t)%dt

since 〈X, Y 〉t = σ
√
Y (t)

√
Y (t)d〈B,Z?〉t = σY (t)%dt

=

[
∂tu(t,X(t), Y (t)) + (r − 1

2
Y (t))∂xu(t,X(t), Y (t))

+ b(a− Y (t))∂yu(t,X(t), Y (t)) +
1

2
Y (t)∂2

xu(t,X(t), Y (t))

+
1

2
σ2Y (t)∂2

yu(t,X(t), Y (t)) + %σy∂x∂yu(t,X(t), Y (t))

]
dt

+ ∂xu(t,X(t), Y (t))
√
Y (t)dB(t) + ∂yu(t,X(t), Y (t))σ

√
Y (t)dZ?(t).

Hence u satisfies the partial differential equation

∂tu(t, x, y) + (r − 1

2
y)∂xu(t, x, y)

+ b(a− y)∂yu(t, x, y) +
1

2
y∂2

xu(t, x, y))

+
1

2
σ2y∂2

yu(t, x, y) + %σy∂x∂yu(t, x, y)

= 0

on (0, T )× R× [0,∞) with final condition

lim
t↗T

u(t, x, y) = eiλx for all x ∈ R, y ∈ [0,∞).

As guess for a solution one can choose

u(t, x, y) = exp(Cλ(T − t) +Dλ(T − t)y + iλx)

with functions Cλ, Dλ : [0,∞) −→ R that have to be determined.
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Computation of the partial derivatives and inserting in the PDE leads to the ordinary
differential equations for the real functions D,C.

D′λ(s) = (−b+ iλ%σ)D(s) +
1

2
σ2D2(s)− 1

2
iλ− 1

2
λ2

C ′λ(s) = abD(s) + riλ

with initial value Cλ(0) = 0 = Dλ(s).
This ODE for D is a Ricatti-equation and a solution is given by

Dλ(t) =
b− iσ%λ+ d

σ2

1− edt

1− gedt

with

g =
b− %σλi+ d

b− %σλi− d
d =

√
(b− i%σλ)2 + σ2(iλ+ λ2)

An integration leads to a solution for C:

Cλ(t) = riλt+
ab

σ2

(
(b− i%σλ+ d)t− 2 ln

(
1− gedt

1− g

))
.

Hence the Fourier-transform is given by

u(λ) = E?
(
eiλX(T )|X(0) = x0, Y (0) = y0

)
= u(0, x0, y0)

= exp (Cλ(T ) +Dλ(T )y0 + iλx0)

and
P?(S(T ) > K) = P?(X(T ) > lnK)

can be calculated by Fourier-inversion

P?(S(T ) > K) =
1

2
+

1

π

∞∫
0

Re

(
e−iλ lnKu(λ)

iλ

)
dλ.

This integral can be computed numerically.
Furthermore one has to determine P?1(S(T ) > K) with

dP?1
dP?

∣∣∣∣
Ft

=
1

S(0)
e−rtS(t) =

1

S(0)
S?(t) =: L(t).

Due to
dS?(t) = S?(t)

√
Y (t)dB(t).
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one obtains the Doleans-exponential

L(t) = exp

 t∫
0

√
Y (s)dW ?(s)− 1

2

t∫
0

Y (s)ds

 .

Girsanov implies that

W ?? = B(t)− 〈B,
∫ ·

0

√
Y (s)dB(s)〉t

Z?? = Z?(t)− 〈Z?,

∫ ·
0

√
Y (s)dB(s)〉t

are Wiener-processes with

〈W ??, Z??〉t = 〈B,Z?〉t = %t.

It holds true

〈B,
∫ ·

0

√
Y (s)dB(s)〉t =

t∫
0

√
Y (s)d〈B〉s =

t∫
0

√
Y (s)ds

〈Z?,

∫ ·
0

√
Y (s)dB(s)〉t =

t∫
0

√
Y (s)d〈Z?, B〉s =

t∫
0

√
Y (s)%ds.

Inserting provides

dX(t) = (r − 1

2
Y (t))dt+

√
Y (t)dB(t)

= (r − 1

2
Y (t))dt+

√
Y (t)dW ?? +

√
Y (t)

√
Y (t)dt

= (r +
1

2
Y (t))dt+

√
Y (t)dW ??(t)

dY (t) = b(a− Y (t))dt+ σ
√
Y (t)dZ?(t)

= b(a− Y (t))dt+ σ
√
Y (t)dZ??(t) + σ

√
Y (t)

√
Y (t)%dt

= (b− %σ)

(
ab

b− %σ
− Y (t)

)
dt+ σ

√
Y (t)dZ??(t)

=: b1(a1 − Y (t))dt+ σ
√
Y (t)dZ??(t)

The same method as above can be applied to determine the Fourier-transform of X(T ) =
lnS(T ).
We obtain as result

u1(λ) = E?1
(
eiλX(T )|X(0) = x0, Y (0) = y0

)
= exp

(
C

(1)
λ (T ) +D

(1)
λ (T )y0 + iλx0

)
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with

C
(1)
λ (t) = riλt+

a1b1

σ2

(
(b1 − i%σλ+ d1)t− 2 ln

(
1− g1e

d1t

1− g1

))
D

(1)
λ (t) =

b1 − i%σλ+ d1

σ2

1− ed1t

1− g1ed1t

and

g1 =
b1 − %σiλ+ d1

b1 − %σiλ− d1

d1 =
√

(%σλi− b1)2 + σ2(λ2 − iλ).

By Fourier-inversion one may calculate

P?1(S(T ) > K) = P?1(X(T ) > ln(K) =
1

2
+

1

π

∞∫
0

Re

(
e−iλ lnKu1(λ)

iλ

)
dλ.

Practical application:
The Heston-model is incomplete and depends on five parameters. The observable call-
prices in the market can be used to calibrate the model.
The model’s parameters are

q return rate,

m return level of the volatility,

α proportional factor in the market price of volatility risk,

σ expected fluctuation of the volatility,

% correlation between stock and volatility.

These parameters determine the model-price of a call option in a Heston-model. One
chooses those parameters that explain the market-prices best and use this calibrated
model for general pricing purposes.
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5 Modelling Bond Markets

5.1 Basic Concepts

A bond-market can be seen as financial market where the risky assets are given by Zero-
coupon bonds. Since there are infinite maturities there are infinite risky assets. This
means that the basic concepts of finance are still true but have to be adapted to handle
bond-markets too. The main ingredients are

- trading interval [0, T ?].

- the source of uncertainty is given by some n-dimensional Wiener-process (W (t))0≤t≤T ? .

- the information in the market is given by that Wiener-process filtration (Ft)0≤t≤T ?
that is generated by W .

- the risky assets in this model are T -Bonds. A T -Bond is a security with pay-off 1-
Euro at T . The expiration date T < T ∗ denotes the maturity of the bond. During
the running-time there is no payment of coupons. The price-process of a T -bond
is denoted by

(B(t, T ))0≤t≤T .

The following assumptions are reasonable:

(i) B(T, T ) = 1,

(ii) B(t, T ), 0 ≤ t ≤ T , is a strictly positive semi-martingale with continuous paths,

(iii) the locally bounded variation part of (B(t, T ))0≤t≤T has absolutely-continuous
paths w.r.t. Lebesgue-measure.

(iv) (B(t, T ))t≤T≤T ? , as function in T , has P a.s. differentiable paths, i.e. B(t, T ) is
differentiable in T for P− every ω when t is fixed.

