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CHAPTER 1

General theory of stochastic processes

1.1. Definition of stochastic process

First let us recall the definition of a random variable. A random variable is a random number
appearing as a result of a random experiment. If the random experiment is modeled by a
probability space (Ω,F ,P), then a random variable is defined as a function ξ : Ω → R
which is measurable. Measurability means that for every Borel set B ⊂ R it holds that
ξ−1(B) ∈ F . Performing the random experiment means choosing the outcome ω ∈ Ω at
random according to the probability measure P. Then, ξ(ω) is the value of the random
variable which corresponds to the outcome ω.

A stochastic process is a random function appearing as a result of a random experiment.

Definition 1.1.1. Let (Ω,F ,P) be a probability space and let T be an arbitrary set (called
the index set). Any collection of random variables X = {Xt : t ∈ T} defined on (Ω,F ,P) is
called a stochastic process with index set T .

So, to every t ∈ T corresponds some random variable Xt : Ω → R, ω 7→ Xt(ω). Note that
in the above definition we require that all random variables Xt are defined on the same
probability space. Performing the random experiment means choosing an outcome ω ∈ Ω at
random according to the probability measure P.

Definition 1.1.2. The function (defined on the index set T and taking values in R)

t 7→ Xt(ω)

is called the sample path (or the realization, or the trajectory) of the stochastic process X
corresponding to the outcome ω.

So, to every outcome ω ∈ Ω corresponds a trajectory of the process which is a function
defined on the index set T and taking values in R.

Stochastic processes are also often called random processes, random functions or simply
processes.

Depending on the choice of the index set T we distinguish between the following types of
stochastic processes:

1. If T consists of just one element (called, say, 1), then a stochastic process reduces to
just one random variable X1 : Ω → R. So, the concept of a stochastic process includes the
concept of a random variable as a special case.

2. If T = {1, . . . , n} is a finite set with n elements, then a stochastic process reduces to a
collection of n random variables X1, . . . , Xn defined on a common probability space. Such
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a collection is called a random vector. So, the concept of a stochastic process includes the
concept of a random vector as a special case.

3. Stochastic processes with index sets T = N, T = Z, T = Nd, T = Zd (or any other
countable set) are called stochastic processes with discrete time.

4. Stochastic processes with index sets T = R, T = Rd, T = [a, b] (or other similar
uncountable sets) are called stochastic processes with continuous time.

5. Stochastic processes with index sets T = Rd, T = Nd or T = Zd, where d ≥ 2, are
sometimes called random fields.

The parameter t is sometimes interpreted as “time”. For example, Xt can be the price of a
financial asset at time t. Sometimes we interpret the parameter t as “space”. For example,
Xt can be the air temperature measured at location with coordinates t = (u, v) ∈ R2.
Sometimes we interpret t as “space-time”. For example, Xt can be the air temperature
measured at location with coordinates (u, v) ∈ R2 at time s ∈ R, so that t = (u, v, s) ∈ R3.

1.2. Examples of stochastic processes

1. I.i.d. Noise. Let {Xn : n ∈ Z} be independent and identically distributed (i.i.d.) random
variables. This stochastic process is sometimes called the i.i.d. noise. A realization of this
process is shown in Figure 1, left.
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Figure 1. Left: A sample path of the i.i.d. noise. Right: A sample path of
the random walk. In both cases, the variables Xn are standard normal

2. Random walk. Let {Xn : n ∈ N} be independent and identically distributed random
variables. Define

Sn := X1 + . . .+Xn, n ∈ N, S0 = 0.

The process {Sn : n ∈ N0} is called the random walk. A sample path of the random walk is
shown in Figure 1, right.

3. Geometric random walk. Let {Xn : n ∈ N} be independent and identically distributed
random variables such that Xn > 0 almost surely. Define

Gn := X1 · . . . ·Xn, n ∈ N, Gn = 1.
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The process {Gn : n ∈ N0} is called the geometric random walk. Note that {logSn : n ∈ N0}
is a (usual) random walk.

4. Random lines and polynomials. Let ξ0, ξ1 : Ω → R be two random variables defined on
the same probability space. Define

Xt = ξ0 + ξ1t, t ∈ R.

The process {Xt : t ∈ R} might be called “a random line” because the sample paths t 7→
Xt(ω) are linear functions.
More generally, one can consider random polynomials. Fix some d ∈ N (the degree of the
polynomial) and let ξ0, . . . , ξd be random variables defined on a common probability space.
Then, the stochastic process

Xt = ξ0 + ξ1t+ ξ2t
2 + . . .+ ξdt

d, t ∈ R,

might be called a “random polynomial” because its sample paths are polynomial functions.

5. Renewal process. Consider a device which starts to work at time 0 and works T1 units of
time. At time T1 this device is replaced by another device which works for T2 units of time.
At time T1 + T2 this device is replaced by a new one, and so on. Let us denote the working
time of the i-th device by Ti. Let us assume that T1, T2, . . . are independent and identically
distributed random variables with P[Ti > 0] = 1. The times

Sn = T1 + . . .+ Tn, n ∈ N,

are called renewal times because at time Sn some device is replaced by a new one. Note that
0 < S1 < S2 < . . .. The number of renewal times in the time interval [0, t] is

Nt =
∞∑
n=1

1Sn≤t = #{n ∈ N : Sn ≤ t}, t ≥ 0.

The process {Nt : t ≥ 0} is called a renewal process.

Many further examples of stochastic processes will be considered later (Markov chains, Brow-
nian Motion, Lévy processes, martingales, and so on).

1.3. Finite-dimensional distributions

A random variable is usually described by its distribution. Recall that the distribution of a
random variable ξ defined on a probability space (Ω,F ,P) is a probability measure P ξ on
the real line R defined by

P ξ(A) = P[ξ ∈ A] = P[{ω ∈ Ω : ξ(ω) ∈ A}], A ⊂ R Borel.

Similarly, the distribution of a random vector ξ = (ξ1, . . . , ξn) (with values in Rn) is a
probability measure P ξ on Rn defined by

P ξ(A) = P[ξ ∈ A] = P[{ω ∈ Ω : (ξ1(ω), . . . , ξn(ω)) ∈ A}], A ⊂ Rn Borel.

Now, let us define similar concepts for stochastic processes. Let {Xt : t ∈ T} be a stochastic
process with index set T . Take some t1, . . . , tn ∈ T . For Borel sets B1, . . . , Bn ⊂ R define

Pt1,...,tn(B1 × . . .×Bn) = P[Xt1 ∈ B1, . . . , Xtn ∈ Bn].
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More generally, define Pt1,...,tn (a probability measure on Rn) by

Pt1,...,tn(B) = P[(Xt1 , . . . , Xtn) ∈ B], B ⊂ Rn Borel.

Note that Pt1,...,tn is the distribution of the random vector (Xt1 , . . . , Xtn). It is called a finite-
dimensional distribution of X. We can also consider the collection of all finite dimensional
distributions of X:

P := {Pt1,...,tn : n ∈ N, t1, . . . , tn ∈ T} .
It is an exercise to check that the collection of all finite-dimensional distributions if a sto-
chastic process X has the following two properties.

1. Permutation invariance. Let π : {1, . . . , n} → {1, . . . , n} be a permutation. Then, for all
n ∈ N, for all t1, . . . , tn ∈ T , and for all B1, . . . , Bn ∈ B(R),

Pt1,...,tn(B1 × . . .×Bn) = Ptπ(1),...,tπ(n)(Bπ(1) × . . .×Bπ(n)).

2. Projection invariance. For all n ∈ N, all t1, . . . , tn, tn+1 ∈ T , and all B1, . . . , Bn ∈ B(R)
it holds that

Pt1,...,tn,tn+1(B1 × . . .×Bn × R) = Pt1,...,tn(B1 × . . .×Bn).

To a given stochastic process we can associate the collection of its finite-dimensional distribu-
tions. This collection has the properties of permutation invariance and projection invariance.
One may ask a converse question. Suppose that we are given an index set T and suppose
that for every n ∈ N and every t1, . . . , tn ∈ T some probability measure Pt1,...,tn on Rn is
given. [A priori, this probability measure need not be related to any stochastic process. No
stochastic process is given at this stage.] We can now ask whether we can construct a sto-
chastic process whose finite-dimensional distributions are given by the probability measures
Pt1,...,tn . Necessary conditions for the existence of such stochastic process are the permutation
invariance and the projection invariance. The following theorem of Kolmogorov says that
these conditions are also sufficient.

Theorem 1.3.1 (Kolmogorov’s existence theorem). Fix any non-empty set T . Let

P = {Pt1,...,tn : n ∈ N, t1, . . . , tn ∈ T}
be a collection of probability measures (so that Pt1,...,tn is a probability measure on Rn) which
has the properties of permutation invariance and projection invariance stated above. Then,
there exist a probability space (Ω,F ,P) and a stochastic process {Xt : t ∈ T} on (Ω,F ,P)
whose finite-dimensional distributions are given by the collection P. This means that for
every n ∈ N and every t1, . . . , tn ∈ N the distribution of the random vector (Xt1 , . . . , Xtn)
coincides with Pt1,...,tn.

Idea of proof. We have to construct a suitable probability space (Ω,F ,P) and an
appropriate stochastic process {Xt : t ∈ T} defined on this probability space.

Step 1. Let us construct Ω first. Usually, Ω is the set of all possible outcomes of some
random experiment. In our case, we would like the outcomes of our experiment to be
functions (the realizations of our stochastic process). Hence, let us define Ω to be the set of
all functions defined on T and taking values in R:

Ω = RT = {f : T → R}.
4



Step 2. Let us construct the functions Xt : Ω → R. We want the sample path t 7→ Xt(f)
of our stochastic process corresponding to an outcome f ∈ Ω to coincide with the function
f . In order to fulfill this requirement, we need to define

Xt(f) = f(t), f ∈ RT .

The functions Xt are called the canonical coordinate mappings. For example, if T =
{1, . . . , n} is a finite set of n elements, then RT can be identified with Rn = {f = (f1, . . . , fn) :
fi ∈ R}. Then, the mappings defined above are just the maps X1, . . . , Xn : Rn → R which
map a vector to its coordinates:

X1(f) = f1, . . . , Xn(f) = fn, f = (f1, . . . , fn) ∈ Rn.

Step 3. Let us construct the σ-algebra F . We have to define what subsets of Ω = RT

should be considered as measurable. We want the coordinate mappings Xt : Ω → R to be
measurable. This means that for every t ∈ T and every Borel set B ∈ B(R) the preimage

X−1
t (B) = {f : T → R : f(t) ∈ B} ⊂ Ω

should be measurable. By taking finite intersections of these preimages we obtain the so-
called cylinder sets, that is sets of the form

AB1,...,Bn
t1,...,tn := {f ∈ Ω : f(t1) ∈ B1, . . . , f(tn) ∈ Bn} ,

where t1, . . . , tn ∈ T and B1, . . . , Bn ∈ B(R). If we want the coordinate mappings Xt to be
measurable, then we must declare the cylinder sets to be measurable. Cylinder sets do not
form a σ-algebra (just a semi-ring).
This is why we define F as the σ-algebra generated by the collection of cylinder sets:

F = σ
{
AB1,...,Bn
t1,...,tn : n ∈ N, t1, . . . , tn ∈ T,B1, . . . , Bn ∈ B(R)

}
.

We will call F the cylinder σ-algebra. Equivalently, one could define F as the smallest
σ-algebra on Ω which makes the coordinate mappings Xt : Ω→ R measurable.
Sometimes cylinder sets are defined as sets of the form

ABt1,...,tn := {f ∈ Ω : (f(t1), . . . , f(tn)) ∈ B},

where t1, . . . , tn ∈ T and B ∈ B(Rn). One can show that the σ-algebra generated by these
sets coincides with F .

Step 4. We define a probability measure P on (Ω,F). We want the distribution of the
random vector (Xt1 , . . . , Xtn) to coincide with the given probability measure Pt1,...,tn , for all
t1, . . . , tn ∈ T . Equivalently, we want the probability of the event {Xt1 ∈ B1, . . . , Xtn ∈ Bn}
to be equal to Pt1,...,tn(B1 × . . . × Bn), for every t1, . . . , tn ∈ T and B1, . . . , Bn ∈ B(R).
However, with our definition of Xt as coordinate mappings, we have

{Xt1 ∈ B1, . . . , Xtn ∈ Bn} = {f ∈ Ω : Xt1(f) ∈ B1, . . . , Xtn(f) ∈ Bn}
= {f ∈ Ω : f(t1) ∈ B1, . . . , f(tn) ∈ Bn}
= AB1,...,Bn

t1,...,tn .
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Hence, we must define the probability of a cylinder set AB1,...,Bn
t1,...,tn as follows:

P[AB1,...,Bn
t1,...,tn ] = Pt1,...,tn(B1 × . . .×Bn).

It can be shown that P can be extended to a well-defined probability measure on (Ω,F).
This part of the proof is non-trivial but similar to the extension of the Lebesgue measure
from the semi-ring of all rectangles to the Borel σ-algebra. We will omit this argument here.
The properties of permutation invariance and projection invariance are used to show that P
is well-defined. �

Example 1.3.2 (Independent random variables). Let T be an index set. For all t ∈ T let a
probability measure Pt on R be given. Can we construct a probability space (Ω,F ,P) and
a collection of independent random variables {Xt : t ∈ T} on this probability space such
that Xt has distribution Pt for all t ∈ T? We will show that the answer is yes. Consider the
family of probability distributions P = {Pt1,...,tn : n ∈ N, t1, . . . , tn ∈ T} defined by

(1.3.1) Pt1,...,tn(B1 × . . .×Bn) = Pt1(B1) · . . . · Ptn(Bn),

where B1, . . . , Bn ∈ B(R). It is an exercise to check that permutation invariance and projec-
tion invariance hold for this family. By Kolmogorov’s theorem, there is a probability space
(Ω,F ,P) and a collection of random variables {Xt : t ∈ T} on this probability space such
that the distribution of (Xt1 , . . . , Xtn) is Pt1,...,tn . In particular, the one-dimensional distri-
bution of Xt is Pt. Also, it follows from (1.3.1) that the random variables Xt1 , . . . , Xtn are
independent. Hence, the random variables {Xt : t ∈ T} are independent.

1.4. The law of stochastic process

Random variables, random vectors, stochastic processes (=random functions) are special
cases of the concept of random element.

Definition 1.4.1. Let (Ω,F) and (Ω′,F ′) be two measurable spaces. That is, Ω and Ω′ are
any sets and F ⊂ 2Ω and F ′ ⊂ 2Ω′ are σ-algebras of subsets of Ω, respectively Ω′. A function
ξ : Ω→ Ω′ is called F-F ′-measurable if for all A′ ∈ F ′ it holds that ξ−1(A′) ∈ F .

Definition 1.4.2. Let (Ω,F ,P) be a probability space and (Ω′,F ′) a measurable space. A
random element with values in Ω′ is a function ξ : Ω→ Ω′ which is F -F ′-measurable.

Definition 1.4.3. The probability distribution (or the probability law) of a random element
ξ : Ω→ Ω′ is the probability measure P ξ on (Ω′,F ′) given by

P ξ(A′) = P[ξ ∈ A′] = P[{ω ∈ Ω : ξ(ω) ∈ A′}], A′ ∈ F ′.

Special cases:

1. If Ω′ = R and F ′ = B(R), then we recover the notion of random variable.

2. If Ω′ = Rd and F ′ = B(Rd), we recover the notion of random vector.

3. If Ω′ = RT and F ′ = σcyl is the cylinder σ-algebra, then we recover the notion of stochastic
process. Indeed, a stochastic process {Xt : t ∈ T} defined on a probability space (Ω,F ,P)
leads to the mapping ξ : Ω → RT which maps an outcome ω ∈ Ω to the corresponding
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trajectory of the process {t 7→ Xt(ω)} ∈ RT . This mapping is F -σcyl-measurable because
the preimage of any cylinder set

AB1,...,Bn
t1,...,tn = {f ∈ RT : f(t1) ∈ B1, . . . , f(tn) ∈ Bn}

is given by

ξ−1(AB1,...,Bn
t1,...,tn ) = {ω ∈ Ω : Xt1(ω) ∈ B1, . . . , Xtn(ω) ∈ Bn} = X−1

t1
(B1) ∩ . . . ∩X−1

tn (Bn).

This set belongs to the σ-algebra F because X−1
ti (Bi) ∈ F by the measurability of the

function Xti : Ω→ R. Hence, the mapping ξ is F -σcyl-measurable.

To summarize, we can consider a stochastic process with index set T as a random element
defined on some probability space (Ω,F ,P) and taking values in RT .

In particular, the probability distribution (or the probability law) of a stochastic process
{Xt, t ∈ T} is a probability measure PX on (RT , σcyl) whose values on cylinder sets are given
by

PX(AB1,...,Bn
t1,...,tn ) = P[Xt1 ∈ B1, . . . , Xtn ∈ Bn].

1.5. Equality of stochastic processes

There are several (non-equivalent) notions of equality of stochastic processes.

Definition 1.5.1. Two stochastic processes X = {Xt : t ∈ T} and Y = {Yt : t ∈ T} with
the same index set T have the same finite-dimensional distributions if for all t1, . . . , tn ∈ T
and all B1, . . . , Bn ∈ B(R):

P[Xt1 ∈ B1, . . . , Xtn ∈ Bn] = P[Yt1 ∈ B1, . . . , Ytn ∈ Bn].