Conclusions:
From (ii) and (iii) we obtain as in 4.1.3, that (B(t, T ))0≤t≤T satisfies a stochastic differ-
ential equation of the form

dB(t, T ) = B(t, T )(µ(t, T )dt+ σ(t, T )dW (t))

= B(t, T )(µ(t, T )dt+
n∑
j=1

σj(t, T )dWj(t))
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with previsible processes (µ(t, T ))0≤t≤T and (σ(t, T ))0≤t≤T . This can be seen by consid-
ering X(t) = lnB(t, T ) and applying Ito’s formula.
From (iv) it follows, that the so called short rate process

r(t) := − ∂

∂T
ln(B(t, T ))|T=t

is well-defined.
With the short-rate a money-market account can be defined by

β(t) := exp

 t∫
0

r(s)ds

 , 0 ≤ t ≤ T ?

resp.
dβ(t) = β(t)r(t)dt, 0 ≤ t ≤ T ?.

5.1.1 Existence of an Equivalent Local Martingale Measure

The uncertainty in the model is driven by n Wiener-processes. But there exists an
infinite number of risky assets. Therefore it is clear that restrictions on the drift and
volatility have to be made in order to get an arbitrage-free market.

Definition 5.1.1. A probability measure P∗ is called an equivalent local martingale mea-
sure if

(i) P and P∗ are equivalent on (Ω,FT ),

(ii) For each maturity T < T ∗ the discounted price-process (B(t,T )
β(t)

)t≤T is a local mar-
tingale w.r.t. P∗.

With the same methods as in 4.2.8 we can determine an equivalent local martingale
measure in a bond-market.

1. We consider first the case n = 1.

With the help of Girsanov we would like to construct an equivalent local martingale
measure.

Only one maturity T and one T -bond is necessary to formulate sufficient and
necessary conditions.

We choose T = T ? and consider

dβ(t) = β(t)r(t)dt

dB(t, T ?) = B(t, T ?)(µ(t, T ?)dt+ σ(t, T ?)dW (t))

In a market with these two assets there exists an equivalent local martingale mea-
sure if and only if a density process can be defined by

L(t) = exp(

∫ t

0

ϑ(t)dW (t)− 1

2

∫ t

0

ϑ(s)2ds) (5.1)
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with

ϑ(t) = −µ(t, T ?)− r(t)
σ(t, T ?)

for all 0 ≤ t ≤ T ?

and this is the case iff

E exp

 T ?∫
0

ϑ(s)dW (s)− 1

2

T ?∫
0

ϑ2(s)ds

 = 1.

Then an equivalent local martingale measure P? exists and is defined by

dP?

dP

∣∣∣∣
Ft

= exp

 t∫
0

ϑ(s)dW (s)− 1

2

t∫
0

ϑ2(s)ds

 , 0 ≤ t ≤ T ?

on FT ? . Furthermore

W ?(t) = W (t)−
t∫

0

ϑ(s)ds, 0 ≤ t ≤ T ?

is a Wiener-process w.r.t P? and according to P?:

dB(t, T ?) = B(t, T ?)(r(t)dt+ σ(t, T ?)dW ?(t)).

For T -Bonds with shorter running-time T < T ? we obtain

dB(t, T ) = B(t, T )(µ(t, T )dt+ σ(t, T )dW (t))

= B(t, T )((µ(t, T ) + σ(t, T )ϑ(t))dt+ σ(t, T )dW ?(t)).

(
B(t,T )
β(t)

)
0≤t≤T

is a local P?-martingale if and only if

µ(t, T ) + σ(t, T )ϑ(t) = r(t).

Hence the drift functions µ(·, T ) and volatilities σ(·, T ) must fulfill

µ(t, T ) + σ(t, T )ϑ(t) = r(t) for all 0 ≤ t ≤ T

resp.
r(t)− µ(t, T )

σ(t, T )
= ϑ(t) =

r(t)− µ(t, T ?)

σ(t, T ?)
for all 0 ≤ t ≤ T

This condition is also natural from another point of view. The Sharpe-ratio in a
market that is driven by some one-dimensional Wiener-process is an invariant.

Thus the following argumentation is also valid.
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The Sharpe-ratio of the T ?−bond is given by

µ(t, T ?)− r(t)
σ(t, T ?)

= −ϑ(t)

Each further asset in the market has the same Sharpe-ratio. Therefore for every
T -bond we obtain

µ(t, T )− r(t)
σ(t, T )

= −ϑ(t) =
µ(t, T ?)− r(t)

σ(t, T ?)
for all 0 ≤ t ≤ T.

2. We consider secondly the case n = d ∈ N and choose d maturities with

T1 < T2 < ... < Td.

The market that consists of these d bonds and the money-market account fulfills

dβ(t) = β(t)r(t)dt

dB(t, Ti) = B(t, Ti)(µ(t, Ti)dt+ σ(t, Ti)dW (t))

= B(t, Ti)(µ(t, Ti)dt+
d∑
j=1

σj(t, Ti)dWj(t))

If the matrix
σ(t) := σj(t, Ti)1≤i≤d

1≤j≤d

is invertible for all t ≤ T1, then ϑ(t) can be defined by

ϑ(t) = σ−1(t)

r(t)1 −
 µ(t, T1)

...
µ(t, Td)


 .

If furthermore

E exp

 T1∫
0

ϑ(s)dW (s)− 1

2

T1∫
0

|ϑ(s)|2ds

 = 1

then by

dP?

dP

∣∣∣∣
Ft

= exp

 t∫
0

ϑ(s)dW (s)−
t∫

0

1

2
|ϑ(s)|2ds


an equivalent local martingale measure P∗ can be defined and

W ?(t) = W (t)−
t∫

0

ϑ(s)ds
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is a Wiener-process according to P?.
It holds true

dB(t, Ti) = B(t, Ti)(r(t)dt+
d∑
j=1

σj(t, Ti)dW
?
j (t)).

Hence
(
B(t,Ti)
β(t)

)
0≤t≤T1

is a local P∗-martingale for all 1 ≤ i ≤ d.

There exists an equivalent local martingale measure for the whole bond-market on

[0, T1] if and only if
(
B(t,T )
β(t)

)
0≤t≤T

is a local P?-martingale for every T ≤ T1.

Then for T ≤ T1:

dB(t, T ) = B(t, T )(µ(t, T )dt+
d∑
j=1

σj(t, T )dWj(t))

= B(t, T )((µ(t, T ) +
d∑
j=1

σj(t, T )ϑj(t))dt+
d∑
j=1

σj(t, T )dW ?
j (t)).

Hence we have the following condition

µ(t, T ) +
d∑
j=1

σj(t, T )ϑj(t) = r(t) for all 0 ≤ t ≤ T.

Then all T -bonds with maturity before T1 are local P?-martingales.

5.1.2 The Short Rate Approach

Based of the evolution of the short rate r we construct an arbitrage-free bond-market
model. We have to specify the following ingredients:

- a probability space (Ω,FT ? ,P), where FT ? is generated by some Wiener-process
W .

- a family of bond-prices (B(t, T ))0≤t≤T for every T ≤ T ?,

- an equivalent probability measure P? on (Ω,FT ?), such that
(
B(t,T )
β(t)

)
0≤t≤T

is a local

martingale w.r.t. P? for all T ≤ T ?.

Therefore we consider some n-dimensional Wiener-process W with Wiener-filtration
(Ft)t≥0 according to a probability measure P. We fix a maximal maturity T ? > 0.
Then the probability-space (Ω,FT ? ,P) is fixed.

203



1. Assumption: The short rate is a diffusion. This means that it is a strong solution to
the stochastic differential equation

dr(t) = m(t, r(t))dt+ δ(t, r(t))dW (t)

= m(t, r(t))dt+
n∑
j=1

δj(t, r(t))dWj(t)

with initial condition r(0) = r0 ∈ R.
The functions m : [0, T ?] × R −→ R and δ : [0, T ?] × R −→ R have to be chosen, such
that the above solution exists.
2. Assumption: There exists according to P an equivalent probability measure P? on
(Ω,FT ?) such that

dP?

dP

∣∣∣∣
Ft

= L(t) = exp

 t∫
0

ϑ(s)dW (s)− 1

2

t∫
0

|ϑ(s)|2ds

 for all 0 ≤ t ≤ T ?

with ϑ(t) = ϑ(t, r(t)) for all t ≤ T ? with some function ϑ : [0, T ?]× R −→ Rn.
3. Assumption: Let E? 1

β(T )
<∞ for all T ≤ T ?, with

β(t) = exp

 t∫
0

r(s)ds

 .

Then

B(t, T ) = β(t)E?
(

1

β(T )
|Ft
)

= E?
(
β(t)

β(T )
|Ft
)

= E?
exp

− T∫
t

r(s)ds

 |Ft


for all t ≤ T defines an arbitrage-free bond-market with equivalent local martingale
measure P?, since

B(t, T )

β(t)
= E?

(
1

β(T )
|Ft
)
, t ≤ T

is a P?-martingale.
In the following we compute B(t, T ) and its volatility σ(t, T ) by a PDE-approach:
Due to the 2. assumption a Wiener-process W ∗ w.r.t. P∗ is given by

W ?(t) = W (t)−
t∫

0

ϑ(s, r(s))ds.
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Furthermore it holds true:

dr(t) = m(t, r(t))dt+ δ(t, r(t))dW (t)

= (m(t, r(t)) +
n∑
j=1

ϑj(t, r(t))δj(t, r(t)))dt+ δ(t, r(t))dW ?(t).

Hence r is also a diffusion w.r.t. P?:

dr(t) = b(t, r(t))dt+ δ(t, r(t))dW ?(t)

with
b(t, r(t)) = m(t, r(t)) + ϑ(t, r(t))δ(t, r(t)).

The Markov-property of r w.r.t. P? implies

B(t, T ) = E?
exp

− T∫
t

r(s)ds

 |Ft


= E?
exp

− T∫
t

r(s)ds

 |r(t)


= vT (t, r(t))

with

vT (t, r) = E?
exp

− T∫
t

r(s)ds

 |r(t) = r

 .

Ito’s formula applied to vT implies:

dB(t, T ) = dvT (t, r(t))

= ∂tvT (t, r(t)) + ∂xvT (t, r(t))dr(t) +
1

2
∂2
xvT (t, r(t))d〈r〉t

=

[
∂tvT (t, r(t)) + ∂xvT (t, r(t))b(t, r(t)) +

1

2
∂2
xvT (t, r(t))|δ(t, r(t))|2

]
dt

+ ∂xvT (t, r(t))δ(t, r(t))dW ?(t)

Thus vT satisfies the PDE

∂tvT (t, r) + b(t, r)∂xvT (t, r) +
1

2
|δ(t, r)|2∂2

xvT (t, r) = rvT (t, r)

on (0, T )× R with final condition

lim
t↗T

vT (t, r) = 1.
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By solving this PDE the bond-prices can be calculated explicitly. Furthermore the
volatilities are determined by

dB(t, T ) = B(t, T )(r(t)dt+
∂xvT (t, r(t))

vT (t, r(t))
δ(t, r(t)︸ ︷︷ ︸

σ(t,T )

)dW ?(t).

Remark 5.1.2. Actually there is no change to P? necessary. This belongs to the case
ϑ(t, r) = 0. Then P? = P and this is called martingale modelling.

Examples for short rate models

a) Vasicek Modell

One factor model, n = 1,

dr(t) = b(a− r(t))dt+ δdW (t)

with b, a, δ > 0.

- Vasicek-process

- return level a

- return-rate b

Solving the partial differential equation leads to

B(t, T ) = exp (−h(T − t)− r(t)g(T − t))

with

h(s) =

(
a− δ2

2b2

)
s+

(
δ2

b2
− a
)(

1− e−bs
) 1

b
− σ2

2b2

1

2b

(
1− e−2bs

)
g(s) =

1

b

(
1− e−bs

)
The Yield Y (t, T ) can be obtained by

exp ((T − t)Y (t, T )) =
1

B(t, T )

⇔Y (t, T ) =
1

T − t
(h(T − t) + g(T − t)r(t))

The function Y (t, ·) denotes the yield as function of maturity for fixed t. The
initial yield curve is given by

Y (0, T ) =
1

T
(g(T )r(0) + h(T )).

The yield depends linear affine on the short rate. Therefore the Vasicek-model is
an example for an affine bond market model.
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Note, that the bond-price satisfies

dB(t, T ) = B(t, T )(r(t)dt−g(T − t)δ︸ ︷︷ ︸
σ(t,T )

dW (t)).

Therefore the volatility is given by

σ(t, T ) = −g(T − t)δ

The function t → σ(t, T ) is non-random. This is a remarkable property and very
useful in pricing of derivatives. Shortly one can say that pricing of derivatives in a
Vasicek-model can be nearly done as in a Black-Scholes model with deterministic
volatility function.

b) Cox-Ignersoll-Ross Modell (CIR Modell) Here the short rate is assumed to evolve
as a CIR-process

dr(t) = b(a− r(t))dt+ δ
√
r(t)dW (t)

with b, a, δ > 0 and 2ab ≥ δ2.

Solving the partial differential equation provides

B(t, T ) = exp (−h(T − t)− g(T − t)r(t))

with

h(s) = −2ab

δ2
ln

(
4γe(γ+ b

2
)s

(2γ + b)(e2γs − 1) + 4γ

)

g(s) =
2(e2γs − 1)

(2γ + b)(e2bs − 1) + 4γ

and

γ =
1

2

√
b2 + 2δ2.

Therefore also the CIR model is an affine bond-market model with

dB(t, T ) = B(t, T )(r(t)dt−g(T − t)δ
√
r(t)︸ ︷︷ ︸

σ(t,T )

dW (t)).

5.2 Pricing of Derivatives

We consider a bond-market with an equivalent local martingale measure P∗ and assume
that

E∗
1

β(T )
<∞
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for each maturity T . Since there are an infinite number of T -bonds but only a finite di-
mensional Wiener-process that represents the uncertainty it is reasonable to assume that
the market is complete and therefore the local equivalent martingale measure unique.
Every T -Claim C with E?| C

β(T )
| <∞ has a unique arbitrage-free price given by

p0(C) = E?
C

β(T )

in Euro.
Respectively in t by

pt(C) = β(t)E?
(

C

β(T )
|Ft
)
.

5.2.1 Forward Martingale Measure

To compute this price it is useful to determine the so called forward-price

F (0, T ;C) =
p0(C)

B(0, T )

resp.

F (t, T ;C) =
pt(C)

B(t, T )

with the so called forward martingale measure PT in T .

Definition 5.2.1. The forward martingale measure PT w.r.t. the time date T > 0 is
that local equivalent martingale measure that belongs to the numeraire (B(t, T ))0≤t≤T .
More precise:

(i) PT ∼ P? on (Ω,FT ).