Definition 1.5.2. Let {Xt : t ∈ T} and {Yt : t ∈ T} be two stochastic processes defined on
the same probability space (Ω,F ,P) and having the same index set T . We say that X is a
modification of Y if

∀t ∈ T : P[Xt = Yt] = 1.

With other words: For the random events At = {ω ∈ Ω : Xt(ω) = Yt(ω)} it holds that

∀t ∈ T : P[At] = 1.

Note that in this definition the random event At may depend on t.

The next definition looks very similar to Definition 1.5.2. First we formulate a preliminary
version of the definition and will argue later why this preliminary version has to be modified.

Definition 1.5.3. Let {Xt : t ∈ T} and {Yt : t ∈ T} be two stochastic processes defined
on the same probability space (Ω,F ,P) and having the same index set T . We say that the
processes X and Y are indistinguishable if

P[∀t ∈ T : Xt = Yt] = 1.

With other words, it should hold that

P[{ω ∈ Ω : Xt(ω) = Yt(ω) for all t ∈ T}] = 1.
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Another reformulation: the set of outcomes ω ∈ Ω for which the sample paths t 7→ Xt(ω)
and t 7→ Yt(ω) are equal (as functions on T ), has probability 1. This can also be written as

P[∩t∈TAt] = 1.

Unfortunately, the set ∩t∈TAt may be non-measurable if T is not countable, for example if
T = R. That’s why we have to reformulate the definition as follows.

Definition 1.5.4. Let {Xt : t ∈ T} and {Yt : t ∈ T} be two stochastic processes defined
on the same probability space (Ω,F ,P) and having the same index set T . The processes X
and Y are called indistinguishable if there exists a measurable set A ∈ F so that P[A] = 1
and for every ω ∈ A, t ∈ T it holds that Xt(ω) = Yt(ω).

If the processes X and Y are indistinguishable, then they are modifications of each other.
The next example shows that the converse is not true, in general.

Example 1.5.5. Let U be a random variable which is uniformly distributed on the interval
[0, 1]. The probability space on which U is defined is denoted by (Ω,F ,P). Define two
stochastic processes {Xt : t ∈ [0, 1]} and {Yt : t ∈ [0, 1]} by

1. Xt(ω) = 0 for all t ∈ [0, 1] and ω ∈ Ω.

2. For all t ∈ [0, 1] and ω ∈ Ω,

Yt(ω) =

{
1, if t = U(ω),

0, otherwise.

Then,

(a) X is a modification of Y because for all t ∈ [0, 1] it holds that

P[Xt = Yt] = P[Yt = 0] = P[U 6= t] = 1.

(b) X and Y are not indistinguishable because for every ω ∈ Ω the sample paths t 7→ Xt(ω)
and t 7→ Yt(ω) are not equal as functions on T . Namely, YU(ω)(ω) = 1 while XU(ω)(ω) = 0.

Proposition 1.5.6. Let {Xt : t ∈ T} and {Yt : t ∈ T} be two stochastic processes defined on
the same probability space (Ω,F ,P) and having the same index set T . Consider the following
statements:

1. X and Y are indistinguishable.

2. X and Y are modifications of each other.

3. X and Y have the same finite-dimensional distributions.

Then, 1⇒ 2⇒ 3 and none of the implications can be inverted, in general.

Proof. Exercise. �

Exercise 1.5.7. Let {Xt : t ∈ T} and {Yt : t ∈ T} be two stochastic processes defined on
the same probability space (Ω,F ,P) and having the same countable index set T . Show that
X and Y are indistinguishable if and only if they are modifications of each other.
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1.6. Measurability of subsets of RT

Let {Xt : t ∈ T} be a stochastic process defined on a probability space (Ω,F ,P). To every
outcome ω ∈ Ω we can associate a trajectory of the process which is the function t 7→ Xt(ω).
Suppose we would like to compute the probability that the trajectory is everywhere equal
to zero. That is, we would like to determine the probability of the set

Z := {ω ∈ Ω : Xt(ω) = 0 for all t ∈ T} = ∩t∈T{ω ∈ Ω : Xt(ω) = 0} = ∩t∈TX−1
t (0).

But first we need to figure out whether Z is a measurable set, that is whether Z ∈ F . If
T is countable, then Z is measurable since any of the sets X−1

t (0) is measurable (because
Xt is a measurable function) and a countable intersection of measurable sets is measurable.
However, if the index set T is not countable (for example T = R), then the set Z may be
non-measurable, as the next example shows.

Example 1.6.1. We will construct a stochastic process {Xt : t ∈ R} for which the set Z
is not measurable. As in the proof of Kolmogorov’s theorem, our stochastic process will be
defined on the “canonical” probability space Ω = RR = {f : R → R}, with F = σcyl being
the cylinder σ-algebra. Let Xt : RR → R be defined as the canonical coordinate mappings:
Xt(f) = f(t), f ∈ RR. Then, the set Z consists of just one element, the function which is
identically 0.
We show that Z does not belong to the cylinder σ-algebra. Let us call a set A ⊂ RR

countably generated if one can find t1, t2, . . . ∈ R and a set B ⊂ RN such that

(1.6.1) f ∈ A ⇔ {i 7→ f(ti)} ∈ RN.

With other words, a set A is countably generated if we can determine whether a given
function f : R → R belongs to this set just by looking at the values of f at a countable
number of points t1, t2, . . . and checking whether these values have some property represented
by the set B.
One can easily check that the countably generated sets form a σ-algebra (called σcg) and
that the cylinder sets belong to this σ-algebra. Since the cylinder σ-algebra is the minimal
σ-algebra containing all cylinder sets, we have σcyl ⊂ σcg.
Let us now take some (nonempty) set A ∈ σcyl. Then, A ∈ σcg. Let us show that A is
infinite. Indeed, since A is non-empty, it contains at least one element f ∈ A. We will show
that it is possible to construct infinitely many modifications of f (called fa, a ∈ R) which
are still contained in A. Since A is countably generated we can find t1, t2, . . . ∈ R and a set
B ⊂ RN such that (1.6.1) holds. Since the sequence t1, t2, . . . is countable while R is not, we
can find t0 ∈ R such that t0 is not a member of the sequence t1, t2, . . .. For every a ∈ R let
fa : R→ R be the function given by

fa(t) =

{
a, if t = t0,

f(t), if t 6= t0.

The function fa belongs to A because f belongs to A and the functions i 7→ f(ti), i ∈ N,
and i 7→ fa(ti), i ∈ N, coincide; see (1.6.1). Hence, the set A contains infinitely many
elements, namely fa, a ∈ R. In particular, the set A cannot contain exactly one element. It
follows that the set Z (which contains exactly one element) does not belong to the cylinder
σ-algebra.
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Exercise 1.6.2. Show that the following subsets of RR do not belong to the cylinder σ-
algebra:

(1) C = {f : R→ R : f is continuous}.
(2) B = {f : R→ R : f is bounded}.
(3) M = {f : R→ R : f is monotone increasing}.

1.7. Continuity of stochastic processes

There are several non-equivalent notions of continuity for stochastic processes. Let {Xt : t ∈
R} be a stochastic process defined on a probability space (Ω,F ,P). For concreteness we take
the index set to be T = R, but everything can be generalized to the case when T = Rd or T
is any metric space.

Definition 1.7.1. We say that the process X has continuous sample paths if for all ω ∈ Ω
the function t 7→ Xt(ω) is continuous in t.

So, the process X has continuous sample paths if every sample path of this process is a
continuous function.

Definition 1.7.2. We say that the process X has almost surely continuous sample paths if
there exists a set A ∈ F such that P[A] = 1 and for all ω ∈ A the function t 7→ Xt(ω) is
continuous in t.

Note that we do not state this definition in the form

P[ω ∈ Ω: the function t 7→ Xt(ω) is continuous in t] = 1

because the corresponding set need not be measurable; see Section 1.6.

Definition 1.7.3. We say that the process X is stochastically continuous or continuous in
probability if for all t ∈ R it holds that

Xs
P→ Xt as s→ t.

That is,

∀t ∈ R ∀ε > 0 : lim
s→t

P[|Xt −Xs| > ε] = 0.

Definition 1.7.4. We say that the process X is continuous in Lp, where p ≥ 1, if for all
t ∈ R it holds that

Xs
Lp→ Xt as s→ t.

That is,

∀t ∈ R : lim
s→t

E|Xt −Xs|p = 0.

Example 1.7.5. Let U be a random variable which has continuous distribution function
F . For concreteness, one can take the uniform distribution on [0, 1]. Let (Ω,F ,P) be the
probability space on which U is defined. Consider a stochastic process {Xt : t ∈ R} defined
as follows: For all t ∈ R and ω ∈ Ω let

Xt(ω) =

{
1, if t > U(ω),

0, if t ≤ U(ω).
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1. For every outcome ω ∈ Ω the trajectory t 7→ Xt(ω) is discontinuous because it has a
jump at t = U(ω). Thus, the process X does not have continuous sample paths.

2. However, we will show that the process X is continuous in probability. Take some
ε ∈ (0, 1). Then, for any t, s ∈ [0, 1],

P[|Xt −Xs| > ε] = P[|Xt −Xs| = 1] = P[U is between t and s] = |F (t)− F (s)|,
which converges to 0 as s → t because the distribution function F was supposed to be
continuous. Hence, the process X is continuous in probability.

3. We show that X is continuous in Lp, for every p ≥ 1. Since the random variable |Xt−Xs|
takes only values 0 and 1 and since the probability of the value 1 is |F (t)− F (s)|, we have

E|Xt −Xs|p = |F (t)− F (s)|,
which goes to 0 as s→ t.

Exercise 1.7.6. Show that if a process {X(t) : t ∈ R} has continuous sample paths, the it
is stochastically continuous. (The converse is not true by Example 1.7.5).

We have seen in Section 1.6 that for general stochastic processes some very natural events
(for example, the event that the trajectory is everywhere equal to 0) may be non-measurable.
This nasty problem disappears if we are dealing with processes having continuous sample
paths.

Example 1.7.7. Let {Xt, t ∈ R} be a process with continuous sample paths. We show that
the set

A := {ω ∈ Ω: Xt(ω) = 0 for all t ∈ R}
is measurable. A continuous function is equal to 0 for all t ∈ R if and only if it is equal to 0
for all t ∈ Q. Hence, we can write

A = {ω ∈ Ω: Xt(ω) = 0 for all t ∈ Q} = ∩t∈Q{ω ∈ Ω: Xt(ω) = 0} = ∩t∈QX−1
t (0)

which is a measurable set because X−1
t (0) ∈ F for every t (since Xt : Ω→ R is a measurable

function) and because the intersection over t ∈ Q is countable.

Exercise 1.7.8. Let {X : t ∈ R} be a stochastic process with continuous sample paths. The
probability space on which X is defined is denoted by (Ω,F ,P). Show that the following
subsets of Ω belong to the σ-algebra F :

(1) B = {ω ∈ Ω : the function t 7→ Xt(ω) is bounded}.
(2) M = {ω ∈ Ω : the function t 7→ Xt(ω) is monotone increasing}
(3) I = {ω ∈ Ω : limt→+∞Xt(ω) = +∞}.
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CHAPTER 2

Markov chains

2.1. Examples

Example 2.1.1 (Markov chain with two states). Consider a phone which can be in two
states: “free”= 0 and “busy”= 1. The set of the states of the phone is

E = {0, 1}.
We assume that the phone can randomly change its state in time (which is assumed to be
discrete) according to the following rules.

1. If at some time n the phone is free, then at time n+ 1 it becomes busy with probability
p or it stays free with probability 1− p.
2. If at some time n the phone is busy, then at time n+ 1 it becomes free with probability
q or it stays busy with probability 1− q.
Denote by Xn the state of the phone at time n = 0, 1, . . .. Thus, Xn : Ω→ {0, 1} is a random
variable and our assumptions can be written as follows:

p00 := P[Xn+1 = 0|Xn = 0] = 1− p, p01 := P[Xn+1 = 1|Xn = 0] = p,

p10 := P[Xn+1 = 0|Xn = 1] = q, p11 := P[Xn+1 = 1|Xn = 1] = 1− q.
We can write these probabilities in form of a transition matrix

P =

(
1− p p
q 1− q

)
.

Additionally, we will make the following assumption which is called the Markov property :
Given that at some time n the phone is in state i ∈ {0, 1}, the behavior of the phone after
time n does not depend on the way the phone reached state i in the past.

Problem 2.1.2. Suppose that at time 0 the phone was free. What is the probability that
the phone will be free at times 1, 2 and then becomes busy at time 3?

Solution. This probability can be computed as follows:

P[X1 = X2 = 0, X3 = 1] = p00 · p00 · p01 = (1− p)2p.

Problem 2.1.3. Suppose that the phone was free at time 0. What is the probability that
it will be busy at time 3?

Solution. We have to compute P[X3 = 1]. We know the values X0 = 0 and X3 = 1, but
the values of X1 and X2 may be arbitrary. We have the following possibilities:

(1) X0 = 0, X1 = 0, X2 = 0, X3 = 1. Probability: (1− p) · (1− p) · p.
(2) X0 = 0, X1 = 0, X2 = 1, X3 = 1. Probability: (1− p) · p · (1− q).
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(3) X0 = 0, X1 = 1, X2 = 0, X3 = 1. Probability: p · q · p.
(4) X0 = 0, X1 = 1, X2 = 1, X3 = 1. Probability: p · (1− q) · (1− q).

The probability we look for is the sum of these 4 probabilities:

P[X3 = 1] = (1− p)2p+ (1− p)(1− q)p+ p2q + p(1− q)2.

Example 2.1.4 (Gambler’s ruin). At each unit of time a gambler plays a game in which he
can either win 1e (which happens with probability p) or he can loose 1e (which happens
with probability 1 − p). Let Xn be the capital of the gambler at time n. Let us agree that
if at some time n the gambler has no money (meaning that Xn = 0), then he stops to play
(meaning that Xn = Xn+1 = . . . = 0). We can view this process as a Markov chain on the
state space E = {0, 1, 2, . . .} with transition matrix

P =


1 0 0 0 0 . . .

1− p 0 p 0 0 . . .
0 1− p 0 p 0 . . .
0 0 1− p 0 p . . .
. . . . . . . . . . . . . . . . . .

 .

2.2. Definition of Markov chains

Let us consider some system. Assume that the system can be in some states and that the
system can change its state in time. The set of all states of the system will be denoted by E
and called the state space of the Markov chain. We always assume that the state space E is
a finite or countable set. Usually, we will denote the states so that E = {1, . . . , N}, E = N,
or E = Z.

Assume that if at some time the system is in state i ∈ E, then in the next moment of time
it can switch to state j ∈ E with probability pij. We will call pij the transition probability
from state i to state j. Clearly, the transition probabilities should be such that

(1) pij ≥ 0 for all i, j ∈ E.
(2)

∑
j∈E pij = 1 for all i ∈ E.

We will write the transition probabilities in form of a transition matrix

P = (pij)i,j∈E.

The rows and the columns of this matrix are indexed by the set E. The element in the i-th
row and j-th column is the transition probability pij. The elements of the matrix P are
non-negative and the sum of elements in any row is equal to 1. Such matrices are called
stochastic.

Definition 2.2.1. A Markov chain with state space E and transition matrix P is a stochastic
process {Xn : n ∈ N0} taking values in E such that for every n ∈ N0 and every states
i0, i1, . . . , in−1, i, j we have

P[Xn+1 = j|Xn = i] = P[Xn+1 = j|X0 = i0, X1 = i1, . . . , Xn−1 = in−1, Xn = i](2.2.1)

= pij,

provided that P[X0 = i0, . . . , Xn−1 = in−1, Xn = i] 6= 0 (which ensures that the conditional
probabilities are well-defined).
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Condition (2.2.1) is called the Markov property.

In the above definition it is not specified at which state the Markov chain starts at time 0.
In fact, the initial state can be in general arbitrary and we call the probabilities

(2.2.2) αi := P[X0 = i], i ∈ E,

the initial probabilities. We will write the initial probabilities in form of a row vector α =
(αi)i∈E. This vector should be such that αi ≥ 0 for all i ∈ E and

∑
i∈E αi = 1.

Theorem 2.2.2. For all n ∈ N0 and for all i0, . . . , in ∈ E it holds that

(2.2.3) P[X0 = i0, X1 = i1, . . . , Xn = in] = α0pi0i1pi1i2 . . . pin−1in .

Proof. We use the induction over n. The induction basis is the case n = 0. We have
P[X0 = i0] = αi0 by the definition of initial probabilities, see (2.2.2). Hence, Equation (2.2.3)
holds for n = 0.

Induction assumption: Assume that (2.2.3) holds for some n. We prove that (2.2.3) holds
with n replaced by n + 1. Consider the event A = {X0 = i0, X1 = i1, . . . , Xn = in}. By the
induction assumption,

P[A] = αi0pi0i1pi1i2 . . . pin−1in .

By the Markov property,

P[Xn+1 = in+1|A] = pinin+1 .

It follows that

P[X0 = i0, X1 = i1, . . . , Xn = in, Xn+1 = in+1] = P[Xn+1 = in+1|A] · P[A]

= pinin+1 · αi0pi0i1pi1i2 . . . pin−1in

= αi0pi0i1pi1i2 . . . pin−1inpinin+1 .

This completes the induction. �

Remark 2.2.3. If P[A] = 0, then in the above proof we cannot use the Markov property.
However, in the case P[A] = 0 both sides of (2.2.3) are equal to 0 and (2.2.3) is trivially
satisfied.

Theorem 2.2.4. For every n ∈ N and every state in ∈ E we have

P[Xn = in] =
∑

i0,...,in−1∈E

αi0pi0i1 . . . pin−1in .

Proof. We have

P[Xn = in] =
∑

i0,...,in−1∈E

P[X0 = i0, X1 = i1, . . . , Xn = in]

=
∑

i0,...,in−1∈E

αi0pi0i1 . . . pin−1in ,

where the last step is by Theorem 2.2.2. �
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2.3. n-step transition probabilities

Notation 2.3.1. If we want to indicate that the Markov chain starts at state i ∈ E at time
0, we will write Pi instead of P.

Definition 2.3.2. The n-step transition probabilities of a Markov chain are defined as

p
(n)
ij := Pi[Xn = j].

We will write these probabilities in form of the n-step transition matrix P (n) = (p
(n)
ij )i,j∈E.

By Theorem 2.2.4 we have the formula

p
(n)
ij =

∑
i1,...,in−1∈E

pii1pi1i2 . . . pin−1j.

The next theorem is crucial. It states that the n-step transition matrix P (n) can be computed
as the n-th power of the transition matrix P .

Theorem 2.3.3. We have P (n) = P n = P · . . . · P .

Proof. We use induction over n. For n = 1 we have p
(1)
ij = pij and hence, P (1) = P . Thus,

the statement of the theorem is true for n = 1.

Let us now assume that we already proved that P (n) = P n for some n ∈ N. We compute
P (n+1). By the formula of total probability, we have

p
(n+1)
ij = Pi[Xn+1 = j] =

∑
k∈E

Pi[Xn = k]P[Xn+1 = j|Xn = k] =
∑
k∈E

p
(n)
ik pkj.

On the right hand-side we have the scalar product of the i-th row of the matrix P (n) and the
j-th column of the matrix P . By definition of the matrix multiplication, this scalar product
is exactly the entry of the matrix product P (n)P which is located in the i-th row and j-th
column. We thus have the equality of matrices

P (n+1) = P (n)P.

But now we can apply the induction assumption P (n) = P n to obtain

P (n+1) = P (n)P = P n · P = P n+1.

This completes the induction. �

In the next theorem we consider a Markov chain with initial distribution α = (αi)i∈E and

transition matrix P . Let α(n) = (α
(n)
j )j∈E be the distribution of the position of this chain at

time n, that is

α
(n)
j = P[Xn = j].

We write both α(n) and α as row vectors. The next theorem states that we can compute α(n)

by taking α and multiplying it by the n-step transition matrix P (n) = P n from the right.

Theorem 2.3.4. We have

α(n) = αP n.
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Proof. By the formula of the total probability

α
(n)
j = P[Xn = j] =

∑
i∈E

αiPi[Xn = j] =
∑
i∈E

αip
(n)
ij .

On the right-hand side we have the scalar product of the row α with the j-th column of
P (n) = P n. By definition of matrix multiplication, this means that α(n) = αP n. �

2.4. Invariant measures

Consider a Markov chain on state space E with transition matrix P . Let λ : E → R be a
function. To every state i ∈ E the function assigns some value which will be denoted by
λi := λ(i). Also, it will be convenient to write the function λ as a row vector λ = (λi)i∈E.

Definition 2.4.1. A function λ : E → R is called a measure on E if λi ≥ 0 for all i ∈ E.

Definition 2.4.2. A function λ : E → R is called a probability measure on E if λi ≥ 0 for
all i ∈ E and ∑

i∈E

λi = 1.

Definition 2.4.3. A measure λ is called invariant if λP = λ. That is, for every state j ∈ E
it should hold that

λj =
∑
i∈E

λipij.

Remark 2.4.4. If the initial distribution α of a Markov chain is invariant, that is αP = α,
then for every n ∈ N we have αP n = α which means that at every time n the position of the
Markov chain has the same distribution as at time 0:

X0
d
= X1

d
= X2

d
= . . . .

Example 2.4.5. Let us compute the invariant distribution for the Markov chain from Ex-
ample 2.1.1. The transition matrix is

P =

(
1− p p
q 1− q

)
.

The equation λP = λ for the invariant probability measure takes the following form:

(λ0, λ1)

(
1− p p
q 1− q

)
= (λ0, λ1).

Multiplying the matrices we obtain the following two equations:

λ0(1− p) + λ1q = λ0,

λ0p+ λ1(1− q) = λ1.

From the first equation we obtain that λ1q = λ0p. Solving the second equation we obtain
the same relation which means that the second equation does not contain any information
not contained in the first equation. However, since we are looking for invariant probability
measures, we have an additional equation

λ0 + λ1 = 1.
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Solving this equation together with λ1q = λ0p we obtain the following result:

λ0 =
q

p+ q
, λ1 =

p

p+ q
.

Problem 2.4.6. Consider the phone from Example 2.1.1. Let the phone be free at time 0.
What is (approximately) the probability that it is free at time n = 1000?

Solution. The number n = 1000 is large. For this reason it seems plausible that the
probability that the phone is free (busy) at time n = 1000 should be approximately the
same as the probability that it is free (busy) at time n + 1 = 1001. Denoting the initial
distribution by α = (1, 0) and the distribution of the position of the chain at time n by
α(n) = αP n we thus must have

α(n) ≈ α(n+1) = αP n+1 = αP n · P = α(n)P.

Recall that the equation for the invariant probability measure has the same form λ = λP .
It follows that α(n) must be approximately the invariant probability measure:

α(n) ≈ λ.

For the probability that the phone is free (busy) at time n = 1000 we therefore obtain the
approximations

p
(n)
00 ≈ λ0 =

q

p+ q
, p

(n)
01 ≈ λ1 =

p

p+ q
.

Similar considerations apply to the case when the phone is busy at time 0 leading to the
approximations

p
(n)
10 ≈ λ0 =

q

p+ q
, p

(n)
11 ≈ λ1 =

p

p+ q
.

Note that p
(n)
00 ≈ p

(n)
10 and p

(n)
01 ≈ p

(n)
11 which can be interpreted by saying that the Markov

chain almost forgets its initial state after many steps. For the n-step transition matrix we
therefore may conjecture that

lim
n→∞

P n = lim
n→∞

(
p

(n)
00 p

(n)
01

p
(n)
10 p

(n)
11

)
=

(
λ0 λ1

λ0 λ1

)
.

The above considerations are not rigorous. We will show below that if a general Markov
chain satisfies appropriate conditions, then

(1) The invariant probability measure λ exists and is unique.

(2) For every states i, j ∈ E we have limn→∞ p
(n)
ij = λj.

Example 2.4.7 (Ehrenfest model). We consider a box which is divided into 2 parts. Consider
N balls (molecules) which are located in this box and can move from one part to the other
according to the following rules. Assume that at any moment of time one of the N balls is
chosen at random (all balls having the same probability 1/N to be chosen). This ball moves
to the other part. Then, the procedure is repeated. Let Xn be the number of balls at time
n in Part 1. Then, Xn takes values in E = {0, 1, . . . , N} which is our state space. The
transition probabilities are given by

p0,1 = 1, pN,N−1 = 1, pi,i+1 =
N − i
N

, pi,i−1 =
i

N
, i = 1, . . . , N − 1.
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For the invariant probability measure we obtain the following system of equations

λ0 =
λ1

N
, λN =

λN−1

N
, λj =

N − j + 1

N
λj−1 +

j + 1

N
λj+1, j = 1, . . . , N − 1.

Additionally, we have the equation λ0 + . . .+λN = 1. This system of equations can be solved
directly, but one can also guess the solution without doing computations. Namely, it seems
plausible that after a large number of steps every ball will be with probability 1/2 in Part 1
and with probability 1/2 in Part 2. Hence, one can guess that the invariant probability
measure is the binomial distribution with parameter 1/2:

λj =
1

2N

(
N

j

)
.

One can check that this is indeed the unique invariant probability measure for this Markov
chain.

Example 2.4.8. Let X0, X1, . . . be independent and identically distributed random variables
with values 1, . . . , N and corresponding probabilities

P[Xn = i] = pi, p1, . . . , pN ≥ 0,
N∑
i=1

pi = 1.

Then, X0, X1, . . . is a Markov chain and the transition matrix is

P =

p1 . . . pN
. . . . . . . . .
p1 . . . pN

 .

The invariant probability measure is given by λ1 = p1, . . . , λN = pN .

2.5. Class structure and irreducibility

Consider a Markov chain on a state space E with transition matrix P .

Definition 2.5.1. We say that state i ∈ E leads to state j ∈ E if there exists n ∈ N0 such

that p
(n)
ij 6= 0. We use the notation i j.

Remark 2.5.2. By convention, p
(0)
ii = 1 and hence, every state leads to itself: i i.

Theorem 2.5.3. For two states i, j ∈ E with i 6= j, the following statements are equivalent:

(1) i j.
(2) Pi[∃n ∈ N : Xn = j] 6= 0.
(3) There exist n ∈ N and states i1, . . . , in−1 ∈ E such that pii1 . . . pin−1j > 0.

Proof. We prove that Statements 1 and 2 are equivalent. We have the inequality

(2.5.1) p
(n)
ij ≤ Pi[∃n ∈ N : Xn = j] ≤

∞∑
n=1

Pi[Xn = j] =
∞∑
n=1

p
(n)
ij .

If Statement 1 holds, then for some n ∈ N we have p
(n)
ij > 0. Hence, by (2.5.1), we have

Pi[∃n ∈ N : Xn = j] > 0 and Statement 2 holds. If, conversely, Statement 2 holds, then
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Pi[∃n ∈ N : Xn = j] > 0. Hence, by (2.5.1),
∑∞

n=1 p
(n)
ij > 0, which implies that at least one

summand p
(n)
ij must be strictly positive. This proves Statement 1.

We prove the equivalence of Statements 1 and 3. We have the formula

(2.5.2) p
(n)
ij =

∑
i1,...,in−1∈E

pii1 . . . pin−1j.

If Statement 1 holds, then for some n ∈ N we have p
(n)
ij > 0 which implies that at least one

summand on the right-hand side of (2.5.2) must be strictly positive. This implies Statement
3. If, conversely, Statement 3 holds, then the sum on the right-hand side of (2.5.2) is positive

which implies that p
(n)
ij > 0. Hence, Statement 1 holds. �

Definition 2.5.4. States i, j ∈ E communicate if i j and j  i. Notation: i! j.

Theorem 2.5.5. i! j is an equivalence relation, namely

(1) i! i.
(2) i! j ⇐⇒ j! i.
(3) i! j, j! k ⇒ i! k.

Proof. Statements 1 and 2 follow from the definition. We prove Statement 3. If i! j
and j ! k, then, in particular, i  j and j  k. By Theorem 2.5.3, Statement 3,
we can find r ∈ N, s ∈ N and states u1, . . . , ur−1 ∈ E and v1, . . . , vs−1 ∈ E such that
piu1pu1u2 . . . pur−1j > 0 and pjv1pv1v2 . . . pvs−1k > 0. Multiplying both inequalities, we get

piu1pu1u2 . . . pur−1jpjv1pv1v2 . . . pvs−1k > 0.

By Theorem 2.5.3, Statement 3, we have i k. In a similar way one shows that k  i. �

Definition 2.5.6. The communication class of state i ∈ E is the set {j ∈ E : i! j}. This
set consists of all states j which communicate to i.

Since communication of states is an equivalence relation, the state space E can be decom-
posed into a disjoint union of communication classes. Any two communication classes either
coincide completely or are disjoint sets.

Definition 2.5.7. A Markov chain is irreducible if every two states communicate. Hence,
an irreducible Markov chain consists of just one communication class.

Definition 2.5.8. A communication class C is open if there exist a state i ∈ C and a state
k /∈ C such that i k. Otherwise, a communication class is called closed.

If a Markov chain once arrived in a closed communication class, it will stay in this class
forever.

Exercise 2.5.9. Show that a communication class C is open if and only if there exist a
state i ∈ C and a state k /∈ C such that pik > 0.

Theorem 2.5.10. If the state space E is a finite set, then there exists at least one closed
communication class.
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Proof. We use a proof by contradiction. Assume that there is no closed communication
class. Hence, all communication classes are open. Take some state and let C1 be the
communication class of this state. Since C1 is open, there is a path from C1 to some
other communication class C2 6= C1. Since C2 is open, we can go from C2 to some other
communication class C3 6= C3, and so on. Note that in the sequence C1, C2, C3, . . . all classes
are different. Indeed, if for some l < m we would have Cl = Cm (a “cycle”), this would
mean that there is a path starting from Cl, going to Cl+1 and then to Cm = Cl. But this
is a contradiction since then Cl and Cl+1 should be a single communication class, and not
two different classes, as in the construction. So, the classes C1, C2, . . . are different (in fact,
disjoint) and each class contains at least one element. But this is a contradiction since E is
a finite set. �

2.6. Aperiodicity

Definition 2.6.1. The period of a state i ∈ E is defined as

gcd{n ∈ N : p
(n)
ii > 0}.

Here, gcd states for the greatest common divisor. A state i ∈ E is called aperiodic if its
period is equal to 1. Otherwise, the state i is called periodic.

Example 2.6.2. Consider a knight on a chessboard moving according to the usual chess
rules in a random way. For concreteness, assume that at each moment of time all moves of
the knight allowed by the chess rules are counted and then one of these moves is chosen, all
moves being equiprobable.

8 0Z0Z0Z0Z
7 Z0Z0Z0Z0
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0ZnZ0
2 0Z0Z0Z0Z
1 Z0Z0Z0Z0

a b c d e f g h

This is a Markov chain on a state space consisting of 64 squares. Assume that at time 0 the
knight is in square i. Since the knight changes the color of its square after every move, it
cannot return to the original square in an odd number of steps. On the other hand, it can
return to i in an even number of steps with non-zero probability (for example by going to
some other square and then back, many times). So,

p
(2n+1)
ii = 0, p

(2n)
ii > 0.

Hence, the period of any state in this Markov chain is 2.

Example 2.6.3. Consider a Markov chain on a state space of two elements with transition
matrix

P =

(
0 1
1 0

)
,
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We have
p

(2n+1)
ii = 0, p

(2n)
ii = 1.

Hence, the period of any state in this Markov chain is 2.

Exercise 2.6.4. Show that in the Ehrenfest Markov chain (Example 2.4.7) every state is
periodic with period 2.

Lemma 2.6.5. Let i ∈ E be any state. The following conditions are equivalent:

(1) State i is aperiodic.

(2) There is N ∈ N such that for every natural number n > N we have p
(n)
ii > 0.

Proof. If Statement 2 holds, then for some sufficiently large n we have p
(n)
ii > 0 and

p
(n+1)
ii > 0. Since gcd(n, n+ 1) = 1, the state i has period 1. Hence, Statement 1 holds.

Suppose, conversely, that Statement 1 holds. Then, we can find n1, . . . , nr ∈ N such that

gcd{n1, . . . , nr} = 1 and p
(n1)
ii > 0, . . . , p

(nr)
ii > 0. By a result from number theory, the

condition gcd{n1, . . . , nr} = 1 implies that there is N ∈ N such that we can represent any
natural number n > N in the form n = l1n1 + . . .+ lrnr for suitable l1, . . . , lr ∈ N. We obtain
that

p
(l1n1+...+lrnr)
ii ≥ (p

(n1)
ii )l1 · . . . · (p(nr)

ii )lr > 0.

This proves Statement 2.

Lemma 2.6.6. If state i ∈ E is aperiodic and i! j, then j is also aperiodic.

Remark 2.6.7. We can express this by saying that aperiodicity is a class property : If some
state in a communication class is aperiodic, then all states in this communication class are
aperiodic. Similarly, if some state in a communication class is periodic, then all states in this
communication class must be periodic. We can thus divide all communication classes into
two categories: the aperiodic communication classes (consisting of only aperiodic states) and
the periodic communication classes (consisting only of periodic states).

Definition 2.6.8. An irreducible Markov chain is called aperiodic if some (and hence, all)
states in this chain are aperiodic.

Proof of Lemma 2.6.6. From i! j it follows that i  j and j  i. Hence, we can

find r, s ∈ N0 such that p
(r)
ji > 0 and p

(s)
ij > 0. Since the state i is aperiodic, by Lemma 2.6.5

we can find N ∈ N such that for all n > N , we have p
(n)
ii > 0 and hence,

p
(n+r+s)
jj ≥ p

(r)
ji · p

(n)
ii · p

(s)
ij > 0.

It follows that p
(k)
jj > 0 for all k := n+ r+ s > N + r+ s. By Lemma 2.6.5, this implies that

j is aperiodic. �

2.7. Recurrence and transience

Consider a Markov chain {Xn : n ∈ N0} on state space E with transition matrix P .

Definition 2.7.1. A state i ∈ E is called recurrent if

Pi[Xn = i for infinitely many n] = 1.
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Definition 2.7.2. A state i ∈ E is called transient if

Pi[Xn = i for infinitely many n] = 0.

A recurrent state has the property that a Markov chain starting at this state returns to this
state infinitely often, with probability 1. A transient state has the property that a Markov
chain starting at this state returns to this state only finitely often, with probability 1.

The next theorem is a characterization of recurrent/transient states.

Theorem 2.7.3. Let i ∈ E be a state. Denote by fi the probability that a Markov chain
which starts at i returns to i at least once, that is

fi = Pi[∃n ∈ N : Xn = i].