(ii) For each risky asset S the forward-price process
(

S(t)
B(t,T )

)
0≤t≤T

is a local PT -

martingale.

S(t)
B(t,T )

is the so called forward-price in t.

Computation of PT :
Due to

B(t, T )

β(t)
= E?

(
1

β(T )
|Ft
)
, 0 ≤ t ≤ T

the process B(t,T )
β(t)

is as conditional expectation a P?-martingale for all 0 ≤ t ≤ T .
Therefore we can define an equivalent probability measure P? by

dPT
dP?

∣∣∣∣
Ft

=
B(t, T )

β(t)︸ ︷︷ ︸
P?−martingale

E? 1
β(T )

=B(0,T )>0

1

B(0, T )︸ ︷︷ ︸
Norma-
lising-
factor

=: L(t), 0 ≤ t ≤ T.
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For every risky asset S it follows that

F (t, T ;S) :=
S(t)

B(t, T )
, 0 ≤ t ≤ T

is a local PT -martingale if and only if

S(t)

B(t, T )
L(t), 0 ≤ t ≤ T

is a local P?-martingale.
Due to

S(t)

B(t, T )
L(t) =

S(t)

B(t, T )

B(t, T )

β(t)

1

B(0, T )
=
S(t)

β(t)

1

B(0, T )

F (t, T ;S) is a local PT -martingale for all 0 ≤ t ≤ T . Therefore PT is the forward
martingale measure w.r.t. the time date T .
If T1 6= T then (

B(t, T1)

B(t, T )

)
0≤t≤T∧T1

is a PT -martingale.

Remark 5.2.2. Due to

dB(t, T ) = B(t, T )(r(t)dt+ σ(t, T )dW ?(t))

we have

dPT
dP?

∣∣∣∣
Ft

= exp

 t∫
0

σ(s, T )dW ?(s)− 1

2

t∫
0

|σ(s, T )|2ds


and

W T (t) := W ?(t)−
t∫

0

σ(s, T )ds, 0 ≤ t ≤ T

defines a Wiener-process according to PT .

Application to pricing of derivatives:
Let C be a T -claim with

E?
|C|
β(t)

<∞.

Its unique price-process is given by

pt(C) = β(t)E?
(

C

β(T )
|Ft
)

for all 0 ≤ t ≤ T .
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The forward-price w.r.t. the time date T on the claim satisfies

F (t, T ;C) =
pt(C)

B(t, T )

=
β(t)

B(t, T )
E?
(

C

β(T )
|Ft
)

Bayes-Formula→ =
β(t)

B(t, T )
ET
(

C

β(T )

1

L(T )
|Ft
)
L(t)

= ET (C|Ft).

This corresponds to the standpoint that it is not necessary to take P? as pricing measure.
Since PT is the local equivalent martingale measure corresponding to the numeraire
B(·, T ),

ET
(

C

B(T, T )
|Ft
)

= ET (C|Ft)

is then the arbitrage-free price of C, quoted in shares of the numeraire asset. The price
in Euro we get by multiplying with the price of the numeraire asset, i.e.

pt(C) = ET (C|Ft)B(t, T )

resp.

F (t, T ;C) =
pt(C)

B(t, T )
= ET (C|Ft).

We apply this general framework to several examples.

5.2.2 Pricing of a Call-Option

We consider the following setup:

- Bond market model

- equivalent local martingale measure P?

- T1-Bond as risky asset

- call on the T1-bond with running-time T < T1, i.e.

C = (B(T, T1)−K)+ .

For pricing purposes we consider the forward-martingale measure w.r.t. the time date
T which is denoted by PT and given by the density-process

dPT
dP?

∣∣∣∣
Ft

=
B(t, T )

β(t)

1

B(0, T )
.
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We have to calculate

ET
(
(B(T, T1)−K)+|Ft

)
, for all 0 ≤ t ≤ T.

It follows:

ET (C|Ft) = ET
(
B(T, T1)1{B(T,T1)>K}|Ft

)
− ET (K1{B(T,T1)>K}|Ft).

Furthermore
dPT
dP?

∣∣∣∣
Ft

=
B(t, T )

β(t)

1

B(0, T )

and
dPT1

dP?

∣∣∣∣
Ft

=
B(t, T1)

β(t)

1

B(0, T1)
.

Due to Bayes ET (Y L(T )|Ft) = ET1(Y |Ft)L(t), hence

ET
(
B(T, T1)1{B(T,T1)>K}|Ft

)
= ET1

(
1{B(T,T1)>K}|Ft

)
F (t, T ;T1)

= PT1 (B(T, T1) > K|Ft)F (t, T ;T1).

Therefore it follows for the claim’s pricing

ET (C|Ft) = F (t, T ;T1)PT1(B(T, T1) > K|Ft)−KPT (B(T, T1) > K|Ft)

resp. for the arbitrage-free price in Euro

pt(C) = B(t, T )ET (C|Ft)
= B(t, T1)PT1(B(T, T1) > K|Ft)−KB(t, T )PT (B(T, T1) > K|Ft).

So far the considerations are valid in each bond market model. For an explicit compu-
tation

PT1(B(T, T1) > K|Ft) and PT (B(T, T1) > K|Ft)

have to be determined and these values depend on the specified model.

Calaculation in the Vasicek-Model:

In short-rate models an explicit computation is in principle possible.
Very easy is the case of a Vasicek-model since the volatility of the T -bonds are deter-
ministic functions.

dB(t, T ) = B(t, T )(r(t)dt+ σ(t, T )dW ?(t))

dB(t, T1) = B(t, T1)(r(t)dt+ σ(t, T1)dW ?(t))
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Then with Ito

dF (t, T ;T1) = F (t, T ;T1)(σ(t, T1)− σ(t, T )︸ ︷︷ ︸
η(t)

)dW T (t)

whereby

W T (t) = W ?(t)−
t∫

0

σ(t, T )dt

is a Wiener-process w.r.t. PT .
Due to

dPT1

dPT

∣∣∣∣
Ft

=
F (t, T ;T1)

F (0, T ;T1)
= exp

 t∫
0

η(s)dW T (s)− 1

2

t∫
0

η2(s)ds


the process

W T1(t) = W T (t)−
t∫

0

η(s)ds

is a Wiener-process w.r.t. PT1 .
Hence

dF (t, T ;T1) = F (t, T ;T1)η(t)dW T1(t) + F (t, T ;T1)η(t)dt.

In the Vasicek-model η is a deterministic function and therefore the conditional proba-
bilities are determined by the normal distribution.
More precise

PT (B(T, T1) > K|Ft) = PT (F (T, T ;T1) > K|Ft)

= PT
(
F (t, T ;T1)

F (T, T ;T1)

F (t, T ;T1)︸ ︷︷ ︸
exp−martingale

> K|Ft
)

= PT
(

(F (t, T ;T1)︸ ︷︷ ︸
Ft−mb

exp

 T∫
t

η(s)dW T (s)− 1

2

T∫
t

η2(s)ds

 > K

︸ ︷︷ ︸
independent of Ft

|Ft
)

= PT
(

exp

 T∫
t

η(s)dW T (s)− 1

2

T∫
t

η2(s)ds

 >
K

F (t, T ;T1)

)

= Φ


ln F (t,T ;T1)

K
− 1

2

T∫
t

η2(s)ds√
T∫
t

η2(s)ds


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and

PT1(B(T, T1) > K|Ft) = PT1(F (T, T ;T1) > K|Ft)

= PT1

(
exp

 T∫
t

η(s)dW T1(s) +
1

2

T∫
t

η2(s)ds

 >
K

F (t, T ;T1)

)

= Φ


ln F (t,T ;T1)

K
+ 1

2

T∫
t

η2(s)ds√
T∫
t

η2(s)ds

 .