Then,

(1) The state i is recurrent if and only if fi = 1.
(2) The state i is transient if and only if fi < 1.

Corollary 2.7.4. Every state is either recurrent or transient.

Proof. For k ∈ N consider the random event

Bk = {Xn = i for at least k different values of n ∈ N}.

Then, Pi[Bk] = fki . Also, B1 ⊃ B2 ⊃ . . .. It follows that

Pi[Xn = i for infinitely many n] = Pi[∩∞k=1Bk] = lim
k→∞

Pi[Bk] = lim
k→∞

fki =

{
1, if fi = 1,

0, if fi < 1.

It follows that state i is recurrent if fi = 1 and transient if fi < 1. �

Here is one more characterization of recurrence and transience.

Theorem 2.7.5. Let i ∈ E be a state. Recall that p
(n)
ii = Pi[Xn = i] denotes the probability

that a Markov chain which started at state i visits state i at time n. Then,

(1) The state i is recurrent if and only if
∑∞

n=1 p
(n)
ii =∞.

(2) The state i is transient if and only if
∑∞

n=1 p
(n)
ii <∞.

Proof. Let the Markov chain start at state i. Consider the random variable

Vi :=
∞∑
n=1

1{Xn=i}

which counts the number of returns of the Markov chain to state i. Note that the random
variable Vi can take the value +∞. Then,

Pi[Vi ≥ k] = P[Bk] = fki , k ∈ N.

Thus, the expectation of Vi can be computed as follows:

(2.7.1) Ei[Vi] =
∞∑
k=1

Pi[Vi ≥ k] =
∞∑
k=1

fki .
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On the other hand,

(2.7.2) Ei[Vi] = Ei
∞∑
n=1

1{Xn=i} =
∞∑
n=1

Ei1{Xn=i} =
∞∑
n=1

p
(n)
ii .

Case 1. Assume that state i is recurrent. Then, fi = 1 by Theorem 2.7.3. It follows that
Ei[Vi] = ∞ by (2.7.1). (In fact, Pi[Vi = +∞] = 1 since P[Vi ≥ k] = 1 for every k ∈ N).

Hence,
∑∞

n=1 p
(n)
ii =∞ by (2.7.2)

Case 2. Assume that state i is transient. Then, fi < 1 by Theorem 2.7.3. Thus, EiVi <∞
by (2.7.1) and hence,

∑∞
n=1 p

(n)
ii <∞ by (2.7.2). �

The next theorem shows that recurrence and transience are class properties: If some state in
a communicating class is recurrent (resp. transient), then all states in this class are recurrent
(resp. transient).

Theorem 2.7.6.

1. If i ∈ E be a recurrent state and j! i, then j is also recurrent.

2. If i ∈ E be a transient state and j! i, then j is also transient.

Proof. It suffices to prove Part 2. Let i be a transient state and let j! i. It follows that

there exist s, r ∈ N0 with p
(s)
ij > 0 and p

(r)
ji > 0. For all n ∈ N it holds that

p
(n+r+s)
ii ≥ p

(s)
ij p

(n)
jj p

(r)
ji .

Therefore,
∞∑
n=1

p
(n)
jj ≤

1

p
(s)
ij p

(r)
ji

∞∑
n=1

p
(n+r+s)
ii ≤ 1

p
(s)
ij p

(r)
ji

∞∑
n=1

p
(n)
ii <∞,

where the last step holds because i is transient. It follows that state j is also transient. �

Theorem 2.7.6 allows us to introduce the following definitions.

Definition 2.7.7. A communicating class is called recurrent if at least one (equivalently,
every) state in this class is recurrent. A communicating class is transient if at least one
(equivalently, every) state in this class is transient.

Definition 2.7.8. An irreducible Markov chain is called recurrent if at least one (equiva-
lently, every) state in this chain is recurrent. An irreducible Markov chain is called transient
if at least one (equivalently, every) state in this chain is transient.

The next theorem states that it is impossible to leave a recurrent class.

Theorem 2.7.9. Every recurrent communicating class is closed.

Proof. Let C be a non-closed class. We need to show that it is not recurrent. Since C is
not closed, there exist states i, j so that i ∈ C, j /∈ C and i  j. This means that there

exists m ∈ N so that p
(m)
ij = Pi[Xm = j] > 0. If the event {Xm = j} occurs, then after
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time m the chain cannot return to state i because otherwise i and j would be in the same
communicating class. It follows that

Pi[{Xm = j} ∩ {Xn = i for infinitely many n}] = 0.

This implies that

Pi[Xn = i for infinitely many n] < 1.

Therefore, state i is not recurrent. �

If some communicating class contains only finitely states and the chain cannot leave this
class, then it looks very plausible that the chain which started in some state of this class will
return to this state infinitely often (and, in fact, will visit any state of this class infinitely
often), with probability 1. This is stated in the next theorem.

Theorem 2.7.10. Every finite closed communicating class is recurrent.

Proof. Let C be a closed communicating class with finitely many elements. Take some
state i ∈ C. A chain starting in i stays in C forever and since C is finite, there must be at
least one state j ∈ C which is visited infinitely often with positive probability:

Pi[Xn = j for infinitely many n ∈ N] > 0.

At the moment it is not clear whether we can take i = j. But since i and j are in the same

communicating class, there exists m ∈ N0 so that p
(m)
ji > 0. From the inequality

Pj[Xn = j for infinitely many n] > p
(m)
ji · Pi[Xn = j for infinitely many n] > 0

it follows that state j is recurrent. The class C is then recurrent because it contains at leats
one recurrent state, namely j. �

So, in a Markov chain with finitely many states we have the following equivalencies

(1) A communicating class is recurrent if and only if it is closed.
(2) A communicating class is transient if and only if it is not closed.

Lemma 2.7.11. Consider an irreducible, recurrent Markov chain with an arbitrary initial
distribution α. Then, for every state j ∈ E the number of visits of the chain to j is infinite
with probability 1.

Proof. Exercise. �

2.8. Recurrence and transience of random walks

Example 2.8.1. A simple random walk on Z is a Markov chain with state space E = Z and
transition probabilities

pi,i+1 = p, pi,i−1 = 1− p, i ∈ Z.
So, from every state the random walk goes one step to the right with probability p, or one
step to the left with probability 1− p; see Figure 3. Here, p ∈ [0, 1] is a parameter.

Theorem 2.8.2. If p = 1
2
, then any state of the simple random walk is recurrent. If p 6= 1

2
,

then any state is transient.
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Figure 1. Sample path of a simple random walk on Z with p = 1
2
. The figure

shows 200 steps of the walk.

Proof. By translation invariance, we can restrict our attention to state 0. We can represent
our Markov chain as Xn = ξ1 + . . . + ξn, where ξ1, ξ2, . . . are independent and identically
distributed random variables with Bernoulli distribution:

P[ξk = 1] = p, P[ξk = −1] = 1− p.

Case 1. Let p 6= 1
2
. Then, Eξk = p − (1 − p) = 2p − 1 6= 0. By the strong law of large

numbers,

lim
n→∞

1

n
Xn = lim

n→∞

ξ1 + . . .+ ξn
n

= Eξ1 6= 0 a.s.

In the case p > 1
2

we have Eξ1 > 0 and hence, limn→∞Xn = +∞ a.s. In the case p < 1
2

we
have Eξ1 < 0 and hence, limn→∞Xn = −∞ a.s. In both cases it follows that

P[Xn = 0 for infinitely many n] = 0.

Hence, state 0 is transient.

Case 2. Let p = 1
2
. In this case, Eξk = 0 and the argument of Case 1 does not work. We

will use Theorem 2.7.5. The n-step transition probability from 0 to 0 is given by

p
(n)
00 =

{
0, if n = 2k + 1 odd,

1
22k

(
2k
k

)
, if n = 2k even.

The Stirling formula n! ∼
√

2πn(n
e
)n, as n→∞, yields that

p
(2k)
00 ∼

1√
πk
, as k →∞.

Since the series
∑∞

k=1
1√
k

diverges, it follows that
∑∞

n=1 p
(n)
00 =

∑∞
k=1 p

(2k)
00 = ∞. By Theo-

rem 2.7.5, this implies that 0 is a recurrent state. �

Example 2.8.3. The simple, symmetric random walk on Zd is a Markov chain defined as
follows. The state space is the d-dimensional lattice

Zd = {(n1, . . . , nd) : n1, . . . , nd ∈ Z}.
Let e1, . . . , ed be the standard basis of Rd, that is

e1 = (1, 0, 0 . . . , 0), e2 = (0, 1, 0, . . . , 0), e3 = (0, 0, 1, . . . , 0), . . . , ed = (0, 0, 0, . . . , 1).
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Let ξ1, ξ2, . . . be independent and identically distributed d-dimensional random vectors such
that

P[ξi = ek] = P[ξi = −ek] =
1

2d
, k = 1, . . . , d, i ∈ N.

Define Sn = ξ1 + . . .+ ξn, n ∈ N, and S0 = 0. The sequence S0, S1, S2, . . . is called the simple
symmetric random walk on Zd. It is a Markov chain with transition probabilities

pi,i+e1 = pi,i−e1 = . . . = pi,i+ed = pi,i−ed =
1

2d
, i ∈ Zd.
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Figure 2. Left: Sample path of a simple symmetric random walk on Z2.
Right: Sample path of a simple symmetric random walk on Z3. In both cases
the random walk makes 50000 steps.

Theorem 2.8.4 (Pólya, 1921). The simple symmetric random walk on Zd is recurrent if and
only if d = 1, 2 and transient if and only if d ≥ 3.

Proof. For d = 1 we already proved the statement in Theorem 2.8.2.

Consider the case d = 2. We compute the n-step transition probability p
(n)
00 . For an odd n

this probability is 0. For an even n = 2k we have

p
(2k)
00 =

1

42k

k∑
i=0

(
2k

i, i, k − i, k − i

)
=

1

42k

(
2k

k

) k∑
i=0

(
k

i

)(
k

k − i

)
=

(
1

22k

(
2k

k

))2

∼ 1

πk
,
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as k → ∞, where the last step is by the Stirling formula. The harmonic series
∑∞

k=1
1
k

diverges. Therefore,
∑∞

n=1 p
(n)
00 =∞ and the random walk is recurrent in d = 2 dimensions.

Generalizing the cases d = 1, 2 one can show that for an arbitrary dimension d ∈ N we have,
as k →∞,

p
(2k)
00 ∼

1

(πk)d/2
.

Since the series
∑∞

k=1 k
−d/2 is convergent for d ≥ 3 it holds that

∑∞
n=1 p

(n)
00 < ∞ and the

random walk is transient in d = 3 dimensions. �

2.9. Existence and uniqueness of the invariant measure

The next two theorems state that any irreducible and recurrent Markov chain has a unique
invariant measure λ, up to a multiplication by a constant. This measure may be finite (that
is,
∑

i∈E λi < +∞) or infinite (that is,
∑

i∈E λi = +∞).

First we provide an explicit construction of an invariant measure for an irreducible and
recurrent Markov chain. Consider a Markov chain starting at state k ∈ E. Denote the time
of the first return to k by

Tk = min{n ∈ N : Xn = k} ∈ N ∪ {+∞}.

The minimum of an empty set is by convention +∞. For a state i ∈ E denote the expected
number of visits to i before the first return to k by

γi = γ
(k)
i = Ek

Tk−1∑
n=0

1{Xn=i} ∈ [0,+∞].

Theorem 2.9.1. For an irreducible and recurrent Markov chain starting at state k ∈ E we
have

(1) γk = 1.
(2) For all i ∈ E it holds that 0 < γi <∞.
(3) γ = (γi)i∈E is an invariant measure.

Proof.

Step 1. We show that γk = 1. By definition of Tk, we have
∑Tk−1

n=0 1{Xn=k} = 1, if the chain
starts at k. It follows that γk = Ek1 = 1.

Step 2. We show that for every state j ∈ E,

(2.9.1) γj =
∑
i∈E

pijγi.

(At this moment, both sides of (2.9.1) are allowed to be infinite, but in Step 3 we will show
that both sides are actually finite). The Markov chain is recurrent, thus Tk < ∞ almost
surely. By definition, XTk = k = X0. We have

γj = Ek
Tk∑
n=1

1{Xn=j} = Ek
∞∑
n=1

1{Xn=j,n≤Tk} =
∞∑
n=1

Pk[Xn = j, Tk ≥ n].
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Before visiting state j at time n the chain must have been in some state i at time n − 1,
where i ∈ E can be, in general, arbitrary. We obtain that

γj =
∑
i∈E

∞∑
n=1

Pk[Xn = j,Xn−1 = i, Tk ≥ n] =
∑
i∈E

∞∑
n=1

pijPk[Xn−1 = i, Tk ≥ n].

Introducing the new summation variable m = n− 1, we obtain that

γj =
∑
i∈E

pij

∞∑
m=0

Ek1{Xm=i,Tk≥m+1} =
∑
i∈E

pij Ek
Tk−1∑
m=0

1{Xm=i} =
∑
i∈E

pijγi.

This proves that (2.9.1) holds.

Step 3. Let i ∈ E be an arbitrary state. We show that 0 < γi < ∞. Since the chain is

irreducible, there exist n,m ∈ N0 such that p
(m)
ik > 0 and p

(n)
ki > 0. From (2.9.1) it follows

that

γi =
∑
l∈E

p
(n)
li γl ≥ p

(n)
ki γk = p

(n)
ki > 0.

On the other hand, again using (2.9.1), we obtain that

1 = γk =
∑
l∈E

p
(m)
lk γl ≥ p

(m)
ik γi.

This implies that γi ≤ 1/p
(m)
ik <∞. �

The next theorem states the uniqueness of the invariant measure, up to multiplication by a
constant.

Theorem 2.9.2. Consider an irreducible and recurrent Markov chain and fix some state
k ∈ E. Then, every invariant measure λ can be represented in the form

λj = cγ
(k)
j for all j ∈ E,

where c is a constant (not depending on j). In fact, c = λk.

Remark 2.9.3. Hence, the invariant measure is unique up to a multiplication by a constant.

In particular, the invariant measures (γ
(k1)
i )i∈E and (γ

(k2)
i )i∈E, for different states k1, k2 ∈ E,

differ by a multiplicative constant.

Proof. Let λ be an invariant measure.

Step 1. We show that λj ≥ λkγ
(k)
j for all j ∈ E. We will not use the irreducibility and the

recurrence of the chain in this step. The invariance of the measure λ implies that

λj =
∑
i0∈E

λi0pi0j =
∑
i0 6=k

λi0pi0j + λkpkj.
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Applying the same procedure to λi0 , we obtain

λj =
∑
i0 6=k

(∑
i1 6=k

λi1pi1i0 + λkpki0

)
pi0j + λkpkj

=
∑
i0 6=k

∑
i1 6=k

λi1pi1i0pi0j +

(
λkpkj + λk

∑
i0 6=k

pki0pi0j

)
.

Applying the procedure to λi1 and repeating it over and over again we obtain that for every
n ∈ N,

λj =
∑

i0,i1,...,in 6=k

λinpinin−1 . . . pi1i0pi0j+λk

pkj +
∑
i0 6=k

pki0pi0j + . . .+
∑

i0,...,in−1 6=k

pki0pi0i1 . . . pin−1j

 .

Noting that the first term is non-negative, we obtain that

λj ≥ 0 + λkPk[X1 = j, Tk ≥ 1] + λkPk[X2 = j, Tk ≥ 2] + . . .+ λkPk[Xn = j, Tk ≥ n].

Since this holds for every n ∈ N, we can pass to the limit as n→∞:

λj ≥ λk

∞∑
n=1

Pk[Xn = j, Tk ≥ n] = λkγ
(k)
j .

It follows that λj ≥ λkγ
(k)
j .

Step 2. We prove the converse inequality. Consider µj := λj−λkγ(k)
j , j ∈ E. By the above,

µj ≥ 0 for all j ≥ 0 so that µ = (µj)j∈E is a measure. Moreover, this measure is invariant
because it is a linear combination of two invariant measures. Finally, note that by definition,
µk = 0. We will prove that this implies that µj = 0 for all j ∈ E. By the irreducibility of

our Markov chain, for every j ∈ E we can find n ∈ N0 such that p
(n)
jk > 0. By the invariance

property of µ,

0 = µk =
∑
i∈E

µip
(n)
ik ≥ µjp

(n)
jk .

It follows that µjp
(n)
jk = 0 but since p

(n)
jk > 0, we must have µj = 0. By the definition of µj

this implies that λj = λkγ
(k)
j . �

We can now summarize Theorems 2.9.1 and 2.9.2 as follows:

Theorem 2.9.4. A recurrent, irreducible Markov chain has unique (up to a constant multi-
ple) invariant measure.

This invariant measure may be finite or infinite. However, if the Markov chain has only
finitely many states, then the measure must be finite and we can even normalize it to be a
probability measure.

Corollary 2.9.5. A finite and irreducible Markov chain has a unique invariant probability
measure.
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Proof. A finite and irreducible Markov chain is recurrent by Theorem 2.7.10. By Theo-
rem 2.9.1, there exists an invariant measure λ = (λi)i∈E. Since the number of states in E is
finite by assumption and λi <∞ by Theorem 2.9.1, we have M :=

∑
i∈E λi <∞ and hence,

the measure λ is finite. To obtain an invariant probability measure, consider the measure
λ′i = λi/M .