Note:

σ(t, T ) = −g(T − t)δ = −δ
b

(
1− e−b(T−t)

)
,

σ(t, T1) = −g(T1 − t)δ = −δ
b

(
1− e−b(T1−t)

)
,

η(t) =
δ

b

(
e−b(T1−t) − e−b(T−t)

)
=
δ

b
ebt
(
e−bT1 − e−bT

)
5.2.3 Pricing of Caplets

As before we consider a general setup:

- bond market model

- local equivalent martingale measure P?

- A caplet is an interest-rate derivative, that ensures to make safe a floating interest
rate.

For this we consider a time-period [T, T1]. The discrete floating interest-rate of a risk-less
return on capital between T and T1 is

1

T1 − T

(
1

B(T, T1)
− 1

)
,

for 1 Euro, that is invested in T in T1−Bonds, one receives 1
B(T,T1)

T1−Bonds. These are

in T1
1

B(T,T1)
Euro worth. Hence

1

B(T, T1)
− 1
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is the capital gain, which corresponds to an annual interest-rate of

1

T1 − T︸ ︷︷ ︸
period

(
1

B(T, T1)
− 1︸ ︷︷ ︸

Gain

)
=: Rd(T, T1)︸ ︷︷ ︸

interest-rate

A caplet according to the period [T, T1] with strike K gives the right to exchange the
floating coupon

(T1 − T )Rd(T, T1) =
1

B(T, T1)
− 1

with the fixed coupon
(T1 − T )K.

A caplet provides the following pay-off in T1:

((T1 − T )Rd(T, T1)− (T1 − T )K)+ =

(
1

B(T, T1)
− 1− (T1 − T )K

)+

=

(
1

B(T, T1)
− (1 +K(T1 − T ))

)+

.

As before the calculation of the caplet-price is based on the calculation of the caplet’s
forward-price in T1. It follows

ET1

(
1

B(T, T1)
− (1 + (T1 − T )K

)+

= ET1

(
B(T, T )

B(T, T1)
− (1 + (T1 − T )K)

)+

= ET1 (F (T, T1;T )− (1 + (T1 − T )K))+

The forward-price process (F (t, T1;T ))0≤t≤T of a T -bond is a PT1-martingale.
Therefore

dF (t, T1;T ) = F (t, T1;T )η(t)dW T1(t),

dB(t, T ) = B(t, T )(r(t)dt+ σ(t, T )dW ?(t)),

dB(t, T1) = B(t, T1)(r(t)dt+ σ(t, T1)dW ?(t))

and
η(t) = σ(t, T )− σ(t, T1).

Hence we obtain

ET1F (T, T1;T )1{F (T,T1;T )>1+(T1−T )K} = F (0, T1;T )PT
(
F (T, T1;T ) > 1 + (T1 − T )K

)
due to

dPT
dPT1

∣∣∣∣
Ft

=
F (t, T1;T )

F (0, T1;T )
.
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Therefore it follows

ET1

(
1

B(T, T1)
− (1 + (T1 − T )K

)+

=F (0, T1;T )PT
(
F (T, T1;T ) > 1 + (T1 − T )K

)
− (1 + (T1 − T )K)PT1

(
F (T, T1;T ) > 1 + (T1 − T )K

)
.

As arbitrage-free price we obtain

Cl(0) := B(0, T1)ET1

(
1

B(T, T1)
− (1 + (T1 − T )K

)+

= B(0, T )PT
(
F (T, T1;T ) > 1 + (T1 − T )K

)
− (1 + (T1 − T )K)

B(0, T1)
PT1

(
F (T, T1;T ) > 1 + (T1 − T )K

)
.

With the same way we receive the price at t:

ET1

(
1

B(T, T1)
− (1 + (T1 − T )K|Ft

)+

=F (t, T1;T )PT
(
F (T, T1;T ) > 1 + (T1 − T )K|Ft

)
− (1 + (T1 − T )K)PT1

(
F (T, T1;T ) > 1 + (T1 − T )K|Ft

)
resp. as initial arbitrage-free price

Cl(0) = B(t, T1)ET1

(
1

B(T, T1)
− (1 + (T1 − T )K|Ft

)+

= B(t, T )PT
(
F (T, T1;T ) > 1 + (T1 − T )K|Ft

)
− (1 + (T1 − T )K)B(0, T1)PT1

(
F (T, T1;T ) > 1 + (T1 − T )K|Ft

)
.

The explicit computation of PT and PT1 depends on the chosen model. In the Vasicek
model we obtain

dF (t, T1;T ) = F (t, T1;T )η(t)dW T1(t)

with
η(t) = σ(t, T )− σ(t, T1)

which is deterministic in t.
Due to

dPT
dPT1

∣∣∣∣
Ft

=
F (t, T1;T )

F (0, T1;T )
= exp

 t∫
0

η(s)dW T1(s)− 1

2

t∫
0

η2(s)ds


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the process

W T (t) := W T1(t)−
t∫

0

η(s)ds

is a Wiener-process according to PT .
We obtain

PT1

(
F (T, T1;T ) > 1 + (T1 − T )K|Ft

)
= Φ (h1(F (t, T1;T ), t))

and
PT
(
F (T, T1;T ) > 1 + (T1 − T )K|Ft

)
= Φ (h2(F (t, T1;T ), t)) .

Hereby

h1(x, t) =

ln x
1+(T1−T )K

− 1
2

T∫
t

η2(s)ds√
T∫
t

η2(s)ds

and

h2(x, t) =

ln x
1+(T1−T )K

+ 1
2

T∫
t

η2(s)ds√
T∫
t

η2(s)ds

.

5.2.4 Caplets, Caps, Floorlets und Floors

A Cap is a finite sequence of caplets. For a given tenor structure

T0 < T1 < ... < Tn

we consider the time-periods [Ti−1, Ti] and their corresponding caplets. The i-th caplet
gives the right to exchange the floating coupon, fixed at Ti−1, with an initially fixed
coupon (Ti − Ti−1)K. The exchange will take place at Ti.
Thus a Cap induces a pay-off stream:
At each Ti there is a pay-off

(Rd(Ti−1, Ti)−K)+(Ti − Ti−1).

If we denote according to t ≤ T0 with Cli(t) the price of the i-th caplet, then

Cap(t) =
n∑
i=1

Cli(t)

is the price of the Cap in t.
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In practice a holder of a cap can use it to make safe a floating loan contract w.r.t. to an
creasing interest-rate. In a floating loan contract one has to pay for the i-th time-period
[ti−1, ti] the floating coupon

Rd(Ti−1, Ti)(Ti − Ti−1)

which is fixed at ti−1 and paid at ti.
One would like to ensure that an initially fixed interest-rate K will not be exceeded.
Therefore one buys a cap with strike K according to the suitable tenor-structure of the
loan. Then a difference between floating-rate and fixed rate

Rd(Ti−1, Ti)−K

would be provided by the cap. The cost to avoid this risk at t for t ≤ T0 are given by
the Cap’s price Cap(t).
Instead of caplet und cap one can also define floorlet und floor. These are derivatives
with pay-off

(K −Rd(Ti−1, Ti))
+

at Ti for each time-period [ti−1, ti].
Application:
One has to pay the coupons of a fixed rate loan according to a tenor-structure

T0 < T1 < ... < Tn

and one would like to exchange the fixed coupon with a floating coupon, if it is favourable.
Solution: Buy a floor corresponding to the tenor-structure. If in the i−ten period

K > Rd(Ti−1, Ti)

then Rd(Ti−1, Ti) has to be effectively to be paid, since the difference

K −Rd(Ti−1, Ti)

is financed by the floorlet.