To show that the invariant probability measure is unique, assume that we have two invariant
probability measures ν ′ = (ν ′i)i∈E and ν ′′ = (ν ′′i )i∈E. Take an arbitrary state k ∈ E. By

Theorem 2.9.2, there are constants c′ and c′′ such that ν ′i = c′γ
(k)
i and ν ′′i = c′′γ

(k)
i , for all

i ∈ E. But since both ν ′ and ν ′′ are probability measures, we have

1 =
∑
i∈E

ν ′i = c′
∑
i∈E

γ
(k)
i , 1 =

∑
i∈E

ν ′′i = c′′
∑
i∈E

γ
(k)
i .

This implies that c′ = c′′ and hence, the measures ν ′ and ν ′′ are equal. �

Above, we considered only irreducible, recurrent chains. What happens if the chain is irre-
ducible and transient? It turns out that in this case everything is possible:

(1) It is possible that there is no invariant measure at all (except the zero measure).
(2) It is possible that there is a unique (up to multiplication by a constant) invariant

measure.
(3) It is possible that there are at least two invariant measures which are not constant

multiples of each other.

Exercise 2.9.6. Consider a Markov chain on N with transition probabilities pi,i+1 = 1, for
all i ∈ N. Show that the only invariant measure is λi = 0, i ∈ N.

Exercise 2.9.7. Consider a Markov chain on Z with transition probabilities pi,i+1 = 1, for
all i ∈ Z. Show that the invariant measures have the form λi = c, i ∈ Z, where c ≥ 0 is
constant.

Exercise 2.9.8. Consider a simple random walk on Z with p 6= 1
2
. Show that any invariant

measure has the form

λi = c1 + c2

(
p

1− p

)i
, i ∈ Z,

for some constants c1 ≥ 0, c2 ≥ 0.

2.10. Positive recurrence and null recurrence

The set of recurrent states of a Markov chain can be further subdivided into the set of
positive recurrent states and the set of negative recurrent states. Let us define the notions
of positive recurrence and null recurrence.

Consider a Markov chain on state space E. Take some state i ∈ E, assume that the Markov
chain starts at state i and denote by Ti the time of the first return of the chain to state i:

Ti = min{n ∈ N : Xn = i} ∈ N ∪ {+∞}.

Denote by mi the expected return time of the chain to state i, that is

mi = EiTi ∈ (0,∞]
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Note that for a transient state i we always have mi = +∞ because the random variable Ti
takes the value +∞ with strictly positive probability 1−fi > 0, see Theorem 2.7.3. However,
for a recurrent state i the value of mi may be both finite and infinite, as we shall see later.

Definition 2.10.1. A state i ∈ E as called positive recurrent if mi <∞.

Definition 2.10.2. A state i ∈ E is called null recurrent if it is recurrent and mi = +∞.

Remark 2.10.3. Both null recurrent states and positive recurrent states are recurrent. For
null recurrent states this is required by definition. For a positive recurrent state we have
mi <∞ which means that Ti cannot attain the value +∞ with strictly positive probability
and hence, state i is recurrent.

Theorem 2.10.4. Consider an irreducible Markov chain. Then the following statements are
equivalent:

(1) Some state is positive recurrent.
(2) All states are positive recurrent.
(3) The chain has invariant probability measure λ = (λi)i∈E.

Also, if these statements hold, then mi = 1
λi

for all i ∈ E.

Proof. The implication 2⇒ 1 is evident.

Proof of 1 ⇒ 3. Let k ∈ E be a positive recurrent state. Then, k is recurrent and all

states of the chain are recurrent by irreducibility. By Theorem 2.9.1, (γ
(k)
i )i∈E is an invariant

measure. However, we need an invariant probability measure. To construct it, note that∑
j∈E

γ
(k)
j = mk <∞

(since k is positive recurrent). We can therefore define λi = γ
(k)
i /mk, i ∈ E. Then,

∑
i∈E λi =

1, and (λi)i∈E is an invariant probability measure.

Proof of 3 ⇒ 2. Let (λi)i∈E be an invariant probability measure. First we show that
λk > 0 for every state k ∈ E. Since λ is a probability measure, we have λl > 0 for at least

one l ∈ E. By irreducibility, we have p
(n)
lk > 0 for some n ∈ N0 and by invariance of λ, we

have

λk =
∑
i∈E

p
(n)
ik λi ≥ p

(n)
lk λl > 0.

This proves that λk > 0 for every k ∈ E.

By Step 1 from the proof of Theorem 2.9.2 (note that this step does not use recurrence), we
have for all j ∈ E,

λi ≥ λkγ
(k)
i .

Hence,

mk =
∑
i∈E

γ
(k)
i ≤

∑
i∈E

λi
λk

=
1

λk
<∞.
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It follows that k is positive recurrent, thus establishing statement 2.

Proof that mk = 1
λk
. Assume that statements 1,2,3 hold. In particular, the chain is

recurrent and by Theorem 2.9.2, we must have λi = λkγ
(k)
i for all i ∈ E. It follows that

mk =
∑
i∈E

γ
(k)
i =

∑
i∈E

λi
λk

=
1

λk
,

thus proving the required formula. �

Example 2.10.5. Any state in a finite irreducible Markov chain is positive recurrent. Indeed,
such a chain has an invariant probability measure by Corollary 2.9.5.

Example 2.10.6. Consider a simple symmetric random walk on Z or on Z2. This chain is
irreducible. Any state is recurrent by Pólya’s Theorem 2.8.4. We show that in fact, any
state is null recurrent. To see this, note that the measure assigning the value 1 to every
state i ∈ E is invariant by the definition of the chain. By Theorem 2.9.2, any other invariant
measure must be of the form λi = c, i ∈ E, for some constant c ≥ 0. However, no measure
of this form is a probability measure. So, there is no invariant probability measure and by
Theorem 2.10.4, all states must be null recurrent.

2.11. Convergence to the invariant probability measure

We are going to state and prove a “strong law of large numbers” for Markov chains. First
recall that the usual strong law of large numbers states that if ξ1, ξ2, . . . are i.i.d. random
variables with E|ξ1| <∞, then

(2.11.1)
ξ1 + . . .+ ξn

n

a.s.−→
n→∞

Eξ1.

The statement is not applicable if E|ξ1| = ∞. However, it is an exercise to show that if
ξ1, ξ2, . . . are i.i.d. random variables which are a.s. nonnegative with Eξ1 = +∞, then

(2.11.2)
ξ1 + . . .+ ξn

n

a.s.−→
n→∞

+∞.

Consider a Markov chain {Xn : n ∈ N0} with initial distribution α = (αi)i∈E. Given a state
i ∈ E, denote the number of visits to state i in the first n steps by

Vi(n) =
n−1∑
k=0

1{Xk=i}.

Theorem 2.11.1. Consider an irreducible Markov chain {Xn : n ∈ N0} with an arbitrary
initial distribution α = (αi)i∈E.

1. If the Markov chain is transient or null recurrent, then for all i ∈ E it holds that

(2.11.3)
Vi(n)

n
−→
n→∞

0 a.s.

2. If the Markov chain is positive recurrent with invariant probability measure λ, then for
all i ∈ E it holds that

(2.11.4)
Vi(n)

n
−→
n→∞

λi a.s.
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Proof. If the chain is transient, then Vi(n) stays bounded as a function of n, with proba-
bility 1. This implies (2.11.3). In the sequel, let the chain be recurrent.

For simplicity, we will assume in this proof that the chain starts in state i. Denote the time
of the k-th visit of the chain to i by Sk, that is

S1 = min {n ∈ N : Xn = i} ,
S2 = min {n > S1 : Xn = i} ,
S3 = min {n > S2 : Xn = i} ,

and so on. Note that S1, S2, S3, . . . are a.s. finite by the recurrence of the chain. Let also
ξ1, ξ2, ξ3, . . . be the excursion times between the returns to i, that is

ξ1 = S1, ξ2 = S2 − S1, ξ3 = S3 − S2, . . . .

Then, ξ1, ξ2, ξ3, . . . are i.i.d. random variables by the Markov property.

By definition of Vi(n) we have

ξ1 + ξ2 + . . .+ ξVi(n)−1 ≤ n ≤ ξ1 + ξ2 + . . .+ ξVi(n).

Dividing this by Vi(n) we get

(2.11.5)
ξ1 + ξ2 + . . .+ ξVi(n)−1

Vi(n)
≤ n

Vi(n)
≤
ξ1 + ξ2 + . . .+ ξVi(n)

Vi(n)
.

Note that by recurrence, Vi(n) −→
n→∞

∞ a.s.

Case 1. Let the chain be null recurrent. It follows that Eξ1 = ∞. By using (2.11.2)
and (2.11.5), we obtain that

n

Vi(n)

a.s.−→
n→∞

∞.

This proves (2.11.3).

Case 2. Let the chain be positive recurrent. Then, by Theorem 2.10.4, Eξ1 = mi = 1
λi
<∞.

Using (2.11.1) and (2.11.5) we obtain that

n

Vi(n)

a.s.−→
n→∞

1

λi
.

This proves (2.11.4). �

In the next theorem we prove that the n-step transition probabilities converge, as n → ∞,
to the invariant probability measure.

Theorem 2.11.2. Consider an irreducible, aperiodic, positive recurrent Markov chain {Xn :
n ∈ N0} with transition matrix P and invariant probability measure λ = (λi)i∈E. The initial
distribution α = (αi)i∈E may be arbitrary. Then, for all j ∈ E it holds that

lim
n→∞

P[Xn = j] = λj.

In particular, limn→∞ p
(n)
ij = λj for all i, j ∈ E.

Remark 2.11.3. In particular, the theorem applies to any irreducible and aperiodic Markov
chain with finite state space.
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For the proof we need the following lemma.

Lemma 2.11.4. Consider an irreducible and aperiodic Markov chain. Then, for every states

i, j ∈ E we can find N = N(i, j) ∈ N such that for all n > N we have p
(n)
ij > 0.

Proof. The chain is irreducible, hence we can find r ∈ N0 such that p
(r)
ij > 0. Also, the

chain is aperiodic, hence we can find N0 ∈ N such that for all k > N0 we have p
(k)
ii > 0. It

follows that for all k > N0,

p
(k+r)
ij > p

(k)
ii p

(r)
ij > 0.

It follows that for every n := k + r such that n > N0 + r, we have p
(n)
ij > 0. �

Proof of Theorem 2.11.2. We use the “coupling method”.

Step 1. Consider two Markov chains called {Xn : n ∈ N0} and {Yn : n ∈ N0} such that

(1) Xn is a Markov chain with initial distribution α and transition matrix P .
(2) Yn is a Markov chain with initial distribution λ (the invariant probability measure)

and the same transition matrix P .
(3) The process {Xn : n ∈ N0} is independent of the process {Yn : n ∈ N0}.

Note that both Markov chains have the same transition matrix but different initial distribu-
tions. Fix an arbitrary state b ∈ E. Denote by T be the time at which the chains meet at
state b:

T = min{n ∈ N : Xn = Yn = b} ∈ N ∪ {+∞}.
If the chains do not meet at b, we set T = +∞.

Step 2. We show that P[T < ∞] = 1. Consider the stochastic process Wn = (Xn, Yn)
taking values in E×E. It is a Markov chain on E×E with transition probabilities given by

p̃(i,k),(j,l) = pijpkl, (i, k) ∈ E × E, (j, l) ∈ E × E.
The initial distribution of W0 is given by

µ(i,k) = αiλk, (i, k) ∈ E × E.
Since the chains Xn and Yn are aperiodic and irreducible by assumption of the theorem, we
can apply Lemma 2.11.4 to obtain for every i, j, k, l ∈ E a number N = N(i, j, k, l) ∈ N such
that for all n > N we have

p̃
(n)
(i,k),(j,e) = p

(n)
ij p

(n)
ke > 0.

Thus, the chain Wn is irreducible. Also, it is an exercise to check that the probability measure
λ̃(i,k) := λiλk is invariant for Wn. Thus, by Theorem 2.10.4, the Markov chain Wn is positive
recurrent and thereby recurrent. Therefore, T <∞ a.s. by Lemma 2.7.11.

Step 3. Define the stochastic process {Zn : n ∈ N0} by

Zn =

{
Xn, if n ≤ T,

Yn, if n ≥ T.

Then, Zn is a Markov chain with initial distribution α and the same transition matrix P
as Xn and Yn. (The Markov chain Zn is called the coupling of Xn and Yn). The chain Yn
starts with the invariant probability measure λ and hence, at every time n, Yn is distributed
according to λ. Also, the chain Zn has the same initial distribution α and the same transition
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matrix P as the chain Xn, so that in particular, the random elements Xn and Zn have the
same distribution at every time n. Using these facts, we obtain that

|P[Xn = j]− λj| = |P[Xn = j]− P[Yn = j]| = |P[Zn = j]− P[Yn = j]|.
By definition of Zn, we can rewrite this as

|P[Xn = j]− λj| = |P[Xn = j, n < T ] + P[Yn = j, n ≥ T ]− P[Yn = j]|
= |P[Xn = j, n < T ]− P[Yn = j, n < T ]|
≤ P[T > n].

But we have shown in Step 2 that P[T = ∞] = 0, hence limn→∞ P[T > n] = 0. It follows
that

lim
n→∞

P[Xn = j] = λj,

thus establishing the theorem. �
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CHAPTER 3

Renewal processes and Poisson process

3.1. Definition of renewal processes and limit theorems

Let ξ1, ξ2, . . . be independent and identically distributed random variables with P[ξk > 0] = 1.
Define their partial sums

Sn = ξ1 + . . .+ ξn, n ∈ N, S0 = 0.

Note that the sequence S1, S2, . . . is increasing. We call S1, S2, . . . the renewal times (or
simply renewals) and ξ1, ξ2, . . . the interrenewal times.

Definition 3.1.1. The process {Nt : t ≥ 0} given by

Nt =
∞∑
n=1

1{Sn≤t}

is called the renewal process.

Theorem 3.1.2 (Law of large numbers for renewal processes). Let m := Eξ1 ∈ (0,∞), then

Nt

t

a.s.→ 1

m
, as t→∞.

Idea of proof. By the definition of Nt we have the inequality

SNt ≤ t ≤ SNt+1.

Dividing this by Nt we obtain

(3.1.1)
SNt
Nt

≤ t

Nt

≤ SNt+1

Nt + 1
· Nt + 1

Nt

.

We have Nt →∞ as t→∞ since there are infinitely many renewals and thus, the function
Nt (which is non-decreasing by definition) cannot stay bounded. By the law of large numbers,
both sides of (3.1.1) a.s. converge to m as t→∞. By the sandwich lemma, we have

t

Nt

a.s.→ m, as t→∞.

This proves the claim. �

Theorem 3.1.3 (Central limit theorem for renewal processes). Let m := Eξ1 ∈ (0,∞) and
σ2 := Var ξ1 ∈ (0,∞). Then,

Nt − t
m

σ
m3/2

√
t

d→ N(0, 1), as t→∞.
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Idea of proof. The usual central limit theorem for Sn = ξ1 + . . .+ ξn states that

Sn − nm
σ
√
n

d−→
n→∞

N(0, 1).

Denoting by N a standard normal random variable we can write this as follows: For large
n, we have an approximate equality of distributions

Sn ≈ nm+ σ
√
nN.

This means that the interval [0, nm + σ
√
nN ] contains approximately n renewals. By the

law of large numbers for renewal processes, see Theorem 3.1.2, it seems plausible that the
interval [nm, nm + σ

√
nN ] contains approximately σ

√
nN/m renewals. It follows that the

interval [0, nm] contains approximately n − σ
√
nN/m renewals. Let us now introduce the

variable t = nm. Then, n → ∞ is equivalent to t → ∞. Consequently, for large t in the
interval [0, t] we have approximately

t

m
− σ
√
t

m3/2
N

renewals. By definition, this number of renewals is Nt. This means that

Nt − t
m

σ
m3/2

√
t
≈ N,

for large t. �

Definition 3.1.4. The renewal function H(t) is the expected number of renewals in the
interval [0, t]:

H(t) = ENt, t ≥ 0.

Remark 3.1.5. Denoting by F ∗k(t) = P[Sk ≤ t] the distribution function of Sk, we have the
formula

H(t) = ENt = E
∞∑
k=1

1Sk≤t =
∞∑
k=1

E1Sk≤t =
∞∑
k=1

P[Sk ≤ t] =
∞∑
k=1

F ∗k(t).

Theorem 3.1.6 (Weak renewal theorem). Let m := Eξ1 ∈ (0,∞). It holds that

lim
t→∞

H(t)

t
=

1

m
.

Idea of proof. By Theorem 3.1.2, Nt
t

a.s.→ 1
m

as t→∞. In order to obtain Theorem 3.1.6,
we have to take expectation of both sides and interchange the limit and the expectation.
The rigorous justification will be omitted. �

Definition 3.1.7. The random variables ξk are called lattice if there are a > 0, b ∈ R so
that ξk with probability 1 takes values in the set aZ + b, that is

P[ξk ∈ {an+ b : n ∈ Z}] = 1.

Theorem 3.1.8 (Blackwell renewal theorem). Assume that ξ1 is non-lattice and let m :=
Eξ1 ∈ (0,∞). Then, for all s > 0,

lim
t→∞

(H(t+ s)−H(t)) =
s

m
.

Proof. Omitted �
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3.2. Stationary processes and processes with stationary increments

Consider a stochastic process {Xt, t ≥ 0}. For concreteness, we have chosen the index
set T to be [0,∞), but similar definitions apply to stochastic processes with index sets
T = R,N,N0,Z.

Definition 3.2.1. The process {Xt : t ≥ 0} is called stationary if for all n ∈ N, 0 ≤ t1 ≤
. . . ≤ tn and all h ≥ 0,

(Xt1 , . . . , Xtn)
d
= (Xt1+h, . . . , Xtn+h).

Example 3.2.2. Let {Xt : t ∈ N0} be independent and identically distributed random
variables. We claim that the process X is stationary. Let µ be the probability distribution
of Xt, that is µ(A) = P[Xt ∈ A], for all Borel sets A ⊂ R. Then, for all Borel sets
A1, . . . , An ⊂ R,

P[Xt1+h ∈ A1, . . . , Xtn+h ∈ An] = µ(A1) · . . . · µ(An) = P[Xt1 ∈ A1, . . . , Xtn ∈ An].

This proves that X is stationary.

Example 3.2.3. Let {Xt : t ∈ N0} be a Markov chain starting with an invariant probability
distribution λ. Then, Xt is stationary.

Proof. Let us first compute the joint distribution of (Xh, Xh+1, . . . , Xh+m). For any states
i0, . . . , im ∈ E we have

P[Xh = i0, Xh+1 = i1, . . . , Xh+m = im] = P[Xh = i0] · pi0i1 · . . . · pim−1im .

Since the initial measure λ of the Markov chain is invariant, we have P[Xh = i0] = λi0 . We
therefore obtain that

P[Xh = i0, Xh+1 = i1, . . . , Xh+m = im] = λi0pi0i1 · . . . · pim−1im .

This expression does not depend on h thus showing that

(Xh, Xh+1, . . . , Xh+m)
d
= (X0, X1, . . . , Xm).

If we drop some components in the first vector and the corresponding components in the
second vector, the vectors formed by the remaining components still have the same distri-
bution. In this way we can prove that (Xt1+h, Xt2+h, . . . , Xtn+h) has the same distribution
as (Xt1 , Xt2 , . . . , Xtn). �

Definition 3.2.4. The process {Xt : t ≥ 0} has stationary increments if for all n ∈ N,
h ≥ 0 and 0 ≤ t0 ≤ t1 ≤ . . . ≤ tm, we have the following equality in distribution:

(Xt1+h−Xt0+h, Xt2+h−Xt1+h, . . . , Xtn+h−Xtn−1+h)
d
= (Xt1−Xt0 , Xt2−Xt1 , . . . , Xtn−Xtn−1).

Definition 3.2.5. The process {Xt : t ≥ 0} has independent increments if for all n ∈ N and
0 ≤ t0 ≤ t1 ≤ . . . ≤ tn, the random variables

Xt0 , Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtn −Xtn−1

are independent.

Later we will consider two examples of processes which have both stationary and independent
increments: the Poisson Process and the Brownian Motion.
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3.3. Poisson process

The Poisson process is a special case of renewal process in which the interrenewal times
are exponentially distributed. Namely, let ξ1, ξ2, . . . be independent identically distributed
random variables having exponential distribution with parameter λ > 0, that is

P[ξk ≤ x] = 1− e−λx, x ≥ 0.

Define the renewal times Sn by

Sn = ξ1 + . . .+ ξn, n ∈ N, S0 = 0.

It’s an exercise to show (for example, by induction) that the density of Sn is given by

fSn(x) =
λnxn−1

(n− 1)!
e−λx, x ≥ 0.

The distribution of Sn is called the Erlang distribution with parameters n and λ. It is a
particular case of the Gamma distribution.

Definition 3.3.1. The Poisson process with intensity λ > 0 is a process {Nt : t ≥ 0} defined
by

Nt =
∞∑
k=1

1{Sk≤t}.

Note that Nt counts the number of renewals in the interval [0, t]. The next theorem explains
why the Poisson process was named after Poisson.

Theorem 3.3.2. For all t ≥ 0 it holds that Nt ∼ Poi(λt).

Proof. We need to prove that for all n ∈ N0,

P[Nt = n] =
(λt)n

n!
e−λt.

Step 1. Let first n = 0. Then,

P[Nt = 0] = P[ξ1 > t] = e−λt,

thus establishing the required formula for n = 0.

Step 2. Let n ∈ N. We compute the probability P[Nt = n]. By definition of Nt we have

P[Nt = n] = P[Nt ≥ n]− P[Nt ≥ n+ 1] = P[Sn ≤ t]− P[Sn+1 ≤ t].

Using the formula for the density of Sn we obtain that

P[Nt = n] =

∫ t

0

fSn(x)dx−
∫ t

0

fSn+1(x)dx =

∫ t

0

(
λnxn−1

(n− 1)!
e−λx − λn+1xn

n!
e−λx

)
dx.

The expression under the sign of the integral is equal to

d

dx

(
(λx)n

n!
e−λx

)
.

Thus, we can compute the integral as follows:

P[Nt = n] =

(
(λx)n

n!
e−λx

)∣∣∣∣x=t

x=0

=
(λt)n

n!
e−λt,
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where the last step holds since we assumed that n 6= 0. �

Remark 3.3.3. From the above theorem it follows that the renewal function of the Poisson
process is given by H(t) = ENt = λt.

For the next theorem let U1, . . . , Un be independent random variables which are uniformly dis-
tributed on the interval [0, t]. Denote by U(1) ≤ . . . ≤ U(n) the order statistics of U1, . . . , Un.

Theorem 3.3.4. The conditional distribution of the random vector (S1, . . . , Sn) given that
{Nt = n} coincides with the distribution of (U(1), . . . , U(n)):

(S1, . . . , Sn)|{Nt = n} d
= (U(1), . . . , U(n)).

Proof. We will compute the densities of both vectors and show these densities are equal.

Step 1. The joint density of the random variables (ξ1, . . . , ξn+1) has (by independence) the
product form

fξ1,...,ξn+1(u1, . . . , un+1) =
n+1∏
k=1

λe−λuk , u1, . . . , un+1 > 0.

Step 2. We compute the joint density of (S1, . . . , Sn+1). Consider a linear transformation
A defined by

A(u1, u2, . . . , un+1) = (u1, u1 + u2, . . . , u1 + . . .+ un+1).

The random variables (S1, . . . , Sn+1) can be obtained by applying the linear transformation
A to the variables (ξ1, . . . , ξn+1):

(S1, . . . , Sn+1) = A(ξ1, . . . , ξn+1).

The determinant of the transformation A is 1 since the matrix of this transformation is
triangular with 1’s on the diagonal. By the density transformation theorem, the density of
(S1, . . . , Sn+1) is given by

fS1,...,Sn+1(t1, . . . , tn+1) =
n+1∏
k=1

λe−λ(tk−tk−1) = λn+1e−λtn+1 ,

where 0 = t0 < t1 < . . . < tn+1. Otherwise, the density vanishes. Note that the formula for
the density depends only on tn+1 and does not depend on t1, . . . , tn.

Step 3. We compute the conditional density of (S1, . . . , Sn) given that Nt = n. Let
0 < t1 < . . . < tn < t. Intuitively, the conditional density of (S1, . . . , Sn) given that Nt = n
is given by

fS1,...,Sn(t1, . . . , tn|Nt = n) = lim
ε↓0

P[t1 < S1 < t1 + ε, . . . , tn < S1 < tn + ε|Nt = n]

εn

= lim
ε↓0

P[t1 < S1 < t1 + ε, . . . , tn < Sn < tn + ε,Nt = n]

εnP[Nt = n]

= lim
ε↓0

P[t1 < S1 < t1 + ε, . . . , tn < Sn < tn + ε, Sn+1 > t]

εnP[Nt = n]
.
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Using the formula for the joint density of (S1, . . . , Sn+1) and noting that this density does
not depend on t1, . . . , tn, we obtain that

P[t1 < S1 < t1 + ε, . . . , tn < Sn < tn + ε, Sn+1 > t]

εnP[Nt = n]
=

∫∞
t
λn+1e−λtn+1dtn+1

P[Nt = n]
=
n!

tn
,

where in the last step we used that Nt has Poisson distribution with parameter λt. So, we
have

fS1,...,Sn(t1, . . . , tn|Nt = n) =

{
n!
tn
, for 0 < t1 < . . . < tn < t,

0, otherwise.

Step 4. The joint density of the order statistics (U(1), . . . , U(n)) is known (Stochastik I) to
be given by

fU(1),...,U(n)
(t1, . . . , tn) =

{
n!
tn
, for 0 < t1 < . . . < tn < t,

0, otherwise.

This coincides with the conditional density of (S1, . . . , Sn) given that Nt = n, thus proving
the theorem. �

Theorem 3.3.5. The Poisson process {Nt : t ≥ 0} has independent increments and these
increments have Poisson distribution, namely for all t, s ≥ 0 we have

Nt+s −Nt ∼ Poi(λs).

Proof. Take some points 0 = t0 ≤ t1 ≤ . . . ≤ tn. We determine the distribution of the
random vector

(Nt1 , Nt2 −Nt1 , . . . , Ntn −Ntn−1).

Take some x1, . . . , xn ∈ N0. We compute the probability

P := P[Nt1 = x1, Nt2 −Nt1 = x2, . . . , Ntn −Ntn−1 = xn].

Let x = x1 + . . .+ xn. By definition of conditional probability,

P = P[Nt1 = x1, Nt2 −Nt1 = x2, . . . , Ntn −Ntn−1 = xn|Ntn = x] · P[Ntn = x].

Given that Ntn = x, the Poisson process has x renewals in the interval [0, tn] and by The-
orem 3.3.4 these renewals have the same distribution as x independent random variables
which have uniform distribution on the interval [0, tn], after arranging them in an increasing
order. Hence, in order to compute the conditional probability we can use the multinomial
distribution:

P =

(
x!

x1! . . . xn!

n∏
k=1

(tk − tk−1)xk

txkn

)
· (λtn)x

x!
e−λtn .

After making transformations we arrive at

P =
n∏
k=1

(
(λ(tk − tk−1))xk

xk!
e−λ(tk−tk−1)

)
.

From this formula we see that the random variables Nt1 , Nt2 − Nt1 ,. . . , Ntn − Ntn−1 are
independent and that they are Poisson distributed, namely

Ntk −Ntk−1
∼ Poi(λ(tk − tk−1)).

This proves the theorem. �
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Theorem 3.3.6. The Poisson process has stationary increments.

Proof. Take some h ≥ 0, and some 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn. We have to show that the
distribution of the random vector

(Nt1+h −Nt0+h, Nt2+h −Nt1+h, . . . , Ntn+h −Ntn−1+h)

does not depend on h. However, we know from Theorem 3.3.5 that the components of this
vector are independent and that

Ntk+h −Ntk−1+h ∼ Poi(λ(tk − tk−1)),

which does not depend on h. �

3.4. Lattice renewal processes

In this section we show how the theory of Markov chains can be used to obtain some proper-
ties of renewal processes whose interrenewal times are integer. Let ξ1, ξ2, . . . be independent
and identically distributed random variables with values in N = {1, 2, . . .}. Let us write

rn := P[ξ1 = n], n ∈ N.
We will make the aperiodicity assumption:

(3.4.1) gcd{n ∈ N : rn 6= 0} = 1.

For example, this condition excludes renewal processes for which the ξk’s take only even
values. Define the renewal times Sn = ξ1 + . . .+ ξn, n ∈ N.

Theorem 3.4.1. Let m := Eξ1 be finite. Then,

lim
n→∞

P[∃k ∈ N : Sk = n] =
1

m
.

So, the probability that there is a renewal at time n converges, as n→∞, to 1
m

.

Proof. Step 1. Consider a Markov chain defined as follows: Let

Xn = inf{t ≥ n : t is renewal time} − n.
The random variable Xn (which is called the forward renewal time) represents the length of
the time interval between n and the first renewal following n. (Please think why Xn has the
Markov property). Note that at renewal times we have Xn = 0.
The state space of this chain is

E = {0, 1, . . . ,M − 1}, if M <∞,
E = {0, 1, 2, . . .}, if M =∞,

where M is the maximal value which the ξk’s can attain:

M = sup{i ∈ N : ri > 0} ∈ N ∪ {∞}.
The transition probabilities of this Markov chain are given by

pi,i−1 = 1 for i = 1, 2, . . . ,M − 1,

p0,i = ri+1 for i = 1, . . . ,M − 1.
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Step 2. We prove that the chain is irreducible. Starting at any state i ∈ E we can reach
state 0 by following the path

i→ i− 1→ i− 2→ . . .→ 0.

So, every state leads to state 0. Let us prove that conversely, state 0 leads to every state. Let
first M be finite. Starting in state 0 we can reach any state i ∈ E with positive probability
by following the path

0→M − 1→M − 2→ . . .→ i.

If M is infinite, then for every i ∈ E we can find some K > i such that rK > 0. Starting at
state 0 we can reach state i by following the path

0→ K − 1→ K − 2→ . . .→ i.

We have shown that every state leads to 0 and 0 leads to every state, so the chain is
irreducible.

Step 3. We prove that the chain is aperiodic. By irreducibility, we need to show that state
0 is aperiodic. For every i such that ri 6= 0 we can go from 0 to 0 in i steps by following the
path

0→ i− 1→ i− 2→ . . .→ 0.

By (3.4.1) the greatest common divisor of all such i’s is 1, so the period of state 0 is 1 and
it is aperiodic.

Step 4. We claim that the unique invariant probability measure of this Markov chain is
given by

λi =
ri+1 + ri+2 + . . .

m
, i ∈ E.

Indeed, the equations for the invariant probability measure look as follows:

λj =
M−1∑
i=0

pijλi = p0,jλ0 + pj+1,jλj+1 = rj+1λ0 + λj+1.

It follows that

λj − λj+1 = rj+1λ0.

We obtain the following equations:

λ0 − λ1 = r1λ0,

λ1 − λ2 = r2λ0,

λ2 − λ3 = r3λ0,

. . .

By adding all these equations starting with the (j + 1)-st one, we obtain that

λj = (rj+1 + rj+2 + . . .)λ0.

It remains to compute λ0. By adding the equations for all j = 0, 1, . . . ,M − 1 we obtain
that

1 = λ0 + λ1 + . . . = (r1 + 2r2 + 3r3 + . . .)λ0 = mλ0.
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It follows that

λ0 =
1

m
.

This proves the formula for the invariant probability distribution.

Step 5. Our chain is thus irreducible, aperiodic, and positive recurrent. By the theorem on
the convergence to the invariant probability distribution we have

lim
n→∞

P[Xn = 0] = λ0 =
1

m
.

Recalling that we have Xn = 0 if and only if n is a renewal time, we obtain that

lim
n→∞

P[∃k ∈ N : Sn = k] = lim
n→∞

P[Xn = 0] =
1

m
,

thus proving the claim of the theorem. �
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CHAPTER 4

Brownian motion

Brownian motion is one of the most important and interesting stochastic processes. The
history of the Brownian motion began in 1827 when the botanist Robert Brown looked
through a microscope at small particles (pollen grains) suspended in water. He noted that
the particles were moving chaotically. The mechanism causing this chaotic motion can be
explained as follows. The particle collides with water molecules. Any collisions results in
a displacement of the particle in some direction. The number of collisions is large, but the
impact of any collision is small. To compute the total displacement of the particle caused by
all collisions we have to add a very large number of very small random variables (impacts of
individual collisions), like in the central limit theorem.

A similar situation appears when we try to model a price of an asset. The price, considered
as a function of time, is subject to random changes due to the influence of some random
events. If we assume that any random event has a very small impact on the price and that
the number of events is very large, we are in the same situation when modelling the Brownian
particle. This is why the Brownian motion is one of the main building blocks for stochastic
processes used in financial mathematics.

In this chapter we will define a stochastic process {B(t) : t ≥ 0} (called the Brownian motion
or the Wiener process) which is a mathematical model for the experiment described above.

4.1. Discrete approximation to the Brownian motion

Let us now try to model the motion of a small pollen grain particle in a fluid mathematically.
First of all, we will model the motion of the particle in one dimension (that is, on the real
line), because to model the motion in three dimensions we can model the three coordinates
of the particle separately. So, we want to model a particle which moves on the real line due
to random impacts which can shift the particle to the left or to the right. Assume without
restriction of generality that at time 0 the particle starts at position 0. Denote by N the
parameter describing the number of collisions of the particle with water molecules per unit
time. This parameter should be very large. Assume that any collision causes a displacement
of the particle by a distance δ > 0 (which should be very small) either to the left or to the
right, both possibilities having the same probability 1/2. A sample path of such particle (the
coordinate of the particle as a function of time) is shown on Figure 1, left. Note that in this
model we ignore the inertia of the particle. That is, the impacts are assumed to change the
position of the particle, but we don’t try to model the speed of the particle. This approach
is justified if the fluid has large viscosity.
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Figure 1. Left: A sample path of the process BN,δ. Right: A sample path
of the Brownian motion

A more precise description of the model is as follows. Let ξ1, ξ2, . . . be independent and
identically distributed random variables with

P[ξi = +1] = P[ξi = −1] =
1

2
.

Define a stochastic process {BN,δ(t) : t ≥ 0} describing the position of the particle at time t
as follows. The position of the particle at time t = k

N
, where k ∈ N0, is given by the sum of

the first k impacts:

BN,δ

(
k

N

)
= δ · (ξ1 + . . .+ ξk).