5.2.5 Swaps

A long position in a cap combined with a short position in a floor and vice versa yields
a swap. There are

Payer-Swap = Cap− Floor

Receiver-Swap = Floor− Cap

More precise:

- tenor-structure
T0 < T1 < ... < Tn
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- fixed-rate K,

- nominal N .

A Swap is an exchange-contract, that exchanges in each period the floating coupons with
the fixed-rate coupons. There is no optionality. At the end of each period an exchange
occurs. For the payer-swap we obtain in every period [ti−1, ti] the pay-off

N(Ti − Ti−1)(Rd(Ti−1, Ti)−K), for all 1 ≤ i ≤ n

and for the Receiver-Swap

N(Ti − Ti−1)(K −Rd(Ti−1, Ti)), for all 1 ≤ i ≤ n.

Pricing of Swaps

Reminder: At t we can realise the gain

B(t, Ti−1)

B(t, Ti)
− 1

for a capital investment in the period [Ti−1, Ti] by settling forward contracts on the
Ti-bond with maturity Ti−1. This corresponds to an annual discrete interest-rate

Φd(t;Ti−1, Ti) =
1

Ti − Ti−1

(
B(t, Ti−1)

B(t, Ti)
− 1

)
the so called forward-rate.
Note:

Φd(Ti−1;Ti−1, Ti) = Rd(Ti−1, Ti).

Remark 5.2.3. Φd(t;Ti−1, Ti) can be seen as forward-price with maturity Ti fixed at t
on the short-rate Rd(Ti−1, Ti).

Proof.

Rd(Ti−1, Ti) =
1

Ti − Ti−1

(
1

B(Ti−1, Ti)
− 1

)
and

ETi(Rd(Ti−1, Ti)|Ft) = ETi
(

1

Ti − Ti−1

(
1

B(Ti−1, Ti)
− 1

)
|Ft
)

= ETi
(

1

Ti − Ti−1

(
B(Ti−1, Ti−1)

B(Ti−1, Ti)
− 1

)
|Ft
)

=
1

Ti − Ti−1

(ErTi(F (Ti−1, Ti;Ti−1)|Ft)− 1)

=
1

Ti − Ti−1

(F (t, Ti;Ti−1)− 1)

=
1

Ti − Ti−1

(
B(t, Ti−1)

B(t, Ti)
− 1

)
= Φd(t;Ti−1, Ti)
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Therefore we have calculated the arbitrage-free price at t of the Ti’s-pay-off Rd(Ti−1, Ti).

B(t, Ti)Φd(t;Ti−1, Ti) =
1

Ti − Ti−1

(B(t, Ti−1)−B(t, Ti)).

This considerations provides a valuation of the payer-swap in t:

swap(t) = N
n∑
i=1

(Ti − Ti−1)(Φd(t;Ti−1, Ti)−K)B(t, Ti)

= N

n∑
i=1

(B(t, Ti−1)−B(t, Ti))−N
n∑
i=1

(Ti − Ti−1)B(t, Ti)

= N(B(t, T0)−B(t, Tn))−N
n∑
i=1

(Ti − Ti−1)B(t, Ti).

What is the meaning of

Swap(t) > 0 ⇒ The pay-off stream of the floating coupons is more worth than
that of the fixed coupons.

Swap(t) < 0⇒ The pay-off stream of the floating coupons is less worth than that
of the fixed coupons.

Swap(t) = 0 ⇒ The pay-off stream of the floating coupons is as worth as that of
the fixed coupons. A floating rate loan contract and a fixed rate loan contract can
be exchanged without causing any costs.

Application:
A floating rate loan contract has no risk according to change in interest-rates. By
additional taking a swap position a fixed interest loan can be exchanged to a floating
rate loan contract. This gives the opportunity to eliminate the risk of a change in interest
rate for fixed interest rate loans.
That fixed-rate K, at which swap(t) = 0, is called swaprate Rswap(t). There are two
ways how to determine the swap-rate:
1. way:

K = Rswap(t)⇔
n∑
i=1

(Ti − Ti−1)B(t, Ti)(Φd(t;Ti−1, Ti)−K) = 0

⇔
n∑
i=1

(Ti − Ti−1)B(t, Ti)Φd(t;Ti−1, Ti) = K

n∑
i=1

(Ti − Ti−1)B(t, Ti)

⇔
n∑
i=1

(Ti − Ti−1)B(t, Ti)
n∑
k=1

(Tk − Tk−1)B(t, Tk)︸ ︷︷ ︸
ωi(t)

Φd(t;Ti−1, Ti) = K.
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Hence,

Rswap(t) =
n∑
i=1

ωi(t)Φd(t;Ti−1, Ti).

2. way:

swap(t) = 0⇔ B(t, T0)−B(t, Tn) = K
n∑
i=1

(Ti − Ti−1)B(t, Ti)

=⇔ B(t, T0)−B(t, Tn)
n∑
i=1

(Ti − Ti−1)B(t, Ti)
= K.

Hence,

Rswap(t) =
B(t, T0)−B(t, Tn)
n∑
i=1

(Ti − Ti−1)B(t, Ti)
.

The price of a swap can also be expressed with the swap-rate

swap(t) = B(t, T0)−B(t, Tn)−K
n∑
i=1

(Ti − Ti−1)B(t, Ti)

= Rswap(t)
n∑
i=1

(Ti − Ti−1)B(t, Ti)−K
n∑
i=1

(Ti − Ti−1)B(t, Ti)

= (Rswap(t)−K)
n∑
i=1

(Ti − Ti−1)B(t, Ti)︸ ︷︷ ︸
N(t)

= (Rswap(t)−K)N(t)

Swaption

A Payer-Swaption gives the holder the right, to settle at T0 in a Payer-Swap with tenor
structure

T0 < T1 < ... < Tn

and fixed-rate K.
A Swaption will be executed in T0, if

Swap(T0) ≥ 0.

This results in the pay-off stream of a swap in T1, ...Tn which is valued at T0 by Swap(T0).
Therefore a swaption can be seen as T0−Claim with pay-off

C = Swap(T0)+.

It follows
Swap(T0)+ = (Rwap(T0)−K)+N(T0).
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Pricing of a Swaption

The idea is that the swaption can nearly be seen as call on the swap-rate process
(RSwap(t))0≤t≤T0

and a suitable choose of a numeraire asset leads to a pricing-formula.

Definition 5.2.4. Let

N(t) :=
n∑
i=1

(Ti − Ti−1)B(t, Ti) for all 0 ≤ t ≤ T0.

A probability measure Pswap is called swap-martingale measure, if it is a local equivalent
martingale measure w.r.t. the numeraire N , i.e.

(i) Pswap ∼ PT0 on (Ω,FT0),

(ii)
(
S(t)
N(t)

)
0≤t≤T0

is a local PSwap-martingale for all risky assets S.

Computation of Pswap:
dPswap
dPT0

∣∣∣∣
Ft

=: L(t).