For t ∈ ( k
N
, k+1
N

) we can define BN,δ(t) by linear interpolation, as in Figure 1.

It is clear from the definition that the process {BN,δ(t) : t ≥ 0} has the following two prop-
erties:

(1) Bn,δ(0) = 0.
(2) For every integer numbers 0 ≤ k1 ≤ k2 ≤ . . . ≤ kn, the increments

BN,δ

(
k1

N

)
, BN,δ

(
k2

N

)
−BN,δ

(
k1

N

)
, . . . , BN,δ

(
kn
N

)
−BN,δ

(
kn−1

N

)
are independent.

Let us now determine the approximate distribution of these increments. First of all, let us
look at the position of the particle at time 1:

BN,δ(1) = δ · (ξ1 + . . .+ ξN).

This position is a random variable and its expectation and variance are given by

EBN,δ(1) = 0, VarBN,δ(1) = δ2N.

Now, we want to see what happens in the scaling limit as N →∞ (meaning that the number
of collisions of particle with water molecules is very large) and, at the same time, δ → 0
(meaning that the displacement caused by any collision is very small); see Figure 1, right. It
is natural to require that VarBN,δ(1) should stay constant (independent of N and δ) because
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otherwise we will not obtain any meaningful limit. We will choose this constant to be equal
to 1 which leads to the requirement

δ =
1√
N
.

If this relation holds, then by the central limit theorem we obtain that

BN,δ(1) =
ξ1 + . . .+ ξN√

N

d−→
N→∞

N(0, 1).

Similarly, for more general increments one obtains the following property:

BN,δ(t+ h)−BN,δ(t)
d−→

N→∞
N(0, h).

So, in the limit, the increments of our process should have the normal distribution.

4.2. Definition of the Brownian motion

The considerations of the preceding section make the following definition natural.

Definition 4.2.1. A stochastic process B = {B(t) : t ≥ 0} defined on a probability space
(Ω,F ,P) is called Brownian motion or Wiener process if

(1) B(0) = 0.
(2) B has independent increments, that is for all 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn the random

variables
B(t1), B(t2)−B(t1), . . . , B(tn)−B(tn−1)

are independent.
(3) B has normal increments, that is for all t ≥ 0 and h > 0,

B(t+ h)−B(t) ∼ N(0, h).

(4) B has continuous sample paths, that is for all ω ∈ Ω, the function t 7→ B(t;ω) is
continuous in t.

First of all, one has to ask whether a process satisfying these four requirements exists.
This question is non-trivial and will be positively answered in Section 4.5 below. Here
we sketch an idea of a possible approach to proving existence. The first three properties
in the definition of the Brownian motion deal with the finite dimensional distributions of
the process B only. It can be shown using Kolmogorov’s existence theorem that a process
with finite-dimensional distributions satisfying coonditions 1, 2, 3 exists. To be able to
apply Kolmogorov’s existence theorem one has to verify that the family of finite-dimensional
distributions given by conditions 1, 2, 3 is consistent, that is that these conditions do not
contradict each other. Essentially, this verification boils down to the following argument. If
we know that for some 0 ≤ t1 ≤ t2 ≤ t3 the increments

B(t2)−B(t1) ∼ N(0, t2 − t1) and B(t3)−B(t2) ∼ N(0, t3 − t2)

are independent, then by the convolution property of the normal distribution, we must have

B(t3)−B(t1) = (B(t3)−B(t2)) + (B(t2)−B(t1)) ∼ N(0, (t3− t2) + (t2− t1)) = N(0, t3− t1).

Since this is in agreement with condition 3, there seems to be no contradiction between the
conditions 1, 2, 3. Thus, we can apply Kolmogorov’s existence theorem to construct a process
satisfying conditions 1, 2, 3. However, Kolmogorov’s theorem does not guarantee that the
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resulting process satisfies condition 4, so that an additional modification of the construction
is needed to make condition 4 satisfied. This is why we choose a different approach to prove
the existence of a process satisfying conditions 1, 2, 3, 4; see Section 4.5.

The following example shows that it is not possible to drop condition 4 from the definition
of the Brownian motion.

Example 4.2.2. Assume that we have a process {B(t) : t ≥ 0} satisfying conditions 1, 2,
3, 4. We will show how, by modifying B, we can construct a process B̃ which satisfies
properties 1, 2, 3, but violates property 4. This proves that property 4 is not a corollary of
properties 1, 2, 3. Take a random variable U ∼ U[0, 1] independent of the process B. Define
a new process {B̃(t) : t ≥ 0} by

B̃(t) =

{
B(t), if t 6= U,

0, if t = U.

This process has the same finite-dimensional distributions as B. Indeed, the vectors

(B(t1), . . . , B(tn)) and (B̃(t1), . . . , B̃(tn))

are equal unless U ∈ {t1, . . . , tn}, but this event has probability 0. So, both random vectors
are a.s. equal and hence, have the same distribution. This implies that the process {B̃(t) : t ≥
0} also satisfies conditions 1, 2, 3. However, it does not satisfy condition 4 because the
probability that its sample path is continuous is 0. Namely, we have

lim
t→U,t 6=U

B̃(t) = lim
t→U,t 6=U

B(t) = B(U).

This limit is a.s. different from B̃(U) = 0 because

P[B(U) = 0] =

∫ 1

0

P[B(u) = 0]du =

∫ 1

0

0du = 0.

Thus, the probability that the sample path of B̃ has a discontinuity at U is 1.

4.3. Multivariate Gaussian distributions and Gaussian processes

It follows from the definition of the Brownian motion that its one-dimensional distributions
are Gaussian, namely

B(t) ∼ N(0, t).

What about the multidimensional distributions of the Brownian motion? It turns out that
these distributions are so-called multivariate Gaussian distributions. The aim of this section
is to define the multivariate Gaussian distributions.

By definition, a random variable X has a (univariate) Gaussian distribution with parameters
µ ∈ R and σ2 > 0 (notation: X ∼ N(µ, σ2)) if the density of X has the form

fX(t) =
1√
2πσ

e−
(t−µ)2

2σ2 , t ∈ R.

It is convenient to extend this definition to the case µ ∈ R, σ2 = 0 by declaring X ∼ N(µ, 0)
if X = µ almost surely. The characteristic function of a Gaussian random variable X ∼
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N(µ, σ2) has the form

ϕX(s) = eisµ−
1
2
σ2s2 , s ∈ R.

The random variable X is called standard Gaussian if it is Gaussian with µ = 0 and σ2 = 1,
that is if the density of X is given by

fX(t) =
1√
2π
e−

t2

2 , t ∈ R.

We will now extend the definition of the Gaussian distribution from random variables to
random vectors. Let us start with the definition of a standard Gaussian random vector.

Definition 4.3.1. Fix dimension d ∈ N. A random vector X = (X1, . . . , Xd)
T is called

d-dimensional standard Gaussian if

(1) X1, . . . , Xd ∼ N(0, 1) are standard Gaussian random variables and
(2) X1, . . . , Xd are independent random variables.

By independence, the joint density of a d-dimensional standard Gaussian vector X is given
by

fX1,...,Xd(t1, . . . , td) =
1

(
√

2π)d
e−

1
2

(t21+...+t2d) =
1

(
√

2π)d
e−

1
2
〈t,t〉,

where t = (t1, . . . , td) ∈ Rd; see Figure 2.

Figure 2. The 2-dimensional standard Gaussian density.

The expectation vector of X is equal to zero (because all components Xi have zero mean by
definition). The covariance matrix of X is the d×d-identity matrix (because the variance of
any component Xi is 1 and different components are independent and hence uncorrelated):

EX =


0
0
...
0

 , CovX =


1 0 . . . 0
0 1 . . . 0
...

... . . .
...

0 0 . . . 1

 .
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The next lemma states that the standard Gaussian distribution remains unchanged under
rotations of the space around the origin.

Lemma 4.3.2. If X is d-dimensional standard Gaussian random vector and A an orthogonal
d× d-matrix, then the random vector AX is also standard Gaussian.

Proof. Recall that the orthogonality of the matrix A means that AAT = ATA = Id. It
follows that detA = ±1 and in particular, A is invertible. By the transformation formula,
the density of the random vector AX is

fAX(t) = fX(A−1t)| det(A−1)| = fX(A−1t) =
1

(
√

2π)d
e−

1
2
〈A−1t,A−1t〉 =

1

(
√

2π)d
e−

1
2
〈t,t〉 = fX(t),

where we used that 〈A−1t, A−1t〉 = 〈(A−1)TA−1t, t〉 = 〈(AAT )−1t, t〉 = 〈t, t〉. �

Then next lemma will be used in the construction of the Brownian motion in Section 4.5.

Lemma 4.3.3. Let X1 and X2 be independent Gaussian random variables with mean 0 and
VarX1 = VarX2 = σ2. Then, the random variables

Y1 =
X1 +X2√

2
and Y2 =

X1 −X2√
2

are also independent and Gaussian with mean zero and variance σ2.

Proof. By definition, the random vector (X1/σ,X2/σ)T is 2-dimensional standard Gauss-
ian. By Lemma 4.3.2, we obtain that the random vector(

Y1
σ
Y2
σ

)
=

( 1√
2

1√
2

1√
2
− 1√

2

)(
X1

σ
X2

σ

)
is also two-dimensional standard Gaussian, because the matrix in the above equality is
orthogonal. It follows that the random vector (Y1/σ, Y2/σ)T is also 2-dimensional standard
Gaussian. Hence, the random variables Y1/σ and Y2/σ are independent and standard Gauss-
ian. �

Now we are going to define the general (non-standard) multivariate Gaussian distribution.
Essentially, we declare a random vector to be multivariate Gaussian if this random vector
can be represented as an affine transform of some standard Gaussian random vector.

Definition 4.3.4. A random vector Y = (Y1, . . . , Yd)
T is called d-dimensional Gaussian if

there is some m ∈ N, some m-dimensional standard Gaussian vector X = (X1, . . . , Xm)T ,
some d×m-matrix A and some µ ∈ Rd so that

Y
d
= AX + µ.

Exercise 4.3.5. Show that the expectation and the covariance matrix of Y are given by

EY = µ, Cov Y = AAT .

Notation 4.3.6. We usually denote the covariance matrix by Σ := Cov Y = AAT (not by
Σ2), and write Y ∼ Nd(µ,Σ). Note that the parameter µ takes values in Rd, whereas the
covariance matrix Σ can be any symmetric, positive semidefinite matrix.
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Figure 3. A two-dimensional (non-standard) Gaussian density

Any affine transformation of a Gaussian vector is again a Gaussian vector:

Lemma 4.3.7. If Y ∼ Nd(µ,Σ) is a d-dimensional Gaussian vector, A′ is a d′ × d-matrix
and µ′ ∈ Rd′, then

A′Y + µ′ ∼ Nd′(A
′µ+ µ′, A′ΣA′T )

Proof. By definition, we can represent Y in the form Y = AX + µ, where AAT = Σ and
the vector X is m-dimensional standard Gaussian. The d′-dimensional random vector

A′Y + µ′ = A′(AX + µ) + µ′ = (A′A)X + (A′µ+ µ′)

is also an affine transform of X and hence, multivariate Gaussian. The parameters of A′Y +µ′

are given by

E[A′Y + µ′] = A′µ+ µ′, Cov(A′Y + µ′) = (A′A)(A′A)T = A′AATA′T = A′ΣA′T .

�

Remark 4.3.8. In particular, any component Yi of a Gaussian random vector (Y1, . . . , Yd)
T

is a Gaussian random variable. The converse is not true: If Y1, . . . , Yd are Gaussian ran-
dom variables, then it’s in general not true that (Y1, . . . , Yd)

T is a Gaussian random vector.
However, if we additionally require that Y1, . . . , Yd should be independent, the statement
becomes true.

Lemma 4.3.9. Let Y1, . . . , Yd be independent Gaussian random variables. Then, (Y1, . . . , Yd)
T

is a Gaussian random vector.

Proof. Let Yi ∼ N(µi, σ
2
i ). Then, we can write Yi = σiXi + µi, where Xi are standard

normal and independent. So, the random vector (Y1, . . . , Yd)
T is an affine transformation

of some standard Gaussian random vector (X1, . . . , Xd)
T and hence, itself d-dimensional

Gaussian. �
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Lemma 4.3.10. The characteristic function of a d-dimensional Gaussian random vector Y ∼
Nd(µ,Σ) is given by

ϕY (t) := Eei〈t,Y 〉 = ei〈µ,t〉−
1
2
〈t,Σt〉, t ∈ Rd.

Proof. Fix t = (t1, . . . , td) ∈ Rd. The mapping y 7→ 〈t, y〉 is a linear map from Rd to R
whose matrix is given by (t1, . . . , td). By Lemma 4.3.7, the random variable Z := 〈t, Y 〉 is
Gaussian with expectation 〈µ, t〉 and variance 〈t,Σt〉. We have

ϕY (t) = Eei〈t,Y 〉 = EeiZ = ϕZ(1) = ei〈µ,t〉−
1
2
〈t,Σt〉.

where in the last step we used the known formula for the characteristic function of the
Gaussian random variable Z. �

Exercise 4.3.11. Let X1, X2, . . . be a sequence of d-dimensional Gaussian vectors whose
expectations µn converge to µ and covariance matrices Σn converge to Σ. Show that Xn

converges in distribution to Nd(µ,Σ).

What is the density of a multivariate Gaussian distribution Nd(µ,Σ)? First of all, this
density does not always exist, as the following example shows.

Example 4.3.12. Let us construct an example of a two-dimensional Gaussian random vector
which has no density. Let X be a standard normal random variable. The two-dimensional
vector (X,X)T is Gaussian because it can be represented as a linear transformation AX,
where

A : x 7→
(
x
x

)
.

However, the random vector (X,X)T has no density (with respect to the two-dimensional
Lebesgue measure) because X takes values in the line {(x, x) : x ∈ R} which has Lebesgue
measure 0. Note that the covariance matrix of (X,X)T is equal to(

1 1
1 1

)
.

This matrix is degenerate, meaning that its determinant is 0.

The next lemma gives a formula for the density of the multivariate Gaussian distribution in
the case when Σ a non-degenerate matrix.

Lemma 4.3.13. The density of a d-dimensional Gaussian random vector Y ∼ Nd(µ,Σ),
where Σ is a non-degenerate matrix, is given by

fY (t) =
1

(
√

2π)d
√

det Σ
e−

1
2
〈t−µ,Σ−1(t−µ)〉.

If the matrix Σ is degenerate, then Y has no density with respect to the Lebesgue measure
on Rd.

Proof. Since the matrix Σ is positive semidefinite, we can write Σ = Σ1/2 · Σ1/2 for some
symmetric matrix Σ1/2. We have the representation

Y
d
= Σ1/2X + µ,
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where X is a standard Gaussian vector on Rd. Consider the transformation

T : Rd → Rd, x 7→ Σ1/2x+ µ.

Then, T (X)
d
= Y .

1. If Σ is degenerate, then the image of T is a subspace of Rd having dimension strictly
smaller than d. It follows that the image of T has Lebesgue measure 0. So, Y takes values
in a subset of Rd which has Lebesgue measure 0. It follows that Y has no density.

2. If we assume that det Σ 6= 0, we have the inverse transformation

T−1(y) = Σ−1/2(y − µ).

The density of X is

fX(x) =
1

(
√

2π)d
e−

1
2
〈x,x〉, x ∈ Rd.

Now we can compute the density of Y by using the transformation of density theorem:

fY (y) = fX(T−1(y))| detT−1| = 1

(
√

2π)d
√

det Σ
e−

1
2
〈Σ−1/2(y−µ),Σ−1/2(y−µ)〉, y ∈ Rd.

Using the symmetry of the matrix Σ1/2, we obtain

fY (y) =
1

(
√

2π)d
√

det Σ
e−

1
2
〈(y−µ),Σ−1(y−µ)〉, y ∈ Rd.

which is the required formula. �

For general random vectors it is known that the independence of components implies their
uncorrelatedness, but the converse is, generally speaking, not true. It is an important prop-
erty of the multivariate Gaussian distribution that for this distribution, the independence
and the uncorrelatedness of the components are equivalent.

Theorem 4.3.14. Let Y = (Y1, . . . , Yd)
T be a random vector with multivariate Gaussian

distribution. Then, the following properties are equivalent:

(1) The random variables Y1, . . . , Yd are independent.
(2) Cov(Yi, Yj) = 0 for all i 6= j.

Proof. It is known that (1) implies (2) even without the multivariate Gaussian assumption.
We prove that (2) implies (1). Assume that Cov(Yi, Yj) = 0 for all i 6= j. The components
Yk are Gaussian, say Yk ∼ N(µk, σ

2
k). By the uncorrelatedness, the covariance matrix of Y

is a diagonal matrix, whereas the expectation vector of Y may be, in general, arbitrary:

Σ =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
...

...
...

...
0 0 . . . σ2

d

 , µ =


µ1

µ2
...
µd

 .

The characteristic function of Y is given by

ϕY1,...,Yd(t1, . . . , td) = ei〈µ,t〉−
1
2
〈t,Σt〉 = ei

∑d
k=1 µktk−

1
2

∑d
k=1 σ

2
kt

2
k =

d∏
k=1

eiµktk−
1
2
σ2
kt

2
k =

d∏
k=1

ϕYk(tk).
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This implies that Y1, . . . , Yd are independent. �

Recall that two random vectors X = (X1, . . . , Xn)T and Y = (Y1, . . . , Ym)T defined on
a common probability space are called independent if for every Borel sets A ⊂ Rn and
B ⊂ Rm we have

P[X ∈ A, Y ∈ B] = P[X ∈ A] · P[Y ∈ B].

Exercise 4.3.15. Let (X1, . . . , Xn, Y1, . . . , Ym) be a Gaussian random vector. Show that the
random vectors (X1, . . . , Xn) and (Y1, . . . , Ym) are independent if and only if

Cov(Xi, Yj) = 0

for all i = 1, . . . , n and j = 1, . . . ,m.

4.4. Brownian motion as a Gaussian process

A stochastic process is called Gaussian if its finite-dimensional distributions are multivariate
Gaussian. More precisely:

Definition 4.4.1. A stochastic process {X(t) : t ∈ T} is called Gaussian if for every n ∈ N
and every t1, . . . , tn ∈ T , the random vector (X(t1), . . . , X(tn))T is n-dimensional Gaussian.

Example 4.4.2. Let us show that the Brownian motion is a Gaussian process. Take some
0 ≤ t1 ≤ t2 ≤ . . . ≤ tn. We show that the vector (B(t1), . . . , B(tn)) is Gaussian. Consider
the random variables

∆i = B(ti)−B(ti−1).

By the definition of the Brownian motion, these random variables are independent and each
has Gaussian distribution. It follows from Lemma 4.3.9 that the random vector (∆1, . . . ,∆n)
is n-dimensional Gaussian. We can represent (B(t1), . . . , B(tn)) as a linear transform of
(∆1, . . . ,∆n):

B(ti) = ∆1 + . . .+ ∆i.

It follows from Lemma 4.3.7 that the vector (B(t1), . . . , B(tn)) is also n-dimensional Gauss-
ian.

Remark 4.4.3. The finite dimensional distributions of a Gaussian process are uniquely
determined by the expectation function µ(t) = EX(t) and the covariance function

Γ(t1, t2) = Cov(X(t1), X(t2)).

Example 4.4.4. If B is a Brownian motion, then

EB(t) = 0, Γ(t1, t2) = min(t1, t2).

Conversely, we have the following characterization of the Brownian motion.

Theorem 4.4.5. A stochastic process {B(t) : t ≥ 0} is a Brownian motion if and only if

(1) B is Gaussian;
(2) EB(t) = 0 for all t ≥ 0;
(3) Cov(B(t1), B(t2)) = min(t1, t2) for all t1, t2 ≥ 0;
(4) B has continuous sample paths.
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Proof. It is an exercise to show that the above four conditions are equivalent to the
conditions from the definition of the Brownian motion. �

The next theorem is called the weak Markov property of the Brownian motion.

Theorem 4.4.6. Let {B(t) : t ≥ 0} be a Brownian motion. Fix some u ≥ 0. Then:

(1) The process Bu(s) = B(u+ s)−B(u), s ≥ 0, is also a Brownian motion.
(2) The processes {B(t) : 0 ≤ t ≤ u} and {Bu(s) : s ≥ 0} are independent.

Proof. We will verify conditions of Theorem 4.4.5. The process Bu is Gaussian. Indeed,
for every s1, . . . , sn, the random vector (Bu(s1), . . . , Bu(sn)) can be written as a linear trans-
formation of the Gaussian random vector (B(u+ t1), . . . , B(u+ tn), B(u)). Also, the process
Bu has continuous sample paths because B does so by definition of the Brownian motion. In
order to show that Bu is a Brownian motion, we compute the expectation and the covariance
function of Bu. The expectation is given by

EBu(s) = E(B(u+ s)−B(u)) = 0.

The covariance function is given by

Cov(Bu(s1), Bu(s2)) = Cov(B(u+ s1)−B(u), B(u+ s2)−B(u))

= min(u+ s1, u+ s2)− u− u+ u

= min(s1, s2).

So, Bu is a Brownian motion.

We prove that the processes {B(t) : 0 ≤ t ≤ u} and {Bu(s) : s ≥ 0} are independent. First
of all, we need to define what does this mean.

Definition 4.4.7. Two stochastic process {X(t) : t ∈ T} and {Y (s) : s ∈ S} defined on the
same probability space are called independent if for all t1, . . . , tn ∈ T and s1, . . . , sm ∈ S the
vector (X(t1), . . . , X(tn)) is independent of (Y (s1), . . . , Y (sm)).

To show that the processes {B(t) : 0 ≤ t ≤ u} and {Bu(s) : s ≥ 0} are independent, it suffices
to show that there is no correlation between these two processes. Take some 0 ≤ t ≤ u and
s ≥ 0. Then,

Cov(B(t), Bu(s)) = Cov(B(t), B(u+ s)−B(u)) = ti − ti = 0.

This proves the independence. �

The next theorem states the self-similarity property of the Brownian motion.

Theorem 4.4.8. Let {B(t) : t ≥ 0} be a Brownian motion and let a > 0. Then, the process{
B(at)√

a
: t ≥ 0

}
is again a Brownian motion.

Proof. Exercise.
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4.5. Lévy’s construction of the Brownian motion

Theorem 4.5.1. The Brownian motion exists. Concretely: It is possible to construct a
probability space (Ω,F ,P) and a stochastic process {B(t) : t ≥ 0} on this probability space
such that

(1) B(0) = 0.
(2) B has independent increments.
(3) B(t+ h)−B(t) ∼ N(0, h) for all t, h ≥ 0.
(4) For every ω ∈ Ω the function t 7→ B(t;ω) is continuous in t.

Proof. First we will show how to construct the Brownian motion for t ∈ [0, 1].

Step 1: Construction on the set of dyadic rationals. Consider the sets

Dn =

{
k

2n
: k = 0, 1, . . . , 2n

}
, n ∈ N0.

The first few sets are given by

D0 = {0, 1}, D1 =

{
0,

1

2
, 1

}
, D2 =

{
0,

1

4
,
1

2
,
3

4
, 1

}
, . . .

Note also that D0 ⊂ D1 ⊂ . . .. Let D be the set of dyadic rationals in [0, 1]:

D =
∞⋃
n=0

Dn.

By Kolmogorov’s existence theorem, we can construct a probability space (Ω,F ,P) carrying
a collection {Zt : t ∈ D} of independent standard normal random variables indexed by D.

For every n ∈ N0 we will construct a family of random variables {B(d) : d ∈ Dn} such that

(1) For all r < s < t in Dn the random variables B(t) − B(s) ∼ N(0, t − s) and
B(s)−B(r) ∼ N(0, s− r) are independent.

(2) The processes {B(d) : d ∈ Dn} and {Zt : t ∈ D\Dn} are independent.

We use induction over n.

Case n = 0: For n = 0 we define B(0) = 0, B(1) = Z1 ∼ N(0, 1).

Passing from n− 1 to n: Assume we have constructed {B(d) : d ∈ Dn−1} for which Proper-
ties (1) and (2) hold. We construct {B(d) : d ∈ Dn} as follows. For d ∈ Dn\Dn−1 define

B(d) =
B(d− 2−n) +B(d+ 2−n)

2
+

Zd

2
n+1
2

.

Property (2) holds because for d ∈ Dn, the random variable B(d) is defined in terms of the
random variables {Zt : t ∈ Dn} only.

We prove Property (1). Define random variables:

X1 :=
B(d+ 2−n)−B(d− 2−n)

2
∼ N(0, 2−n−1),

X2 :=
Zd

2
n+1
2

∼ N(0, 2−n−1).
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The random variables X1 and X2 are independent by Property (2) (which, by the induction
assumption, holds for n− 1 instead of n). By Lemma 4.3.3, the random variables

X1 +X2 = B(d)−B(d− 2−n) ∼ N(0, 2−n),

X1 −X2 = B(d− 2−n)−B(d) ∼ N(0, 2−n)

are independent.

The above shows that any two “neighboring” increments of the form B(d) − B(d − 2−n),
B(d−2−n)−B(d), where d ∈ Dn\Dn−1, are independent. In fact, we show that all increments

B(d)−B(d− 2−n), d ∈ Dn\{0},

are independent. This implies Property (1). The vector formed by these increments is Gauss-
ian since it is a linear transform of the standard Gaussian vector {Zt : t ∈ Dn}. Consider
two intervals of the form

I1 = [d1 − 2−n, d1], I2 = [d2 − 2−n, d2], d1, d2 ∈ Dn\{0}, d1 < d2.

They are separated by some d ∈ Dj, where we choose j to be minimal with this property.
We prove that the increments of B over these intervals are independent. We have considered
the case when j = n above. Therefore, let j < n. The intervals I1 and I2 are contained
in K1 = [d − 2−j, d] and K2 = [d + 2−j, d] since otherwise, we could replace d by d ± 2−j

which has smaller j. By the induction assumption, the increments of B over the intervals K1

and K2 are independent. The increments over the intervals I1 and I2 are defined using the
increments over K1 and K2 and some disjoint subsets of the family {Zt : t ∈ Dn}. Hence,
the increments over I1 and I2 are independent.

This completes the construction of {B(t) : t ∈ D}.
Step 2: Extending the construction to [0, 1]. Define a sequence F0, F1, . . . of random func-
tions on the interval [0, 1] as follows. Let F0(t) = Z1t, for t ∈ [0, 1]. Further, define

Fn(t) =

{
0, t ∈ Dn−1,

2−
n+1
2 Zt, t ∈ Dn\Dn−1,

and let Fn(t) be defined by linear interpolation between the points from Dn.

For d ∈ Dn we defined in Step 1

B(d) =
n∑
i=0

Fi(d) =
∞∑
i=0

Fi(d).

We prove that there is a measurable set Ω1 ⊂ Ω with P[Ω1] = 1 such that for all ω ∈ Ω1

there exists N = N(ω) ∈ N such that for all n > N ,

(4.5.1) sup
t∈[0,1]

|Fn(t)| ≤ 3
√
n2−n/2.

Let us prove (4.5.1). Let c > 1. Then, for large enough n,

(4.5.2) P[|Zd| > c
√
n] = 2P[Zd > c

√
n] ≤ 2e−c

2n/2.
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Here, we used the asymptotics

P[Zd > x] ∼ 1√
2πx

e−x
2/2, x→∞,

which can be proven using the L’Hôspital rule. We have, using (4.5.2),

∞∑
n=0

P[∃d ∈ Dn : |Zd| ≥ c
√
n] ≤

∞∑
n=0

∑
d∈Dn

P[|Zd| ≥ c
√
n] ≤ C +

∞∑
n=0

(2n + 1) · 2e−c2n/2 <∞,

where the last step holds if c >
√

2 log 2, for example, if c = 3. By the Borel-Cantelli lemma,
we obtain that (4.5.1) holds.

It follows from (4.5.1) that for all ω ∈ Ω1 the series
∑∞

n=0 Fn(t;ω) converges uniformly
over t ∈ [0, 1]. The sum of the series is denoted by B(t;ω). Since the sum of a uniformly
convergent series of continuous functions is continuous, we have that for all ω ∈ Ω1 the
function t 7→ B(t;ω) is continuous.

Step 3: We show that the process {B(t) : t ∈ [0, 1]} constructed in Step 2 has independent
and normal increments. Take some 0 ≤ t1 ≤ . . . ≤ tn ≤ 1. Since the set D is dense in [0, 1]
we can find for every k ∈ N dyadic rationals 0 ≤ t1,k ≤ . . . ≤ tn,k ≤ 1 so that limk→∞ ti,k = ti
for all i = 1, . . . , n. By the continuity of B we have

∆i := B(ti)−B(ti−1) = lim
k→∞

(B(ti,k)−B(ti−1,k)) = lim
k→∞

∆i,k,

where ∆i,k := B(ti,k) − B(ti−1,k) and we put t0 = t0,k = 0. The vector (∆1,k, . . . ,∆n,k) is
Gaussian by the construction from Step 1, with mean 0. Again, by the construction of Step
1, we have

Cov(∆i,k,∆j,k) = (ti,k − ti−1,k)1i=j → (ti − ti−1)1i=j, as k →∞.

It follows (see Exercise 4.3.11), the random vector (∆1, . . . ,∆n) is also Gaussian, with mean
0 and with covariance matrix

Cov(∆i,∆j) = (ti − ti−1)1i=j.

In particular, the components of this vector are independent and the variance of ∆i is ti−ti−1.
This proves that {B(t) : t ∈ [0, 1]} has independent increments and that B(t + h)− B(t) ∼
N(0, h).

Step 4: We extend the construction to all t ≥ 0. Take independent copiesB0 = B,B1, B2, . . .
of the process {B(t) : t ∈ [0, 1]} constructed in Steps 1–3 and glue them together. Concretely,
for t ∈ [n, n+ 1] define

B(t) = Bn(t− n) +
n−1∑
i=0

Bi(1).

The process {B(t) : t ≥ 0} defined in this way is Gaussian and has continuous sample paths.
It is not difficult to check that its covariance function coincides with the covariance function
of the Brownian motion. So, the process {B(t) : t ≥ 0} is the Brownian motion. �
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4.6. Non-differentiability of Brownian motions paths

Theorem 4.6.1 (Paley, Wiener, Zygmund). Let {B(t) : t ≥ 0} be a Brownian motion defined
on a probability space (Ω,F ,P). Then, with probability 1, the function t→ B(t) is nowhere
differentiable. Concretely: There is a measurable set Ω′ ⊂ Ω with P[Ω′] = 1 such that for all
ω ∈ Ω′ and for all t0 ≥ 0 the function t→ B(t;ω) has no derivate at t0.

Remark 4.6.2. We will prove even more. For a function f : R→ R define

D+f(t) = lim sup
h↓0

f(t+ h)− f(t)

h
(upper right derivative),

D−f(t) = lim inf
h↓0

f(t+ h)− f(t)

h
(lower right derivative).

If D+f(t) = D−f(t) is finite, then we say that f is differentiable from the right. In a similar
way one can define the upper left derivative and the lower left derivative. Consider the set

A := {ω ∈ Ω : ∃t0 ∈ [0, 1] such that −∞ < D−B(t0;ω) ≤ D+B(t0;ω) < +∞}.
We would like to show that P[A] = 0, that is for almost every sample path of the Brownian
motion and for every t0 ≥ 0 we have D+B(t0) = +∞, or D−B(t0) = −∞, or both. However,
it is not immediately clear whether the set A is measurable. Therefore, we will prove a
somewhat weaker statement: There is a measurable set A′ with P[A′] = 0 such that A ⊂ A′.

Proof. We have A ⊂ ∪M∈NAM , where

AM =

{
ω ∈ Ω : ∃t0 ∈ [0, 1] such that sup

h∈[0,1]

∣∣∣∣B(t0 + h)−B(t0)

h

∣∣∣∣ ≤M

}
.

Fix some M ∈ N. We show that P[AM ] = 0. Take some n ∈ N, n ≥ 3. Any t0 ∈ [0, 1] must
be in some interval t0 ∈ [k−1

2n
, k

2n
], k = 1, . . . , 2n. If the event AM occurs and t0 ∈ [k−1

2n
, k

2n
],

then the following three events also occur:

(1) F
(1)
n,k : |B(k+1

2n
)−B( k

2n
)| ≤ |B(k+1

2n
)−B(t0)|+ |B(t0)−B( k

2n
)| ≤ 3M

2n
.

(2) F
(2)
n,k : |B(k+2

2n
)−B(k+1

2n
)| ≤ |B(k+2

2n
)−B(t0)|+ |B(t0)−B(k+1

2n
)| ≤ 5M

2n
.

(3) F
(3)
n,k : |B(k+3

2n
)−B(k+2

2n
)| ≤ |B(k+3

2n
)−B(t0)|+ |B(t0)−B(k+2

2n
)| ≤ 7M

2n
.

Consider the event Fn,k = F
(1)
n,k ∩ F

(2)
n,k ∩ F

(3)
n,k . Then, for every n ≥ 3 we have

AM ⊂
2n⋃
k=1

Fn,k.

We will estimate the probabilities P[F
(1)
n,k ], P[F

(2)
n,k ], P[F

(3)
n,k ]. For example, for P[F

(3)
n,k ] we have

P[F
(3)
n,k ] = P

[∣∣∣∣B(k + 3

2n

)
−B

(
k + 2

2n

)∣∣∣∣ ≤ 7M

2n

]
= P

[
|N |√

2n
<

7M

2n

]
= P

[
|N | ≤ 7M√

2n

]
,

where N is a standard normal random variable. Denoting by fN(t) its density (which is
smaller than 1/

√
2π < 1/2), we have

P[F
(3)
n,k ] =

∫ 7M

2n/2

− 7M

2n/2

fN(t)dt ≤ 7M

2n/2
.
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Similarily, one shows that

P[F
(1)
n,k ] ≤ 7M

2n
, P[F

(2)
n,k ] ≤ 7M

2n/2
.

Since the events F
(1)
n,k , F

(2)
n,k , F

(3)
n,k are independent (by the independence of increments of the

Brownian motion), we have

P[Fn,k] = P[F
(1)
n,k ] · P[F

(2)
n,k ] · P[F

(3)
n,k ] ≤ (7M)3

23n/2
.

It follows that

P[AM ] ≤ P[∪2n

k=1Fn,k] ≤ 2n
(7M)3

23n/2
=

(7M)3

2n/2
.

Since this holds for every n ≥ 3, we have P[AM ] = 0 and hence, the set A′ := ∪M∈NAM has
probability 0. We can now take Ω′ = Ω\A′. �
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