It follows: S(t)
N(t)

is a local PSwap-martingale if and only if S(t)
N(t)

L(t) is a local PT0-martingale.
Furthermore:
S(t)
B(t,T0

is a local PT0-martingale with

S(t)

B(t, T0)
=
S(t)

N(t)
L(t)c

with a constant c. Hence

L(t) =
N(t)

B(t, T0)

1

c
.

Due to normalisation

L(t) =
N(t)

B(t, T0)

B(0, T0)

N(0)
.

Hence
dPSwap
dPT0

∣∣∣∣
Ft

=
N(t)

B(t, T0)

B(0, T0)

N(0)
, for all 0 ≤ t ≤ T0

defines the density of the swap-martingale measure with respect to the forward-martingale
measure.
Thus we can obtain an arbitrage-free Euro price by

pt(C) = N(t)ESwap
(

(RSwap(T0)−K)+N(T0)

N(T0)

∣∣∣∣Ft)
⇔pt(C) = N(t)ESwap

(
(RSwap(T0)−K)+|Ft

)
.
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For an explicit computation the swap-rate process under PSwap has to be determined.
The process (RSwap(t))0≤t≤T0

is a positive Pswap-martingale.
Hence, there is a previsible process σSwap, such that

dRswap(t) = Rswap(t)σswap(t)dWswap(t)

with a Wiener-process Wswap according to Pswap.
In principal the swap-rate’s volatility σSwap can be computed, but the formula even in
short rate models is complex and not suitable for effective computations. Therefore
simplifications are used in practise.
The most simple method is to assume, that (σSwap(t))0≤t≤T0

is some deterministic func-
tion in time t. This results in the so called formula of Black for the swaption price,
which can be calculated in the same way as the call price in a Black-Scholes model.

5.3 Libor Market Model

The Libor market model is at this time a very popular and advance model used in
banks. The reason relies in the fact that contrary to short-rate models and to the HJM-
framework the Libor-market approach uses observable market-prices to fix a bond model.
The main idea is to describe the evolution of the discrete forward-rates Φd(t, Ti−1, Ti)
which are also often called Libor-rates.

5.3.1 Model Specification

We consider a given tenor-structure

T0 < T1 < ... < TN

with interval lengths
δi = Ti − Ti−1.

The Ti−Bonds i = 0, ..., N − 1 are the risky assets with price-processes

(B(t, Ti))0≤t≤Ti , i = 0, ..., N − 1.

The TN -bond serves as numeraire asset with price-process

(B(t, TN))0≤t≤TN .

Hence we have defined a financial market with N risky assets and the TN -bond as
numeraire asset.
Note: The i−th risky asset can only be traded until Ti. Thereafter it vanishes from the
market and can’t be used for hedging purposes.
Assumptions:
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- The source of uncertainty is given by some d-dimensional Wiener-process (W (t))t≥0.
This means that we consider a filtered probability space (Ω, (Ft)t≥0 ,P) such that
(Ft)t≥0 is a Wiener-filtration of some d−dimensional Wiener-process W .

The price-processes of all N + 1 Bonds are continuous, strictly positive semi-
martingales with B(Ti, Ti) = 1 for all i = 0, ..., N .

-- The model is free of arbitrage. This means that there exists some probability
measure PTN on (Ω,FTN ), such that

(i) PTN ∼ P on (Ω,FTN ),

(ii)
(
B(t,Ti)
B(t,TN )

)
0≤t≤Ti

is a local PTN -martingale for every 0 ≤ i ≤ N − 1.

We request here the slight stronger condition, that
(
B(t,Ti)
B(t,TN )

)
0≤t≤Ti

is a PTN -martingale

for every 0 ≤ i ≤ N − 1.

Remark 5.3.1. PTN is the forward-martingale measure w.r.t. the time-date TN , due
to the fact that it is the equivalent martingale measure according to the numeraire
(B(t, TN))0≤t≤TN .

Remark 5.3.2. The specification of the model avoids to use the money-market account,
since the short-rate is not directly observable. The model uses only market observable
quantities.

For the period from Ti−1 to Ti the discrete forward interest-rate is defined at t ≤ Ti by

Li(t) := Φd(t;Ti−1, Ti)

=
1

δi

(
B(t, Ti−1)

B(t, Ti)
− 1

)
This Li(t) is also called i-th Libor-rate.

Remark 5.3.3. For any 1 ≤ i ≤ N the Libor-rate process Li is a semi-martingale, since

B(t, Ti−1)

B(t, Ti)
=
B(t, Ti−1)/B(t, TN)

B(t, Ti)/B(t, TN)

is a fraction of semi-martingales.

It is further assumed that the Libor-rates are strictly positive.

5.3.2 Terminal Measure

The probability measure PTN is also called terminal measure, since TN is the last time
point on the tenor structure. According to PTN the evolution of the Libor-rates can in
principal be clarified.
We start with (LN(t))0≤t≤TN−1

. Due to the assumptions

LN(t) =
1

δN

(
B(t, TN−1)

B(t, TN)
− 1

)
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is a PTN -martingale . Therefore there exists some previsible Rd-valued process
(
σ(N)(t)

)
0≤t≤TN−1

,

such that

dLN(t) = LN(t)σ(N)(t)dW (t)

= LN(t)
d∑
j=1

σ
(N)
j (t)dWj(t).

(
σ(N)(t)

)
determines the volatilities of the N -th Libor-rate. With the positive martin-

gale LN a change to the forward-martingale measure PTN−1
can be done.

dPTN−1

dPTN

∣∣∣∣
Ft

=
B(t, TN−1)

B(t, TN)

B(0, TN)

B(0, TN−1)
=
δNLN(t) + 1

δNLN(0) + 1
=: RN(t)

Hence it follows

dRN(t) =
δN

δNLN(0) + 1
dLN(t)

=
δN

δNLN(0) + 1
LN(t)σ(N)(t)dW (t)

= RN(t)
δNLN(t)

δNLN(t) + 1
σ(N)(t)dW (t).

We obtain the exponential martingale expression for the density-process:

RN(t) = exp

 t∫
0

δNLN(s)

δNLN(t) + 1
σ(N)(s)dW (s)− 1

2

t∫
0

∣∣∣∣ δNLN(s)

δNLN(s) + 1
σ(N)(s)

∣∣∣∣2 ds
 .

Girsanov’s theorem yields a Wiener-process W (N−1), defined by

W (N−1)(t) = W (t)−
t∫

0

δNLN(s)

δNLN(s) + 1
σ(N)(s)ds

according to PTN−1
.

In the next step the dynamics of the N − 1-th Libor-rate

LN−1(t) =
1

δN−1

(
B(t, TN−2)

B(t, TN−1)
− 1

)
will be determined.
LN−1 is a positive semi-martingale w.r.t. PTN . Therefore there exist some previsible
processes

(
σ(N−1)(t)

)
0≤t≤TN−2

and
(
µ(N−1)(t)

)
0≤t≤TN−2

, such that

dLN−1 = LN−1(t)(µ(N−1)(t)dt+ σ(N−1)(t)dW (t)).
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Since LN−1 is a PTN−1
− martingale,

(
µ(N−1)(t)

)
is uniquely determined. Due to

dW (t) = dW (N−1)(t) +
δNLN(t)

δNLN(t) + 1
σ(N)(t)dt

we obtain by inserting

dLN−1(t) = LN−1(t)

(
(µ(N−1)(t)+

δNLN(t)

δNLN(t) + 1
σ(N)(t)σ(N−1)(t))dt+σ(N−1)(t)dW (N−1)(t)

)
Since LN−1 is a PTN−1

−martingale, it follows

µ(N−1)(t) = − δNLN(t)

δNLN(t) + 1
σ(N)(t)σ(N−1)(t)

= −
d∑
j=1

δNLN(t)

δNLN(t) + 1
σ

(N)
j (t)σ

(N−1)
j (t).

The PTN−1
-martingale LN−1 determines the change of measure to the forward-martingale

measure PTN−2
:

dPTN−2

dPTN−1

∣∣∣∣
Ft

=
B(t, TN−2)

B(t, TN−1)

B(0, TN−1)

B(0, TN−2)
=
δN−1LN−1(t) + 1

δN−1LN−1(0) + 1
=: RN−1(t).

Therefore it follows:

dRN−1(t) = RN−1(t)
δN−1LN−1(t)

δN−1LN−1(t) + 1
σ(N−1)(t)dWN−1(t).

Again Girsanov provides a Wiener-process W (N−2)

W (N−2)(t) = W (N−1)(t)−
t∫

0

δN−1LN−1(s)

δN−1LN−1(s) + 1
σ(N−1)(s)ds

according to PTN−2
for every 0 ≤ t ≤ TN−2.

By continuing this procedure we obtain.
The Libor-rates (Li(t))0≤t≤Ti−1

, 1 ≤ i ≤ N have according to PTN the dynamics

dLi(t) = Li(t)

(
−

N∑
k=i+1

ηik(t)dt+ σ(i)(t)dW (t)

)

with

ηik(t) :=
δkLk(t)

δkLk(t) + 1
σ(i)(t)σ(k)(t).
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The forward-martingale measures PT1 , ...,PTN fulfill

dPTi−1

dPTi

∣∣∣∣
Ft

=
δiLi(t) + 1

δiLi(0) + 1
= Ri(t)

and
dLi(t) = Li(t)σ

(i)(t)dW (i)(t)

with Wiener-process W (i) w.r.t. PTi .
By specifying the volatilities σ(i), i = 1, · · · , n the model is uniquely determined. In
practise a model will be specified by fitting the volatilities to observable market-prices
of caps and swaptions. This means that those volatilities are determined such that the
model-prices explain the market-prices of observable caps and swaptions best.

Lognormal Libor-market Model

Model-prices can be calculated when suitable assumptions on the volatilities are fulfilled.
This would make the calibration by market-data easier. One often used approach is to
consider log-normal Libor-rates. This is the following model

- Tenor-structure T0 < T1 < ... < TN ,

- Li(t) = 1
δi

(
B(t,Ti−1)
B(t,Ti)

− 1
)
, 0 ≤ t ≤ Ti−1,

- PTi forward-martingale measure,

- Z = (Z1, ..., ZN) some N−dimensional correlated Wiener-process with

〈Zk, Zl〉t = %klt

for k 6= l : −1 < %kl < 1.

Every Wiener-process is driving one Libor-rate. Due to the correlation of the
Wiener-process we obtain a dependency on the d Libor-rates.

Note, that with Girsanov as in subsection 5.3.2 N -dimensional Wiener-processes
Z(i) = (Z

(i)
1 , ..., Z

(i)
N ) w.r.t. PTi can be determined with correlation (%kl)1≤k,l≤N,k 6=l.

In log-normal Libor-market-models one assumes the following dynamics:

dLi(t) = Li(t)λi(t)dZ
(i)
i (t)

for all 1 ≤ i ≤ N with deterministic functions λ1, ..., λN .
According to PTi the i-th Libor-rate Li(t) is a log-normal distributed random variable.
The benefit is, that prices of caplets can be easily calculated in log-normal Libor-market-
models.
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Pricing of Caplets in the Log-Normal Libor-Market Model

In the time period [Ti−1, Ti] a Caplet provides the pay-off

δi(Li(Ti−1)−K)+ = δi

(
1

δi

(
B(Ti−1, Ti−1)

B(Ti−1, Ti)
− 1

)
−K

)+

at Ti.
Valuation:
Computation of the forward-price at date Ti:

ETi
(
(Li(Ti−1)−K)+δi|Ft

)
= δiLi(t)ETi

(
Li(Ti−1)

Li(t)︸ ︷︷ ︸
pos. MG

1{Li(Ti−1)>K}

)
− δiKPTi(Li(Ti−1)︸ ︷︷ ︸

∼logN

> K|Ft)

= δiLi(t)QTi(Li(Ti−1) > K|Ft)− δiKPTi(Li(Ti−1) > K|Ft).

Due to
dLi(t) = Li(t)λi(t)dZ

(i)
i (t)

it follows
PTi(Li(Ti−1) > K|Ft) = Φ(h2(Li(t), t))

and since

dLi(t) = Li(t)λi(t)dB
(i)(t)− 1

2
λi(t)Li(t)dt

w.r.t. QTi we obtain

QTi(Li(Ti−1) > K|Ft) = Φ(h1(Li(t), t)).

Hereby

h1(x, t) =
ln x

K
+ 1

2

∫ Ti−1

t
λ2
i (s)ds√∫ Ti−1

t
λ2
i (s)ds

and

h2(x, t) =
ln x

K
− 1

2

∫ Ti−1

t
λ2
i (s)ds√∫ Ti−1

t
λ2
i (s)ds

.

The arbitrage-free Euro price at t is therefore

Cli(t) = B(t, Ti)δi

(
Li(t)Φ(h1(Li(t), t))−KΦ(h2(Li(t), t))

)
.

This is the formula of Black for caplets and hence prices of caps can be computed as
well.
Remarks concerning calibration:
Model-parameters are

- deterministic volatility functions λ1, ..., λN from a finite dimensional vector space.
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- correlation %kl of the driving Wiener-processes.

Observable data are

- cap-prices

- swaption-prices.

With respect to the tenor-structure T0 < Tα < ... < Tβ < TN there are several caps and
swaptions in the market. These market-prices are taken to calibrate the parameters.
Swaptions are needed to fit the correlation.

5.3.3 Further Libor-Market-Models

a) Diffusion Models

dLi(t) = Li(t)λi(t)σ(Li(t))dZ
(i)(t)

- λi is a deterministic function of time

- σ is a function of state.

This corresponds to the diffusion approach in the general framework.

b) Libor-rate-models with stochastic volatility

- The analogon to the Heston Modell

The volatility of the i-th Libor-rate is exogenously determined by

σi(t) =
√
V (t)λi(t), 1 ≤ i ≤ N

with V a CIR-process according to PTN of the form

dV (t) = a(b− V (t))dt+ c
√
V (t)dB(t)

and λi a deterministic function of time.

According to PTN the processes Z1, ..., ZN , B are correlated Wiener-processes. By

the change of measure to PTi we obtain correlated Wiener-processes Z
(i)
1 , ..., Z

(i)
N , B

(i)

and there is a change in the drift of V .

We obtain the following structure

dLi(t) = Li(t)λi(t)
√
V (t)dZ

(i)
i (t)

dV (t) = a(b− ζ(t)V (t))dt+ c
√
V (t)dB(i)(t).

How a calibration of such a model can be established in practise one can read in the
master theses of Hasow, Santen, Hülsbusch und Cresnik. (compare to Homepage of Dr.
Paulsen, http://wwwmath.uni-muenster.de/statistik/paulsen/Abschlussarbeiten/
Masterarbeiten/(21.07.2016)).
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